Round Table: Quantum Friction

Carsten Henkel*, Francesco Intravaia**, Fernando Lombardi***
*Potsdam, Germany **Berlin, Germany ***Buenos Aires, Argentina

anomalous Doppler effect

Flectro'22 Workshop - KITP St. Barbara 20 June-05 Aug 2022

Outline

Concept \& History (Carsten Henkel)

- "viscosity of the vacuum"
- "anomalous Doppler effect"

Einstein (1916/17)
Mkrtchian, Phys. Lett. A 207 (1995) 299
Milton, Høye \& Brevik, Symmetry 8 (2016) 29
> 130 references

Equation of motion approach, details (Francesco Intravaia)

- scaling with velocity v, in particular for $T=0$
- beyond LTE

Buhmann, Dispersion Forces II (Springer 2013)
Intravaia \& al, J. Phys. Condens. Matt. 27 (2015) 214020
Volokitin \& Persson, Electromagnetic Fluctuations at the Nanoscale (Springer 2017)
From friction force to (internal) decoherence (Fernando Lombardi)

- master equations with friction and momentum diffusion
- Wigner function: disappearance of (oscillating) interference terms

Concept: Friction

across the scales

- driving through air $F \propto v$ (Stokes), $\propto v^{2}$ (turbulent)
- breaking a car, slip sliding away
- tidal friction
microscopic picture
- non-smooth surfaces, abrasion
- multi-phase layers (viscosity / lubrification)

Concept: Friction

download list of papers

Concept: Friction

particle \& radiation

particle \& plate

plate \& plate

vacuum viscosity

$$
\begin{aligned}
& \eta \sim \frac{\hbar}{d^{3}} \\
& 0.1 \mu \mathrm{~m}: 10^{-13} \mathrm{~Pa} \mathrm{~s} \\
& \text { air: } \sim 10^{-5} \mathrm{~Pa} \mathrm{~s}
\end{aligned}
$$

Concept: Friction

particle \& radiation

particle \& plate

plate \& plate

History

Separat-Abdruck aus:
Mitteilungen der Physikalischen Gesellschaft Zürich - Nr. 18, 1916.

Zur Quantentheorie der Strahlung

 von A. Einstein.Die formale Ähnlichkeit der Kurve der chromatischen Verteilung der Temperaturstrahlung mit dem Maxwell'schen Ge-schwindigkeits-Verteilungsgesetz ist zu frappant, als daß sie lange hätte verborgen bleiben können. In der Tat wurde bereits W. Wien in der wichtigen theoretischen Arbeit, in welcher er sein Verschiebungsgesetz

$$
\begin{equation*}
\varrho=v^{3} \mathrm{f}\left(\frac{v}{\mathrm{~T}}\right) \tag{1}
\end{equation*}
$$

ableitete. durch diese Ähnlichkeit auf eine weitergehende Be stimmung der Strahlungsformel geführt. Er fand hiebei bekanntlich die Formel

$$
\begin{equation*}
\varrho=\alpha v^{3} \mathrm{e} \tag{2}
\end{equation*}
$$

welche als Grenzgesetz für große Werte von $\frac{v}{T}$ auch heute als richtig anerkannt wird (Wien'sche Strahlungsformel). Heute wissen wir. daß keine Betrachtung. welche anf die klassische Mechanik

Albert Einstein
Zur Quantentheorie der Strahlung Mitt. Phys. Ges. Zürich 18 (1916)
Phys. Z. 18 (1917) 121-28
K. von Mosengeil, Theorie der stationären Strahlung in einem gleichförmig bewegten Hohlraum
Ann. Phys. (Leipzig) 22 (1907) 867-906
D. Kleppner

Rereading Einstein on Radiation
Physics Today (February 2005) 30

History

APOD (Astronomy Picture of the Day) 2003 Feb 09

Earth - Sun - centre of the Galaxy - Local
Group - Virgo Cluster

But these speeds are less than the speed that all of these objects together move relative to the cosmic microwave background (CMB).

In the above all-sky map (COBE data), radiation in the Earth's direction of motion appears blueshifted and hence hotter, while radiation on the opposite side of the sky is redshifted and colder.

Local Group $\sim 600 \mathrm{~km} / \mathrm{s}=0.002 c$ relative to the primordial radiation.
... unexpected high speed, still unexplained (2003). Why are we moving so fast? What is out there?

Concept: Friction

particle \& radiation

particle \& plate

plate \& plate

$$
F_{x}=-\gamma v_{x}+\ldots
$$

Einstein, Kubo \& Kirkwood

$$
\gamma=\frac{1}{k_{B} T} \int_{0}^{\infty} \mathrm{d} t\left\langle\delta F_{x}(t) \delta F_{x}(0)\right\rangle^{\mathrm{eq}}
$$

... talking about Spectra

$$
F_{x}=-\gamma v_{x}+\ldots
$$

Einstein, Kubo \& Kirkwood

$$
\begin{aligned}
\hat{\gamma}_{i j}= & \frac{1}{k_{B} T} \int_{0}^{\infty} d t\left\langle\delta F_{i}(t) \delta F_{j}(0)\right\rangle^{\mathrm{eq}}=\frac{2 \hbar^{2}}{\pi k_{B} T} \int_{0}^{\infty} d \omega \\
& \times \frac{e^{\hbar \omega / k_{B} T}}{\left(e^{\hbar \omega / k_{B} T}-1\right)^{2}} \operatorname{Im} \operatorname{Tr}\left\{\partial_{\mathrm{i}}\left(1+\mathbb{G}_{0} \mathbb{T}\right) \partial_{\mathrm{j}} \operatorname{Im}\left[\mathbb{G}_{0}\right] \mathbb{T}^{*}\right\} . \\
& \text { scattering matrix of particle } \quad \text { e.m. Green tensor (free space) }
\end{aligned}
$$

Golyk, Krüger \& Kardar, Phys. Rev. B 88 (2013) 155117

$$
\begin{equation*}
\langle\vec{F}\rangle=V \vec{v}\left(\frac{\beta \hbar^{2}}{3 \pi c^{5}}\right) \int_{0}^{\infty} d \omega \frac{\omega^{5} \chi_{e}^{\prime \prime}(\omega)}{\sinh ^{2}\left(\frac{1}{2} \beta \hbar \omega\right)} \tag{12}
\end{equation*}
$$

dipole approximation
Mkrtchian \& al, Phys. Rev. Lett. 91 (2003) 220801

talking about Spectra

$$
F_{x}=-\gamma v_{x}+\ldots
$$

Einstein, Kubo \& Kirkwood

$$
\begin{aligned}
& \hat{\gamma}_{i j}= \frac{1}{k_{B} T} \int_{0}^{\infty} d t\left\langle\delta F_{i}(t) \delta F_{j}(0)\right\rangle^{\mathrm{eq}}=\frac{2 \hbar}{\pi k_{l}} \\
& \times \frac{e^{\hbar \omega / k_{B} T}}{\left(e^{\hbar \omega / k_{B} T}-1\right)^{2}} \operatorname{ImTr}\left\{\partial_{\mathrm{i}}\left(1+\mathbb{G}_{0} \mathbb{T}\right)\right. \\
& \text { scattering matrix of particle }
\end{aligned}
$$

Golyk, Krüger \& Kardar, Phys. Rev. B 88 (2013) 155117

$$
\langle\vec{F}\rangle=V \vec{v}\left(\frac{\beta \hbar^{2}}{3 \pi c^{5}}\right) \int_{0}^{\infty} d \omega \frac{\omega^{5} \chi_{e}^{\prime \prime}(\omega)}{\sinh ^{2}\left(\frac{1}{2} \beta \hbar \omega\right)}
$$

Mkrtchian \& al, Phys. Rev. Lett. 91 (2003) 220801

Steady State Scenario

in general (finite v): driven, non-equilibrium state

energy dissipation / entropy production ... (infinite environment reservoir)
in field/plate rest frame: $-\mathbf{F} \cdot \mathbf{v}=P_{\mathrm{A}}+P_{\mathrm{F} / \text { env }} \quad$ (atom + field/environment)
in co-moving particle frame $\frac{\mathrm{d} U_{A}}{\mathrm{~d} \tau}=u^{\mu} F_{\mu}=\gamma\left(P_{A}+\mathbf{F} \cdot \mathbf{v}\right)$ (internal energy)

anomalous Doppler Shift

energy balance in co-moving frame

Q Friction: Pro \& Con

Philbin \& Leonhardt, New J. Phys. 11 (2009) 033035:
"No quantum friction between uniformly moving plates"
hypothesis: moving medium (Lorentz transform into rest frame) = "gyrotropic medium", $T=0$: stable vacuum state

$$
\begin{aligned}
& r_{E 2}=\frac{\mu_{2}\left(\mathrm{i} c \kappa^{\prime}\right) w-w_{2}}{\mu_{2}\left(\mathrm{i} c \kappa^{\prime}\right) w+w_{2}}, \quad r_{B 2}=-\frac{\varepsilon_{2}\left(\mathrm{i} c \kappa^{\prime}\right) w-w_{2}}{\varepsilon_{2}\left(\mathrm{i} c \kappa^{\prime}\right) w+w_{2}} \\
& w_{2}=\sqrt{u^{\prime 2}+v^{2}+\varepsilon_{2}\left(\mathrm{i} c \kappa^{\prime}\right) \mu_{2}\left(\mathrm{i} c \kappa^{\prime}\right) \kappa^{\prime 2}}
\end{aligned}
$$

... probably wrong!

- missing: anomalous Doppler shift

Bogoliubov transformation $\omega^{\prime}<0: a_{\mathbf{k}^{\prime}}^{\prime}=\mu a_{\mathbf{k}}+v a_{\mathbf{k}}^{\dagger}$

$$
\operatorname{coth} \frac{\hbar \omega}{2 k_{B} T_{F}}-\operatorname{coth} \frac{\hbar\left(u^{\mu} k_{\mu}\right)}{2 k_{B} T_{A}}
$$

Quantum Friction: main ideas to keep

- highly idealised/simplified electromagnetic interactions ("no contact")
- preferred frames: CMB, macroscopic body
- spectra: typically, generation of low-frequency excitations

- anomalous Doppler shift $\omega-\mathbf{k} \cdot \mathbf{v}<0$ for polaritons $(k>\omega / c)$
- useful trick: local equilibrium (in co-moving / rest frame)

download list of papers

Quantum friction: The Methodology

Quantum Frictional Interaction

Some previous work on quantum friction

Authors	Low velocity dependency	Distance dependency	Comments
Mahanty 1980	V	Za^{-5}	Approach similar to the calculations of vdW forces but with mistakes
Schaich and Harris 1981	V	$Z_{a}{ }^{-10}$	Two-state atom with a transition dipole moment normal to a metal surface
Scheel and Buhmann 2009	V	$\mathrm{Za}^{\mathbf{- 8}}$	Master-equation approach for multilevel atoms and quantum regression theorem (QRT).
Barton 2010	V	Za^{-8}	Perturbation theory using Fermi's golden rule. Harmonic oscillator.
Philbin and Leonhardt 2009	-	-	Relativistic calculations and analytical/numerical evaluation of the Green's tensor. The tensor is found to be diagonal.
Dedkov and Kyasov 2012	v^{3}	$Z_{a}{ }^{-5}$	Fluctuation-dissipation theorem (FDT) applied to the dipole atom as well as to the electric field

Zero Temperature The prefactors are often different. Many other authors and papers.

Understanding the differences

"[...] in view of the manifold current controversies about quantum-governed frictional forces generally, it seems well worth exploring whether such differences reflect substantive disagreement or only a confusion of terms."

- G. Barton

New Journal of Physics 12, 113044 (2010).

Time-dependent perturbation theory

G. Barton, New J. Phys. 12, 113045 (2010).
F. Intravaia, V. E. Mkrtchian, S. Y. Buhmann, S. Scheel, D. A. R. Dalvit, and C. Henkel, J. Phys. Condens. Matter 27, 214020 (2015).

Solution of the joint atom+field/matter dynamics in time-dependent perturbation theory

Fourth order calculation in the

$$
P=-v F
$$

dipole moment

$$
V(t)=-\hat{\mathbf{d}}(t) \cdot \hat{\mathbf{E}}(t, \mathbf{r})
$$

- no correlation times

Advantages of the calculation

- no linear response
- no local thermodynamic equilibrium

Time-dependent perturbation theory

G. Barton, New J. Phys. 12, 113045 (2010).
F. Intravaia, V. E. Mkrtchian, S. Y. Buhmann, S. Scheel, D. A. R. Dalvit, and C. Henkel, J. Phys. Condens. Matter 27, 214020 (2015).

Initial state: the atom and the field/matter subsystems are both in their ('bare') ground states

$$
\begin{array}{ll}
P=-v F & =P_{\mathrm{A}}+P_{\mathrm{B}} \\
(T=0) & \propto v^{2}
\end{array}
$$

$\underset{\substack{\text { contribution }}}{\text { Dominant }} \longrightarrow$ Quantum friction scales as $\propto v$

[^0]
Time-dependent perturbation theory

G. Barton, New J. Phys. 12, 113045 (2010).
F. Intravaia, V. E. Mkrtchian, S. Y. Buhmann, S. Scheel, D. A. R. Dalvit, and C. Henkel, J. Phys. Condens. Matter 27, 214020 (2015).

$$
\begin{gathered}
P=-v \\
(T=0)
\end{gathered}
$$

Smaller prefactor with
"smoother" accelerations

Quantum friction scales as $\propto v^{3}$

$\left.\propto v^{3}\right|^{=P_{\mathrm{B}}}$
Up to a factor 5 equal to
F. Intravaia, R. O. Behunin, and D. A. R. Dalvit, Phys. Rev. A 89, 050101(R) (2014).

Local Thermal Equilibrium

G. Dedkov and A. Kyasov, Phys. Solid State 44, 1809 (2002).

From the Lorentz force

$$
\hat{\mathbf{d}}=\hat{\mathbf{d}}^{\mathrm{sp}}+\hat{\mathbf{d}}^{\text {ind }} \quad \hat{\mathbf{E}}=\hat{\mathbf{E}}^{\mathrm{sp}}+\hat{\mathbf{E}}^{\text {ind }}
$$

$$
F_{x_{i}}=\left\langle\hat{\mathbf{d}}(t) \cdot \partial_{x_{i}} \hat{\mathbf{E}}\left(\mathbf{r}_{a}(t), t\right)\right\rangle=\left\langle\hat{\mathbf{d}}^{\mathrm{sp}}(t) \cdot \partial_{x_{i}} \hat{\mathbf{E}}^{\mathrm{ind}}\left(\mathbf{r}_{a}(t), t\right)\right\rangle+\left\langle\hat{\mathbf{d}}^{\mathrm{ind}}(t) \cdot \partial_{x_{i}} \hat{\mathbf{E}}^{\mathrm{sp}}\left(\mathbf{r}_{a}(t), t\right)\right\rangle
$$

Local Thermal Equilibrium

J. B. Pendry, J. Phys. Condens. Matter 9, 10301 (1997).
A. I. Volokitin and B. N. J. Persson, Rev. Mod. Phys. 79, 1291 (2007).
G. Dedkov and A. Kyasov, Phys. Solid State 44, 1809 (2002)
R. Zhao, A. Manjavacas, F. J. García de Abajo, and J. B. Pendry, Phys. Rev. Lett. 109, 123604 (2012).
G. Pieplow and C. Henkel, New J. Phys. 15, 023027 (2013).

$$
F_{\text {fric }}=-\frac{2 \hbar}{\pi} \int_{-\infty}^{\infty} \frac{d k_{y}}{2 \pi} \int_{0}^{\infty} \frac{d k_{x}}{2 \pi} k_{x} \int_{0}^{k_{x} v_{x}} d \omega \operatorname{Tr}[\underline{\underline{\alpha}_{I}}(\overbrace{k_{x} v_{x}-\omega ; 0}^{-(\omega-\mathbf{k} \cdot \mathbf{v})=-\omega^{\prime}} \cdot \underline{G_{I}}\left(\mathbf{k}, z_{a}, \omega\right)]
$$

$\omega^{\prime}<0 \Rightarrow 0 \leq \omega<\mathbf{k} \cdot \mathbf{v}<c|\mathbf{k}| \quad$ Dominated by the evanescent field (Anomalous Doppler effect)

Good for a strong intrinsic dissipation (nanoparticle)

$$
F_{\text {fric }} \propto-\hbar \alpha_{0} \epsilon_{0} \rho_{\mathrm{np}} \rho \frac{v^{3}}{\left(2 z_{a}\right)^{7}}
$$

[^1]
Kubo/Kirkwood formalism

A.I. Volokitin and B. N. J. Persson, Rev. Mod. Phys. 79, 1291 (2007).
J. S. Høye and I. Brevik, Europhys. Lett. 91, 60003 (2010).
M. Krüger, T. Emig, and M. Kardar, Phys. Rev. Lett. 106, 210404 (2011).

A consequence of the Fluctuation-Dissipation theorem

$$
\left(\hat{\gamma}_{\alpha}^{(\beta)}\right)_{i j}=\frac{1}{k_{B} T} \int_{0}^{\infty} d t\left\langle\delta F_{i}^{(\beta)}(t) \delta F_{j}^{(\alpha)}(0)\right\rangle^{\mathrm{eq}}
$$

Fluctuating part of the force acting on the particle

$$
\mathbf{F}_{\text {fric }}^{\beta}=-\underline{\gamma}_{\alpha}^{(\beta)}(T) \mathbf{v}_{\alpha} \quad \underline{\gamma}_{\alpha}^{(\beta)}(T) \xrightarrow{T \rightarrow 0} 0
$$

No contribution linear in \mathbf{v}

$$
\text { at } T=0
$$

A different approach

F. Intravaia, R. O. Behunin, C. Henkel, K. Busch, and D. A. R. Dalvit, Phys. Rev. A 94 (2016).

Without having recourse to the local thermal equilibrium approximation

> dipole's correlation tensor
> (model independent)
> $\begin{aligned} & (T=0) \\ & \mathbf{F}_{\text {fric }}=-\operatorname{Re}\left\{\frac{2}{\pi} \int_{0}^{\infty} d \omega \int \frac{d^{2} \mathbf{k}}{(2 \pi)^{2}} \mathbf{k} \int_{0}^{\infty} d \tau e^{-\mathrm{i}(\omega-\mathbf{k} \cdot \mathbf{v}) \tau} \operatorname{Tr}\left[\underline{C}(\tau, v) \cdot \underline{G}_{\mathfrak{J}}^{\mathrm{T}}\left(\mathbf{k}, z_{a}, \omega\right)\right]\right\}\end{aligned}$

> Contains other formulations:
> G. Dedkov and A. Kyasov, Phys. Solid State 44, 1809 (2002).
> A. I. Volokitin and B. N. J. Persson, Rev. Mod. Phys. 79, 1291 (2007).
> G. Pieplow and C. Henkel, New J. Phys. 15, 023027 (2013).
> J. S. Høye, I. Brevik, and K. A. Milton, J. Phys. A Math. Theor. 48, 365004 (2015).

A glimpse in the theory

F. Intravaia, R. O. Behunin, C. Henkel, K. Busch, and D. A. R. Dalvit, Phys. Rev. A 94 (2016).

Dipole's correlation tensor

$$
\left\langle\mathbf{d}^{2}(t)\right\rangle \Sigma C_{i j}(\tau)=\left\langle\hat{d}_{i}(\tau) \hat{d}_{j}(0)\right\rangle
$$

Better description: Master Equation

G. Boedecker and C. Henkel, Ann. Physik 524, 805 (2012).
J. Klatt, C. M. Kropf, and S. Y. Buhmann, Phys. Rev. Lett. 126, 210401 (2021).

R. Davidson and J. J. Kozak, J. Math. Phys. 11, 189 (1970)
P. L. Knight and P. W. Milonni, Phys. Lett. A 56, 275 (1976).
C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. Atom-photon interactions.
P. R. Berman and G. W. Ford, in Advances In Atomic, Molecular, and Optical Physics, volume 59, 175

A glimpse in the theory

F. Intravaia, R. O. Behunin, C. Henkel, K. Busch, and D. A. R. Dalvit, Phys. Rev. A 94 (2016)

Dipole's power spectrum tensor

$$
\underline{S}(\omega)=\int_{-\infty}^{\infty} \frac{d \tau}{2 \pi} e^{i \omega \tau} \underline{C}(\tau)
$$

(QRT = Born-Markov approximation)

Relevant for quantum friction

Beyond Local Thermal Equilibrium

F. Intravaia, R. O. Behunin, C. Henkel, K. Busch, and D. A. R. Dalvit, Phys. Rev. Lett. 117, 100402 (2016)
D. Reiche, F. Intravaia, J.-T. Hsiang, K. Busch, and B. L. Hu, Phys. Rev. A 102, 050203(R) (2020)

A non-equilibrium correction to the FDT

$$
\begin{array}{r}
\underline{S}(\omega ; v)=\underbrace{\frac{\hbar}{\pi} \theta(\omega) \underline{\alpha}_{I}(\omega ; v)+\frac{\hbar}{\pi} \underline{J}(\omega ; v)} \\
\longrightarrow F_{\text {fric }}=F_{\text {fric }}^{\mathrm{LTE}}+F_{\text {fric }}^{J}
\end{array}
$$

Correction needed also for thermodynamical consistence

Thermal Effects

M. Oelschläger, D. Reiche, C. H. Egerland, K. Busch and F. Intravaia, arXiv:2110.13635 (2021)

Thermal Effects

M. Oelschläger, D. Reiche, C. H. Egerland, K. Busch and F. Intravaia, arXiv:2110.13635 (2021)

$$
F_{\text {fric }} \sim-\frac{3}{\pi} \hbar \alpha_{0}^{2} \rho^{2} \frac{\left(k_{\mathrm{B}} T / \hbar\right)^{2}}{\left(2 z_{a}\right)^{8}} v
$$

No contribution linear in \mathbf{v}

$$
\text { at } T=0
$$

Summary

Atoms

Nanoparticle

Thank you for you attention!

Enhanced decoherence for a neutral particle sliding on a metallic surface in vacuum

FERNANDO C. LOMBARDO

QUANTUM FRICTION

Two bodies which are not in contact and are in relative motion to each other at constant velocity experience a dissipative force that opposes the motion due to the exchange of Doppler shifted virtual photons.
Quantum friction is very small in magnitude and short ranged, its experimental detection has become an absolute challenge so far, even though there have been a variety of configurations and theoretical efforts devoted to finding favorable conditions for its observation

Non-contact friction enhances the decoherence of the moving atom. Further, its effect can be enlarged by a thorough selection of the two-level particle and the Drude-Lorentz parameters of the material. Measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction

Quantum Open System approach to quantum friction: decoherence

Decoherence and the Quantum-Classical Transition

Hilbert Space

Macroscopically quantum states are never isolated

Hilbert Space is Huge

Every state is allowed. The superposition principle reigns. If $\Psi=\Psi_{1}+\Psi_{2}$, then
$P=\left|\psi_{1}\right|^{2}+\left|\Psi_{2}\right|^{2}+2 \operatorname{Re}\left(\psi_{1} * \psi_{2}\right)$

Classical states

They are a small subgroup, where interferences are forbidden. If $\psi=\Psi_{1}+\Psi_{2}$, then

$$
P=\left|\Psi_{1}\right|^{2}+\left|\Psi_{2}\right|^{2}
$$

New Paradigm: classicality is an emergent property

If we toss a coin, it is in either one state or the other We perceive only one outcome! 2Re($\psi_{1}+\psi_{2}$)

Decoherence is at the root of the QC Transition

It is the dynamic supression of the quantum interferences induced in subsystems due to the interacction of the environment

Quantum-Classical Transition

For a system to be considered classical it should fulfill both conditions

The wave function should predict a strong correlation between the canonical variables \Downarrow

For example, the Wigner Function should have a peak at the classical trajectories

The interference between the different classical configurations should be insignificant \Downarrow

The reduced density matrix becomes diagonal due to the supression of the coherences (DECOHERENCE)

Open quantum systems are characterized by non-unitary evolutions

The description of the dynamics is based on a master equation that considers non-unit effects such as decoherence and dissipation

Unitary evolution
Diffusion and dissipation

Two slit experiment

Closed quantum system

$$
\rho(t)=\left(\begin{array}{ll}
\rho_{11} & \rho_{12} \\
\rho_{21} & \rho_{22}
\end{array}\right)
$$

With decoherence

Open quantum system

$$
\rho_{r}(t)=\left(\begin{array}{cc}
\rho_{11} & \mathscr{D}(t) \rho_{12} \\
\mathscr{X}(t) \rho_{21} & \rho_{22}
\end{array}\right)
$$

$\mathscr{D}(t)$ is the factor by which coherences are destroy

In order to study the role of the vacuum fluctuations as a source of decoherence we will start by the paradigmatic example of Quantum Brownian Motion

Not only does it renormalize the system's parameters:

$\Longrightarrow \quad$ source of
 NOISE and
 DISSIPATION

We shall couple our system of mass M and frequency Ω to an environment at zero temperature (QUANTUM ENVIRONMENT): infinite set of harmonic oscillators of mass m_{n} and frequency ω_{n}.

The paradigmatic QBM model

Total action of the system+environment $(\hbar=1)$

$$
\begin{aligned}
S\left[x, q_{n}\right] & =\int_{0}^{t} d s\left[\frac{1}{2} M\left(\dot{x}^{2}-\Omega^{2} x^{2}\right)\right]-\sum_{n} \lambda_{n} x q_{n} \\
& +\int_{0}^{t} d s\left[\sum_{n} \frac{1}{2} m_{n}\left(\dot{q}_{n}^{2}-\omega_{n}^{2} q_{n}^{2}\right)\right]
\end{aligned}
$$

Relevant objects to analyze

$$
\begin{aligned}
\rho_{\mathrm{r}}\left(x, x^{\prime}, t\right) & =\int d \bar{q} \rho\left(x, \bar{q}, x^{\prime}, \bar{q}, t\right) \\
W_{\mathrm{r}}(x, p, t) & =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} d y e^{i p y} \rho_{\mathrm{r}}\left(x+\frac{y}{2}, x-\frac{y}{2}, t\right) .
\end{aligned}
$$

The reduced density matrix satisfies

$$
\begin{aligned}
i \frac{\partial}{\partial t} \rho_{\mathrm{r}}\left(x, x^{\prime}, t\right) & =\left[-\frac{1}{2 M^{2}}\left(\partial_{x}^{2}-\partial_{x^{\prime}}^{2}\right)\right] \rho_{\mathrm{r}}+\frac{1}{2} M \Omega^{2}\left(x^{2}-x^{\prime 2}\right) \rho_{\mathrm{r}} \\
& +\frac{1}{2} M \delta \Omega^{2}(t)\left(x^{2}-x^{\prime 2}\right) \rho_{\mathrm{r}}-i \gamma(t)\left(x-x^{\prime}\right)\left(\partial_{x}-\partial_{x^{\prime}}\right) \rho_{\mathrm{r}} \\
& -\operatorname{iMD}(t)\left(x-x^{\prime}\right)^{2} \rho_{\mathrm{r}}-f(t)\left(x-x^{\prime}\right)\left(\partial_{x}+\partial_{x^{\prime}}\right) \rho_{\mathrm{r}}
\end{aligned}
$$

At High Temperature $\rightarrow \delta \Omega^{2}(t) \sim 0, f(t) \sim 0, \gamma(t) \sim \gamma_{0}$, and $\mathcal{D}(t) \sim 2 m \gamma_{0} K_{B} T$. CONSTANTS!

At $T=0 \rightarrow \delta \Omega^{2}(t), \gamma(t), \mathcal{D}(t)$ and $f(t)$ are time dependent functions!

Decoherence Process

Aim

Study the dynamics of the particle in interaction with the environment

Procedure

We solve the master equation for the initial density matrix and obtain $\rho_{r}(t)$ for all times. Initially: $\Psi(x, t=0)=\Psi_{1}(x)+\Psi_{2}(x)$, a superposition of two gaussian packets simmetrically localized

For $t>0, W(x, p, t)=W_{1}(x, p, t)+W_{2}(x, p, t)+W_{\text {int }}(x, p, t)$
DECOHERENCE FACTOR

$$
\Gamma(t)=\exp \left(-A_{\text {int }}\right)=\frac{1}{2} \frac{\left.W_{\text {int }}(x, p)\right|_{\text {peak }}}{\left[\left.\left.W_{1}(x, p)\right|_{\text {peak }} W_{2}(x, p)\right|_{\text {peak }}\right]^{\frac{1}{2}}} .
$$

J.P.Paz, S. Habib, and W. H. Zurek, Phys.Rev.D 47, 488 (1993)

Spin Boson Model...

An exactly solvable model

$$
H_{\mathrm{SB}}=\frac{1}{2} \hbar \Omega \sigma_{z}+\frac{1}{2} \sigma_{z} \sum_{k} \lambda_{k}\left(g_{k} a_{k}^{\dagger}+g_{k}^{*} a_{k}\right)+\sum_{k} \hbar \omega_{k} a_{k}^{\dagger} a_{k},
$$

As $\left[\sigma_{z}, H_{\text {int }}\right]=0$, the populations remain constant, the master equation for the reduced density matrix is

$$
\dot{\rho}_{\mathrm{r}}=-i \Omega\left[\sigma_{z}, \rho_{\mathrm{r}}\right]-\mathcal{D}(t)\left[\sigma_{z},\left[\sigma_{z}, \rho_{\mathrm{r}}\right]\right],
$$

with $\mathcal{D}(s)=\int_{0}^{s} d s^{\prime} \int_{0}^{\infty} d \omega l(\omega) \operatorname{coth}\left(\frac{\omega}{2 k_{B} T}\right) \cos \left(\omega\left(s-s^{\prime}\right)\right)$
So, the solution to this master equation is:

$$
\rho_{\mathrm{r}_{01}}(t)=e^{-i \Omega t-\mathcal{A}(t)} \rho_{\mathrm{r}_{01}}(0)
$$

and $\mathcal{A}(t)=\int_{0}^{t} d s \mathcal{D}(t)$ and $\Gamma(t)=e^{-\mathcal{A}(t)}$ the decoherence factor

No decoherence

DECOHERENCE OVER THE ATOM

Enhancement of the decoherence due to friction

The presence of the plate reduces the decoherence time, but only for nonvanishing relative velocity.
Decoherence effect can be enlarged by a thorough selection of the two-level particle and the Drude-Lorentz parameters of the material

ATOM MOVING IN EM FIELD

$$
H=\frac{\hbar}{2} \Delta \hat{\sigma}_{z}+H_{S E}+H_{E} \quad H_{S E}=\hat{\mathbf{d}} \cdot \nabla \Phi\left(\mathbf{r}_{s}\right) \quad d_{i}=\langle g| \hat{d}_{i}|e\rangle=\langle e| \hat{d}_{i}|g\rangle
$$

EM POTENTIAL DRESSED PHOTONS

$$
\begin{aligned}
& \hat{H}=\frac{\hbar}{2} \Delta \sigma_{z}+\hat{H}_{e m}+\hat{H}_{\text {int }} \\
& \hat{H}_{\text {int }}=-\hat{\mathbf{d}} \otimes \hat{\mathbf{E}}\left(\mathbf{r}_{s}\right)=\hat{\mathbf{d}} \otimes \nabla \hat{\Phi}\left(\mathbf{r}_{s}\right) \\
& \hat{\Phi}(\mathbf{r}, t)=\int d^{2} k \int_{0}^{\infty} d \omega\left(\phi(\mathbf{r}, t) \hat{\mathbf{k}}_{\mathbf{k}, \omega} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}+h . c .\right) \\
& \phi(\mathbf{k}, \omega)=\sqrt{\frac{\omega \Gamma}{\omega_{s}}} \sqrt{\frac{\hbar}{2 \pi^{2} k}} e^{-k z} \frac{\omega_{p}}{\omega^{2}-\omega_{s}^{2}-i \omega \Gamma}
\end{aligned}
$$

Drude-Lorentz model
creating and destroying "photons" in a wider meaning, since they are creation and destruction operators of composite states (field plus material)

The master equation

$$
\begin{aligned}
\dot{\rho}_{\mathrm{s}}= & -\frac{i \Delta}{2}\left[\hat{\sigma}_{z}, \rho_{\mathrm{s}}\right]+i \zeta(v, t)\left[\sigma_{x},\left\{\sigma_{y}, \rho_{\mathrm{s}}\right\}\right] \\
& -\frac{1}{2} D(v, t)\left(\left[\sigma_{x},\left[\sigma_{x}, \rho_{\mathrm{s}}\right]\right]+\left[\sigma_{y},\left[\sigma_{y}, \rho_{\mathrm{s}}\right]\right]\right) \\
& -\frac{1}{2} f(v, t)\left(\left[\sigma_{x},\left[\sigma_{y}, \rho_{\mathrm{s}}\right]\right]-\left[\sigma_{y},\left[\sigma_{x}, \rho_{\mathrm{s}}\right]\right]\right)
\end{aligned}
$$

The coefficients

$$
\begin{aligned}
D(v, t) & =\frac{r_{0}}{2 \pi} \int_{0}^{t} d t^{\prime} \int_{0}^{\infty} d \omega \frac{\tilde{\Gamma} \omega}{\left(\omega^{2}-1\right)^{2}+\tilde{\Gamma}^{2} \omega^{2}} \cos \left(\tilde{\Delta} t^{\prime}\right) \cos \left(\omega t^{\prime}\right) \mathbf{P}\left(u t^{\prime}\right), \\
f(v, t) & =\frac{r_{0}}{2 \pi} \int_{0}^{t} d t^{\prime} \int_{0}^{\infty} d \omega \frac{\tilde{\Gamma} \omega}{\left(\omega^{2}-1\right)^{2}+\tilde{\Gamma}^{2} \omega^{2}} \sin \left(\tilde{\Delta} t^{\prime}\right) \cos \left(\omega t^{\prime}\right) \mathbf{P}\left(u t^{\prime}\right), \\
\zeta(v, t) & =\frac{r_{0}}{2 \pi} \int_{0}^{t} d t^{\prime} \int_{0}^{\infty} d \omega \frac{\tilde{\Gamma} \omega}{\left(\omega^{2}-1\right)^{2}+\tilde{\Gamma}^{2} \omega^{2}} \sin \left(\tilde{\Delta} t^{\prime}\right) \sin \left(\omega t^{\prime}\right) \mathbf{P}\left(u t^{\prime}\right),
\end{aligned}
$$

$$
\begin{aligned}
& r_{0}=d^{2} \omega_{\mathrm{p}}^{2} / \hbar \omega_{\mathrm{s}}^{2} a^{3} \\
& \frac{\omega}{\omega_{\mathrm{s}}} \rightarrow \omega, \quad \frac{\Gamma}{\omega_{\mathrm{s}}} \rightarrow t
\end{aligned}
$$

$\mathbf{P}\left(u t^{\prime}\right)$ is an algebraic function given by

$$
\begin{aligned}
\mathbf{P}\left(u t^{\prime}\right)= & 2 n_{x}^{2} \frac{2-u^{2} t^{\prime 2}}{\left(4+u^{2} t^{\prime 2}\right)^{5 / 2}} \\
& +\frac{n_{y}^{2}}{\left(4+u^{2} t^{\prime 2}\right)^{3 / 2}}+n_{z}^{2} \frac{\left(8-u^{2} t^{\prime 2}\right)}{\left(4+u^{2} t^{\prime 2}\right)^{5 / 2}} .
\end{aligned}
$$

Coefficient $D(v, t)$ evolution in natural cycles $N=\frac{t}{2 \pi / \bar{\Delta}}$, comparing the analytical expression, the numerical result, and the value obtained when performing a Markov approximation. The parameter values are $a=5 \mathrm{~nm}, \tilde{\Gamma}=1, \tilde{\Delta}=0.2, u=0.003$, and $\mathbf{d}=$ $d(1,0,0)$.

$$
\hbar \dot{\rho}=-i\left[H_{a}, \rho\right]-D(\mathbf{r}, t)\left[\sigma_{x},\left[\sigma_{x}, \rho\right]\right]-f(\mathbf{r}, t)\left[\sigma_{x},\left[\sigma_{y}, \rho\right]\right]+i \zeta(\mathbf{r}, t)\left[\sigma_{x},\left\{\sigma_{y}, \rho\right\}\right]
$$

(a)

(b)

Coherences and ρ_{11} are indefinitely suppressed and tent to vanish for long times, leading to the system to its ground state.
Purity decreases until to reach a minimum value and tents to unity as the system tents to its pure ground state

Analytical expression of decoherence time:

$$
\mathcal{D}(t)=\exp \left[-\frac{2}{\omega_{\mathrm{s}}} \int_{0}^{t} d t^{\prime} D\left(v, t^{\prime}\right)\right] \text { as } \mathcal{D}\left(\tau_{\mathrm{D}}\right)=e^{-2}
$$

$$
\begin{aligned}
\tau_{\mathrm{D}}= & \tau_{\mathrm{D}}^{\text {Markov }}+\left[\frac{-1}{\sqrt{4-\tilde{\Gamma}^{2}}} \frac{g(\tilde{\Delta}, \tilde{\Gamma})}{h(\tilde{\Delta}, \tilde{\Gamma})}+\frac{2}{\pi \tilde{\Delta}}\right] \\
& +\frac{3}{8} \frac{d^{(a)}}{d^{(i)}} u^{2}\left\{\left[g(\tilde{\Delta}, \tilde{\Gamma}) \frac{\partial_{\tilde{\tilde{\Delta}}}^{2} h(\tilde{\Delta}, \tilde{\Gamma})}{h^{2}(\tilde{\Delta}, \tilde{\Gamma})}-\frac{\partial_{\tilde{\tilde{\Delta}}}^{2} g(\tilde{\Delta}, \tilde{\Gamma})}{h(\tilde{\Delta}, \tilde{\Gamma})}\right]\right. \\
& \left.+\frac{2}{\pi h(\tilde{\Delta}, \tilde{\Gamma})}\left[\partial_{\tilde{\Delta}}^{2} \frac{h(\tilde{\Delta}, \tilde{\Gamma})}{\tilde{\Delta}}-\frac{\partial_{\tilde{\Delta}}^{2} h(\tilde{\Delta}, \tilde{\Gamma})}{\tilde{\Delta}}\right]\right\}
\end{aligned}
$$

Term corresponding to the Markovian approximation

$$
\tau_{\mathrm{D}}^{\text {Markov }}=\frac{\hbar \omega_{\mathrm{s}}^{2} a^{3}}{d^{2} \omega_{\mathrm{p}}^{2}} \frac{32}{d^{(i)}}\left(\frac{1}{h(\tilde{\Delta}, \tilde{\Gamma})}-\frac{3}{8} \frac{d^{(a)}}{d^{(i)}} u^{2} \frac{\partial_{\tilde{\Delta}}^{2} h(\tilde{\Delta}, \tilde{\Gamma})}{h^{2}(\tilde{\Delta}, \tilde{\Gamma})}\right)
$$

$$
\begin{aligned}
& h(\tilde{\Delta}, \tilde{\Gamma})= \frac{\tilde{\Delta} \tilde{\Gamma}}{\left(\tilde{\Delta}^{2}-1\right)^{2}+\tilde{\Delta} \tilde{\Gamma}}, \\
& g(\tilde{\Delta}, \tilde{\Gamma})= \operatorname{Re}\left[\left(1+\frac{2 i}{\pi} \ln \left(\tilde{\omega}_{\mathrm{r}} / \tilde{\Delta}\right)\right)\right. \\
&\left.\times\left(\frac{1}{\left(\tilde{\omega}_{\mathrm{r}}+\tilde{\Delta}\right)^{2}}+\frac{1}{\left(\tilde{\omega}_{\mathrm{r}}-\tilde{\Delta}\right)^{2}}\right)\right], \\
& d^{(i)}=1+n_{z}^{2} \quad \text { and } \quad \tilde{\omega}_{\mathrm{r}}=\frac{1}{\sqrt{2}} \sqrt{2-\tilde{\Gamma}+i \sqrt{4-\tilde{\Gamma}}} \\
& d^{(a)}=3 n_{x}^{2}+n_{y}^{2}+4 n_{z}^{2} \quad
\end{aligned}
$$

$\tau_{\mathrm{D}} \sim a-b u^{2}$

$$
b / a \sim 6.417
$$

For a nitrogen-vacancy (NV) center moving over a n-doped silicon ($n-\mathrm{Si}$) surface
$b / a \sim 0.216 \quad$ Rubidium (Rb) atom moving over n-Si surface

Decoherence time as a function of the dimensionless level spacing $\tilde{\Delta}$ of the system, normalized with the null velocity value, considering an n-Si (up) and a gold (down) dielectric. The parameter values are $\tilde{\Gamma}=1$ and $u=0.003$ for n-Si and $\tilde{\Gamma}=3 \times 10^{-3}$, $u=1.5 \times 10^{-4}$, and $\mathbf{d}=d(1,0,0)$ for Au .

Decoherence time is at its smallest value when the polarization is perpendicular to the dielectric surface. If tilted, the coherences fall sooner when the polarization is in the direction of the velocity. We showed that for the same dipole orientation the force increases and τ_{0} decreases, implying that decoherence effects are stronger in that case. Direct link between decoherence and quantum friction since they exhibit a qualitative inverse proportionality: the larger the decoherence effect (shorter decoherence time), the bigger the frictional force. The results obtained reinforce the idea that the velocity-dependent effects induced on the atom depend on the material and particle. $\tau_{0} / \tau_{\mathrm{D}_{\mathrm{m}}}$ can be enhanced up to a factor $10^{\wedge} 2$ by considering an NV center moving over an $\mathrm{n}-\mathrm{Si}$ coated surface, when compared to an Rb atom moving over a gold-coated surface
L. Viotti, F.C.Lombardo \&. P.I. Villar Phys. Rev. A 103, 032809 (2021)

Functional methods: in-out effective action and Influence functional

PHYSICAL REVIEW D 76, 085007 (2007)

Quantum dissipative effects in moving mirrors: A functional approach

C. D. Fosco, ${ }^{1}$ F. C. Lombardo, ${ }^{2}$ and F. D. Mazzitelli ${ }^{2}$

PHYSICAL REVIEW D 84, 025011 (2011)
Quantum dissipative effects in moving imperfect mirrors: Sidewise and normal motions
PHYSICAL REVIEW D 88, 105004 (2013) César D. Fosco, ${ }^{1,2, *}$ Fernando C. Lombardo, ${ }^{3, \dagger}$ and Francisco D. Mazzitelli ${ }^{1,3, *}$
Quantum dissipative effects in graphenelike mirrors
César D. Fosco, ${ }^{1,2}$ Fernando C. Lombardo, ${ }^{3}$ Francisco D. Mazzitelli, ${ }^{1,2}$ and María L. Remaggi ${ }^{1,2}$ PHYSICAL REVIEW D 91, 105020 (2015)
Functional approach to quantum friction: Effective action and dissipative force

PHYSICAL REVIEW D 93, 065035 (2016) M. Belén Farías, ${ }^{1,{ }^{*}}$ César D. Fosco, ${ }^{2}$ Fernando C. Lombardo, ${ }^{1}$ Francisco D. Mazzitelli, ${ }^{2}$ and Adrián E. Rubio López ${ }^{1}$

Dissipation and decoherence effects on a moving particle in front of a dielectric plate
M. Belén Farías* and Fernando C. Lombardo PHYSICAL REVIEW D 100, 036013 (2019)

PHYSICAL REVIEW D 95, 065012 (2017)
Quantum friction between graphene sheets

Motion induced radiation and quantum friction for a moving atom
M. Belén Farías, ${ }^{1,2, *}$ C. D. Fosco, ${ }^{3, \dagger}$ Fernando C. Lombardo, ${ }^{1,+}$ and Francisco D. Mazzitelli

Thermal corrections to quantum friction and decoherence: A closed-time-path approach to atom-surface interaction Ludmila Viotti,* M. Belén Farías, Paula I. Villar, and Fernando C. Lombardo

Article
Motion-Induced Radiation Due to an Atom in the Presence of a Graphene Plane

EXPERIMENTAL PROPOSAL

12cm diameter Au-coated Si disks rotated up to $\Omega=2 \pi 7000 \mathrm{rad} / \mathrm{s}$.

Our feasible experimental setup would be based on the use of a single NV center in diamond as an effective two-level system at the tip of a modified AFM tip.
The distance can be controlled from a few nanometers to tenths of nanometers with sub-nanometer resolution. The NV system presents itself as an excellent tool for studying geometric phases

Non-inertial effects can be completely neglected in order to model a particle moving at a constant speed on the material sheet. Since it is critical to keep the separation uniform, to prevent spurious decoherence, it is important to asses the plausibility of the proposed experimental setup.
M.B. Farías, F.C.L, A.Soba, P.I. Villar \& R.S. Decca; npj Quantum

Information (2020) 25

EXPERIMENTAL PROPOSAL

12 cm diameter Au-coated Si disks rotated up to $\Omega=2 \pi 7000 \mathrm{rad} / \mathrm{s}$.

Our feasible experimental setup would be based on the use of a single NV center in diamond as an effective two-level system at the tip of a modified AFM tip.
The distance can be controlled from a few nanometers to tenths of nanometers with sub-nanometer resolution

State-of-the-art phase-detection experiments in NV centers in diamond permit the detection of ~ 50 mrad phase change over $10 \wedge 6$ repetitions

EXPERIMENTAL PROPOSAL

Abstract

In the proposed experimental setup, the sample is constituted by a Si disk laminated in metal (we propose to use Au or n-doped Si coating). The coated Si disk is mounted on a turntable.

Parameters of the

Drude-Lorentz model
Au
$\omega \mathrm{pl}=1.37$ 10^16rad/s
「/wpl~0.05

n-Si

$\omega \mathrm{pl}=3.510^{\wedge} 14 \mathrm{rad} / \mathrm{s}$
「/ $\omega \mathrm{pl}$ ~ 1

- We have further obtained an analytical y numerical expression for the decoherence time
- Both the net effect of the environment on the particle and the velocity-dependent effect are strongly dependent on the material parameters and the atom level spacing, allowing as to amplify or weaken the magnitude by a sensible choice
- A link between decoherence time and quantum friction can be established since non contact quantum friction seems to enhance the decoherence on the moving atom. Measuring decoherence time one can indirectly demonstrate the existence of quantum friction
- We have found a scenario to indirectly detect QF by measuring the the corrections on the Geometric phase induced by decoherence

THANK YOU!

Kavli Institute for
Theoretical Physics
Departamento de Física .UBAexactas

[^0]: Up to a factor 16/3 equal to S. Scheel and S. Y. Buhmann, Phys. Rev. A 80, 042902 (2009)

[^1]: Francesco Intravaia, AG Theoretical Optics \& Photonics, Humboldt University of Berlin

