

Controlling near-field thermal energy for conversion devices and sensing

P.-Olivier CHAPUIS

Univ Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, F-69621, Villeurbanne, France

KITP, July 31st, 2022

Contributors

Outline

I. Context

- II. Near-field thermal radiation vs T
- III. Near-field thermophotovoltaics
- IV. Near-field thermophotonics
- V. Sub-wavelength thermal emission vs T
- VI. Concentric cylinders
- VII. Some prospects

1

Thermal radiation involving small sizes...

Back to basics...

FDT + Maxwell's equations = Fluctuational Electrodynamics

Fundamentals: thermal radiation between 2 surfaces

Polder & Van Hove, PRB (1971)

Converting thermal energy into electrical power...

...breaking Planck/Bose-Einstein limits

- I. Context
- II. Near-field thermal radiation vs T
- III. Near-field thermophotovoltaics
- IV. Near-field thermophotonics
- V. Sub-wavelength thermal emission vs T
- VI. Concentric cylinders
- VII. Some prospects

Features of near-field transfer between surfaces

Enhancement of heat flux

Modification of spectrum

Effect of temperature?

Stefan-Boltzmann's law in near field?

Temperature exponent seems different

Lucchesi et al., Materials Today Physics 21, 100562 (2021)

>40 experiments in the last decade

INSA (Lyon 1

13

Our microsphere near-field experiment

Top view

xyz piezo positioners

Emitter

holder

Sample cryostat

Measurement of emitter temperature: R(T)

Better calibration: Piqueras et al.

Lucchesi et al., Nano Lett. 21, 4524 (2021)

Approach curves and radiative heat transfer

Distance uncertainties

Attraction forces

Measured by AFM Negligible for small temperature variations

 \Box Mechanical vibrations \rightarrow measured by interferometry

 $\approx 30 \text{ nm}$

Approach curves as a function of temperature

Temperature exponent in near field

Softening of temperature dependence in near field

Lucchesi et al., Materials Today Physics 21, 100562 (2021)

- I. Context
- II. Near-field thermal radiation vs T
- III. Near-field thermophotovoltaics
- IV. Near-field thermophotonics
- V. Sub-wavelength thermal emission vs T
- VI. Concentric cylinders
- VII. Some prospects

Efficient near-field thermophotovoltaic conversion?

no experiment with efficiency above 1% in 2020...

Work	Cell	<i>E_g</i> [eV]	Emitter T [K]	Efficiency [%]	<i>P</i> [W.cm ⁻²]
Bhatt <i>et al</i> . ³ , Nat. Com. 2020	Ge	0.67 at 300 K	880	0.003 estimated	1.3 10 ⁻⁶
Inoue <i>et al</i> . ² , Nano Lett. 2019	InGaAs	0.73 at 300 K	1065	0.98 estimated	7.5 10 ⁻⁴
Fiorino <i>et al</i> . ¹ , Nat. Nano 2018	InAsSb	0.35 at 300 K	655	0.015 estimated	3.4.10 ⁻⁵
Mittapaly <i>et al.</i> ¹ , Nat. Com. 2021	InAsSb	0.35 at 300 K	1250	~8	0.5
Lucchesi et al., 2019	InSb	0.23 at 77 K	~700		

Near-field TPV cell design

see also Francoeur et al.,

Tervo et al., and Feng et al.

$$Poisson$$

$$\frac{dE}{dz}(z) = -\frac{e}{\varepsilon}(n(z) - p(z) + N_a(z) - N_d(z))$$

$$\frac{dJ_n}{dz}(z) = -e(R(z) - G(z))$$

$$Continuity$$

$$\frac{dJ_p}{dz}(z) = e(R(z) - G(z))$$

$$J_n = e \cdot n(z)\mu_n E(z) + e \cdot D_n \frac{dn}{dz}(z)$$

$$J_p = e \cdot p(z)\mu_p E(z) - e \cdot D_p \frac{dp}{dz}(z)$$

$$Drift-diffusion$$

• Non-linearities

Coupled equations
 → iterative process

Mesa geometry

Vaillon et al., Optics Express 24, 347515 (2019) Cakiroglu et al., Sol. Mat. 203, 110190 (2019)

Blandre et al., Sci. Rep. 7, 15860 (2017)

Near-field TPV cell design

Output power measurement as a function of distance

Contact determination....

Lucchesi et al., ArXiV (2019) - Nano Lett. 21, 4524 (2021)

Near-field thermophotovoltaic conversion

Which modes contribute?

Photon conversion into electron-hole pairs

Current SoA for near-field thermophotovoltaics

Work	Cell	E_g [eV]	Emitter T [K]	Efficiency [%]	P [W.cm ⁻²]
Bhatt <i>et al</i> . ³ , Nat. Com. 2020	Ge	0.67 at 300 K	880	0.003 estimated	1.3 10 ⁻⁶
Inoue <i>et al</i> . ² , Nano Lett. 2019	InGaAs	0.73 at 300 K	1065	0.98 estimated	7.5 10 ⁻⁴
Fiorino <i>et al</i> . ¹ , Nat. Nano 2018	InAsSb	0.35 at 300 K	655	0.015 estimated	3.4.10 ⁻⁵
Mittapaly <i>et al</i> . ¹ , Nat. Com. 2021	InAsSb	0.35 at 300 K	1250	~8	0.5
Lucchesi et al., 2019	InSb	0.23 at 77 K	~700	14.1 ± 2.9 <i>measured</i> (near-field)	0.75

- Low-bandgap semiconductors allow for both high efficiency and high power output
- Need now to be developed at room temperature

- I. Context
- II. Near-field thermal radiation vs T
- III. Near-field thermophotovoltaics
- IV. Near-field thermophotonics
- V. Sub-wavelength thermal emission vs T
- VI. Concentric cylinders
- VII. Some prospects

Controlling also the emitter spectrum... thermophotonics (TPX)

Modified Planck's law

CITS INSA Column 1

 \rightarrow Thermal frequencies not required if IQE is high

Drift-diffusion equation in both LED and PV devices

High doping: simplifications

Performances of PN GaAs-based NF-TPX devices

 $E_g = 1.4 \text{ eV}$ High doping

- Managing electrical losses and recombinations is critical
- Increasing the depleted zone in pin junctions

- I. Context
- II. Near-field thermal radiation vs T
- III. Near-field thermophotovoltaics
- IV. Near-field thermophotonics
- V. Sub-wavelength thermal emission vs T
- VI. Concentric cylinders
- VII. Some prospects

Thermal emission of a sphere

$$Q = \int_{0}^{\infty} d\omega \frac{\hbar\omega}{\frac{\hbar\omega}{e^{k_{B}T} - 1}} \frac{2}{\pi} \sum_{P=E,M} \sum_{l=1}^{\infty} (2l+1) \left[\operatorname{Re}(\mathcal{T}_{l}^{P}) - |\mathcal{T}_{l}^{P}|^{2} \right]$$
 ~*Mie*
$$\mathbb{G}_{\text{eff,tot}} = \frac{Q_{s}}{\sigma T^{4} 4 \pi R^{2}}$$

Kattawar & Eisner, Appl. Optics 9 (**1970**) Krüger et al., PRB 86 (2012)

Nguyen et al., APL 112, 111906 (2018)

Temperature dependence of permittivity Case of metals

Nguyen et al., APL 112, 111906 (2018)

Blackbody = non-reflective medium that absorbs all radiation

Recap for sub- λ finite objects

- Effective emissivity can be larger than 1
- *S T*⁴ incorrect over large ranges of size/temperature
- Dipole resonance more broadband-compatible than Mie geometric ones
- Is it possible to tune the temperature-dependance and increase it for large surfaces with sub-λ elements?

Recent measurements involve also the shape of the objects

Heat transfer between suspended calorimeters

Thermal emission from ribbons

- I. Context
- II. Near-field thermal radiation vs T
- III. Near-field thermophotovoltaics
- IV. Near-field thermophotonics
- V. Sub-wavelength thermal emission vs T
- VI. Concentric cylinders
- VII. Some prospects

Refrigeration device: concentric cylinders

Electromagnetic modes for cylindrical objects

- Cylindrical waves $\cos(n\varphi)$, $\sin(n\varphi)$ - Waves act as plane waves along z-axis $e^{ik_z z}$ - Polarizations are coupled Golyk et al. PRE 85 (2012) E/N-polarization $E_{\parallel z}$ H/M-polarization $H_{\parallel z}$

$$\begin{cases} E \\ H \end{cases} = f \left\{ \begin{cases} J_{n}(\kappa_{\rho}\rho) \\ H_{n}^{(1)}(\kappa_{\rho}\rho) \end{cases} \{e^{i\kappa_{z}z}\} \begin{cases} \cos(n\varphi) \\ \sin(n\varphi) \end{cases} \right\}$$

Radiative heat transfer from inner to outer cylinder

 $\mathcal{T}^{a}_{MM} = -\frac{J_{n}(\kappa_{\rho,0}a)}{H_{n}(\kappa_{\rho,0}a)} \frac{\Delta_{1}^{a}\Delta_{4}^{a} - K_{a}^{2}}{\Delta_{1}^{a}\Delta_{2}^{a} - K_{a}^{2}} \qquad \Delta_{1}^{a} = \frac{1}{\kappa_{\rho,A}a} \frac{J_{n}'(\kappa_{\rho,A}a)}{J_{n}(\kappa_{\rho,A}a)} - \frac{1}{\epsilon_{A}\kappa_{\rho,0}a} \frac{H_{n}^{'(1)}(\kappa_{\rho,0}a)}{H_{n}^{(1)}(\kappa_{\rho,0}a)}$

Regime map vs (a, d) and (λ, δ)

- I. Context
- II. Near-field thermal radiation vs T
- III. Near-field thermophotovoltaics
- IV. Near-field thermophotonics
- V. Sub-wavelength thermal emission vs T
- VI. Concentric cylinders
- VII. Some prospects

Spectroscopy without spectroscope?

Energy-conversion devices

Near-field thermophotovoltaics

- Room temperature cells
- Higher operating temperature
- Smaller distances

Near-field thermophotonics

- Refrigeration
- Implementation...
- Moving to IR?

Other near-field thermo-electric phenomena

Thermionics and coupling with near-field thermal radiation

Acknowledgements

BQR REDCAV

ATTSEM

BQR THERMOS

Thermal Radiation to Electrical Energy conversion (TREE)

Announcement:

'Special Topic' issue in APL

'Thermal radiation at nanoscale and applications'

Applied Physics Letters

Deadline for submission: July 2022

Guest Editors: P.-Olivier Chapuis, CNRS & INSA Lyon, France Bong Jae Lee, KAIST, South Korea Alejandro Rodriguez, Princeton, USA

