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Outline
Concept & History (Carsten Henkel)

— “viscosity of the vacuum” 
— “anomalous Doppler effect”

From friction force to (internal) decoherence (Fernando Lombardi) 
— master equations with friction and momentum diffusion

— Wigner function: disappearance of (oscillating) interference terms

Einstein (1916/17) 
Mkrtchian, Phys. Lett. A 207 (1995) 299 
Milton, Høye & Brevik, Symmetry 8 (2016) 29 
> 130 references

Equation of motion approach, details (Francesco Intravaia)

— scaling with velocity  , in particular for  

— beyond LTE

υ T = 0

Shresta & Hu, Phys. Rev. A 68 (2003) 012110 
Belén Farías & al, npj Quantum Inf. 6 (2020) 25

Buhmann, Dispersion Forces II (Springer 2013) 
Intravaia & al, J. Phys. Condens. Matt. 27 (2015) 214020 
Volokitin & Persson, Electromagnetic Fluctuations at the Nanoscale (Springer 2017)
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Concept: Friction
across the scales

– driving through air  


– breaking a car, slip sliding away


– tidal friction

F ∝ υ (Stokes), ∝ υ2 (turbulent)
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microscopic picture

– non-smooth surfaces, abrasion


– multi-phase layers (viscosity / lubrification)


– ...
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Concept: Friction

z

ε1

d

particle & radiation particle & plate plate & plate

vacuum viscosity


    


0.1µm:  

air:   

η ∼
ℏ
d3

10−13 Pa s
∼ 10−5 Pa s



Concept: Friction
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particle & radiation particle & plate plate & plate

electromagnetic basics



Albert Einstein

Zur Quantentheorie der Strahlung

Mitt. Phys. Ges. Zürich 18 (1916)

Phys. Z. 18 (1917) 121–28


K. von Mosengeil,

Theorie der stationären Strahlung in 
einem gleichförmig bewegten 
Hohlraum

Ann. Phys. (Leipzig) 22 (1907) 867–906


D. Kleppner

Rereading Einstein on Radiation 
Physics Today (February 2005) 30

History



History
APOD (Astronomy Picture of the Day) 2003 Feb 09 Earth – Sun – centre of the Galaxy – Local 

Group — Virgo Cluster 


But these speeds are less than the speed that 
all of these objects together move relative to 
the cosmic microwave background (CMB). 


In the above all-sky map (COBE data), 
radiation in the Earth's direction of motion 
appears blueshifted and hence hotter, while 
radiation on the opposite side of the sky is 
redshifted and colder. 


Local Group ~ 600 km/s =  relative to 
the primordial radiation. 


... unexpected high speed, still unexplained 
(2003). Why are we moving so fast? What is 
out there?
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Concept: Friction

ε1

d

particle & radiation particle & plate plate & plate

Fx = − γ υx + …

γ =
1

kBT

∞

∫
0

dt ⟨δFx(t) δFx(0)⟩eq

Einstein, Kubo & Kirkwood

z

electromagnetic basics



... talking about Spectra
Fx = − γ υx + …

Einstein, Kubo & Kirkwood

Golyk, Krüger & Kardar, Phys. Rev. B 88 (2013) 155117

scattering matrix of particle e.m. Green tensor (free space)

Mkrtchian & al, Phys. Rev. Lett. 91 (2003) 220801

dipole approximation



... talking about Spectra
Fx = − γ υx + …

Einstein, Kubo & Kirkwood

Golyk, Krüger & Kardar, Phys. Rev. B 88 (2013) 155117

scattering matrix of particle e.m. Green tensor (free space)

Mkrtchian & al, Phys. Rev. Lett. 91 (2003) 220801

dipole approximation



Steady State Scenario

in general (finite v): driven, non-equilibrium state


energy dissipation / entropy production ... (infinite environment reservoir) 


in field/plate rest frame:     (atom + field/environment)


in co-moving particle frame    (internal energy)

−F ⋅ v = PA + PF/env

dUA

dτ
= uμFμ = γ(PA + F ⋅ v)
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anomalous Doppler Shift

Cerenkov-like threshold

energy balance in co-moving frame



Eg = Ee + ℏγ(ω − k ⋅ v
< 0

)

k ⋅ v ≥ ωeg

photon-polariton pair


0 = γ(ω1 − k1 ⋅ v) + γ(ω2 − k2 ⋅ v)

Pieplow & Henkel, J. Phys.: Cond. Matt. 27 (2015) 214001 
Intravaia & al, J. Phys. Condens. Matt. 27 (2015) 214020 



Q Friction: Pro & Con
Philbin & Leonhardt, New J. Phys. 11 (2009) 033035: 

“No quantum friction between uniformly moving plates”


hypothesis: moving medium (Lorentz transform into rest frame) 

= “gyrotropic medium”, : stable vacuum state


... probably wrong!

• missing: anomalous Doppler shift

Bogoliubov transformation     

T = 0

ω′ < 0 : a′ k′ 
= μ ak + υ a†

k

ε1

d

plate & plate

Piwnicki & Leonhardt, Optics of moving media (Appl. Phys. B 2000) 
Polevoi, Tangential molecular forces caused between moving bodies by a fluctuating 
  electromagnetic field (Sov. Phys. JETP 1990) 
discussion: Volokitin & Persson (2009), Pendry (2010)

coth
ℏω

2kBTF
− coth

ℏ(uμkμ)
2kBTA

(LTE approx'n)

reflection amplitudes



Quantum Friction: main ideas to keep

• highly idealised/simplified electromagnetic interactions (“no contact”)


• preferred frames: CMB, macroscopic body


• spectra: typically, generation of low-frequency excitations


• anomalous Doppler shift    for polaritons ( )


• useful trick: local equilibrium (in co-moving / rest frame)


ω − k ⋅ v < 0 k > ω/c
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Quantum friction: The Methodology
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Francesco Intravaia, AG Theoretical Optics & Photonics, Humboldt University of Berlin

Quantum Frictional Interaction

real and virtual 
photons

vacuum velocity v
quantum
friction

delayed
image

z

x

C
P 

fo
rc

e

T=0 (nonequilibrium quantum physics)

Dispersion 
Dissipation

Neutral atom
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Francesco Intravaia, AG Theoretical Optics & Photonics, Humboldt University of Berlin

Authors Low velocity
dependency

Distance
dependency Comments

Mahanty 1980 v za-5 Approach similar to the calculations of vdW forces but with 
mistakes

Schaich and Harris 1981 v za-10 Two-state atom with a transition dipole moment normal to a 
metal surface

Scheel and Buhmann 
2009 v za-8 Master-equation approach for multilevel atoms and quantum 

regression theorem (QRT).

Barton 2010 v za-8 Perturbation theory using Fermi’s golden rule. Harmonic 
oscillator.

Philbin and Leonhardt 
2009 - - Relativistic calculations and analytical/numerical evaluation of the 

Green’s tensor. The tensor is found to be diagonal.

Dedkov and Kyasov 2012 v3 za-5 Fluctuation-dissipation theorem (FDT) applied to the dipole atom 
as well as to the electric field

Some previous work on quantum friction

Zero Temperature The prefactors are often different. Many other authors and papers.
!3



Francesco Intravaia, AG Theoretical Optics & Photonics, Humboldt University of Berlin

“[…] in view of the manifold current controversies about 
quantum-governed frictional forces generally, it seems 
well worth exploring whether such differences reflect 
substantive disagreement or only a confusion of terms.”

New Journal of Physics 12, 113044 (2010).

— G. Barton

Understanding the differences



Francesco Intravaia, AG Theoretical Optics & Photonics, Humboldt University of Berlin

Time-dependent perturbation theory

• no correlation times 
• no linear response
• no local thermodynamic equilibrium 

Solution of the joint atom+field/matter 
dynamics in time-dependent perturbation theory

G. Barton, New J. Phys. 12, 113045 (2010).
F. Intravaia, V. E. Mkrtchian, S. Y. Buhmann, S. Scheel, D. A. R. Dalvit, and C. Henkel, J. Phys. Condens. Matter 27, 214020 (2015).

Fourth order calculation in the 
dipole moment V(t) = − ̂d(t) ⋅ Ê(t, r)

<latexit sha1_base64="0OEYPKY+R/lYqkeuM+IoZu0ig64=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBi2VXinoRioJ4rGA/oF1KNs22sdlkSbKFsvQ/ePGgiFf/jzf/jWm7B219MPB4b4aZeUHMmTau++3kVlbX1jfym4Wt7Z3dveL+QUPLRBFaJ5JL1QqwppwJWjfMcNqKFcVRwGkzGN5O/eaIKs2keDTjmPoR7gsWMoKNlRq167MRuusWS27ZnQEtEy8jJchQ6xa/Oj1JkogKQzjWuu25sfFTrAwjnE4KnUTTGJMh7tO2pQJHVPvp7NoJOrFKD4VS2RIGzdTfEymOtB5Hge2MsBnoRW8q/ue1ExNe+SkTcWKoIPNFYcKRkWj6OuoxRYnhY0swUczeisgAK0yMDahgQ/AWX14mjfOyd1GuPFRK1ZssjjwcwTGcggeXUIV7qEEdCDzBM7zCmyOdF+fd+Zi35pxs5hD+wPn8AVdrjlU=</latexit>

P = �vF

Advantages of the calculation



Francesco Intravaia, AG Theoretical Optics & Photonics, Humboldt University of Berlin
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P = �vF = PA + PB

Time-dependent perturbation theory
G. Barton, New J. Phys. 12, 113045 (2010).
F. Intravaia, V. E. Mkrtchian, S. Y. Buhmann, S. Scheel, D. A. R. Dalvit, and C. Henkel, J. Phys. Condens. Matter 27, 214020 (2015).

Initial state: the atom and the field/matter subsystems are both in their 
(‘bare’) ground states 
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/ v4
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(T = 0)
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Quantum friction scales as 
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Up to a factor 16/3 equal to S. Scheel and S. Y. Buhmann, Phys. Rev. A 80, 042902 (2009).

Dominant 
contribution



Francesco Intravaia, AG Theoretical Optics & Photonics, Humboldt University of Berlin
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P = �vF = PA + PB

Time-dependent perturbation theory
G. Barton, New J. Phys. 12, 113045 (2010).
F. Intravaia, V. E. Mkrtchian, S. Y. Buhmann, S. Scheel, D. A. R. Dalvit, and C. Henkel, J. Phys. Condens. Matter 27, 214020 (2015).

<latexit sha1_base64="/33pVooSOiWk5oL8x8NwlPOLUR0=">AAAB8nicbVBNTwIxFHyLX4hfqEcvjcTEE9k1RD0SvXjERJAEVtItXWjotk3bJSEbfoYXDxrj1V/jzX9jgT0oOEmTycx76ZuJFGfG+v63V1hb39jcKm6Xdnb39g/Kh0ctI1NNaJNILnU7woZyJmjTMstpW2mKk4jTx2h0O/Mfx1QbJsWDnSgaJnggWMwItk7qdJWWyko0fqr1yhW/6s+BVkmQkwrkaPTKX92+JGlChSUcG9MJfGXDDGvLCKfTUjc1VGEywgPacVTghJowm588RWdO6aNYaveERXP190aGE2MmSeQmE2yHZtmbif95ndTG12HGhEotFWTxUZxy5ELO8qM+05RYPnEEE83crYgMscbEupZKroRgOfIqaV1Ug8tq7b5Wqd/kdRThBE7hHAK4gjrcQQOaQEDCM7zCm2e9F+/d+1iMFrx85xj+wPv8AQgMkRk=</latexit>

/ v4

-3 -2 -1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

t/τ

v/
v 0

-3 -2 -1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

t/τ

v/
v 0

<latexit sha1_base64="41Mxb4rrNJnseN3XgVHf4gq6hmg=">AAACAXicbVBNS8MwGE79nPOr6kXwUhyCp9GOoR6HXjxOcB+w1ZGm6RaWJiFJB6PUi3/FiwdFvPovvPlvzLoedPOBwMPzvB95n0BQorTrflsrq2vrG5ulrfL2zu7evn1w2FY8kQi3EKdcdgOoMCUMtzTRFHeFxDAOKO4E45uZ35lgqQhn93oqsB/DISMRQVAbaWAfp/18SCpxmPWF5EJzZ/JQywZ2xa26OZxl4hWkAgo0B/ZXP+QoiTHTiEKlep4rtJ9CqQmiOCv3E4UFRGM4xD1DGYyx8tN8eeacGSV0Ii7NY9rJ1d8dKYyVmsaBqYyhHqlFbyb+5/USHV35KWEi0Zih+aIooY65chaHExKJkaZTQyCSxPzVQSMoIdImtLIJwVs8eZm0a1Xvolq/q1ca10UcJXACTsE58MAlaIBb0AQtgMAjeAav4M16sl6sd+tjXrpiFT1H4A+szx9NX5dw</latexit>

/ v2

Smaller prefactor with 
“smoother” accelerations

−PA

Excitation of 
the atom

Quantum friction scales as 
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/ v3
Up to a factor 5 equal to 
F. Intravaia, R. O. Behunin, and D. A. R. Dalvit, Phys. Rev. A 89, 050101(R) (2014).
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Francesco Intravaia, AG Theoretical Optics & Photonics, Humboldt University of Berlin

a 

+
b 

LTE

LTE

+

Equilibrium

Equilibrium

Relations and theorems of Quantum Statistics

Local Thermal Equilibrium
G. Dedkov and A. Kyasov, Phys. Solid State 44, 1809 (2002).

Fxi
= ⟨ ̂d(t) ⋅ ∂xi

Ê(ra(t), t)⟩

From the Lorentz force

= ⟨ ̂dsp(t) ⋅ ∂xi
Êind(ra(t), t)⟩ + ⟨ ̂dind(t) ⋅ ∂xi

Êsp(ra(t), t)⟩

Fluctuations-dissipation Theorem

̂d = ̂dsp + ̂dind Ê = Êsp + Êind



Francesco Intravaia, AG Theoretical Optics & Photonics, Humboldt University of Berlin

Local Thermal Equilibrium

<latexit sha1_base64="+yzQPu2GUUtVm1LrQnTMlzWNj+0="></latexit>

Ffric = �2~
⇡

Z 1

�1

dky
2⇡

Z 1

0

dkx
2⇡

kx

Z kxvx

0
d!Tr [↵I(kxvx � !; 0) ·GI(k, za,!)]

a 

+
b 

LTE

LTE

+x
z Good for a strong intrinsic 

dissipation (nanoparticle)
<latexit sha1_base64="8CmPc6fKbbdcsThTRBnWyp1Nc0Y="></latexit>

Ffric / �~ ↵0✏0 ⇢np⇢
v3

(2za)7

<latexit sha1_base64="kUyH4i9O+A3TgYmFf9X+qEuClI4="></latexit>

{−(ω − k ⋅ v) = − ω′�

➡ �0 ≤ ω < k ⋅ v < c |k | Dominated by the evanescent field
(Anomalous Doppler effect)

ω′� < 0

J. B. Pendry, J. Phys. Condens. Matter 9, 10301 (1997).
A. I. Volokitin and B. N. J. Persson, Rev. Mod. Phys. 79, 1291 (2007).
G. Dedkov and A. Kyasov, Phys. Solid State 44, 1809 (2002).

R. Zhao, A. Manjavacas, F. J. García de Abajo, and J. B. Pendry, Phys. 
Rev. Lett. 109, 123604 (2012).
G. Pieplow and C. Henkel, New J. Phys. 15, 023027 (2013).



Francesco Intravaia, AG Theoretical Optics & Photonics, Humboldt University of Berlin

Kubo/Kirkwood formalism

A consequence of the Fluctuation-Dissipation theorem

A.I. Volokitin and B. N. J. Persson, Rev. Mod. Phys. 79, 1291 (2007).
J. S. Høye and I. Brevik, Europhys. Lett. 91, 60003 (2010).
M. Krüger, T. Emig, and M. Kardar, Phys. Rev. Lett. 106, 210404 (2011).

Fβ
fric = − γ(β)

α
(T)vα

LINEAR RESPONSE RELATIONS IN FLUCTUATIONAL . . . PHYSICAL REVIEW B 88, 155117 (2013)

unequal, explicitly shows the following equality:

k(β)
α ≡ − d⟨H (β)⟩

dTα

∣∣∣∣
{Tα}=Tenv=T

= 1
kBT 2

∫ ∞

0
dt⟨H (α)(t)H (β)(0)⟩eq. (10)

Here we define the linear radiative heat transport coefficient
k(β)
α as a measure of the change in the heat absorption ⟨H (β)⟩

by object β in response to a small change in temperature of
α. It is interesting to note that for α ̸= β, Eq. (10) implies
a nonlocal correlation between fluctuations in the different
objects, in contrast to the purely local character of Eq. (1).

As a side note, Eq. (10) directly shows the positivity of the
linear transport coefficient k(α)

α , as equilibrium autocorrelation
functions have non-negative Fourier transforms.19 On the other
hand, Eq. (10) for α ̸= β does not allow us to make a statement
about the sign of −k(β)

α , which however is non-negative as
well.15,20

B. Casimir force

Now consider the change in the force F(β)13,15,18,21,22 when
all objects are at rest, but with one temperature perturbed to
nonequilibrium, as in Fig. 1. We find that variations in force
are related to the equilibrium correlation function of heat flux
and force [compare to Eqs. (A2) and (B4)] by

d⟨F(β)⟩
dTα

∣∣∣∣
{Tα}=Tenv=T

= − 1
kBT 2

∫ ∞

0
dt⟨F(β)(t)H (α)(0)⟩eq.

(11)

This relation is found by steps analogous to the ones above
Eq. (10), starting from the Lorentz force acting on β, given by
the volume integral

F
(β)
i (t) = 1

c

∫

r∈Vβ

d3rεijk{Jj (r,t) ,Bk(r,t)}S, (12)

where Bk is the kth component of the magnetic field, and εijk

is the Levi-Civita symbol. As before, the equality in Eq. (11) is
established by direct comparison to the result for the Casimir
force in the nonequilibrium situation with T1, T2, and Tenv
unequal given by Eq. (B3).15 [See Eq. (A2) for the explicit
result of the correlation function in Eq. (11).]

The relation (11) is anticipated from linear response in the
density matrix, yielding the time integral containing the energy
dissipation23 (in our case H ). The awaited general relation for
observable O(t),

d⟨O⟩
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Tα=T

= − 1
kBT 2
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0
dt⟨O(t)H (α)(0)⟩eq, (13)

is however yet unproven in this framework.

III. PERTURBING VELOCITY

A. Casimir force (vacuum friction)

The equilibrium system can also be perturbed by moving
object(s) α with a small velocity vα . The corresponding change
in the Casimir force acting on β, expressed in terms of the
linear force coefficient γ̂ (β)

α ≡ − d⟨F(β)⟩
dvα

|vα=0 (see Fig. 2), is
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dv1

|v1=0 v1 acting on the static one.

related to the autocorrelation function of the Casimir force
in equilibrium,11,14,24 in analogy to the Kirkwood formula in
Eq. (2) (the diagonal part γ̂ (α)

α is the friction coefficient of
α). Here we explicitly confirm this relation for the fluctuating
electromagnetic field, thereby providing a closed expression
for the vacuum thermal friction. We find, elaborating in
analogy to the derivation of Eqs. (10) and (11), for the
fluctuations of the Casimir force,

(
γ̂ (β)

α

)
ij

= 1
kBT

∫ ∞

0
dt⟨δF (β)

i (t)δF (α)
j (0)⟩eq

= − h̄2

πkBT
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0
dω

eh̄ω/kBT

(eh̄ω/kBT − 1)2

× ImTr
{
∂i(1 + G0Tα)

1
1 − G0TαG0Tα

×G0[i(∂jT
∗
α − Tα∂j ) − 2Tα∂j Im[G0]T∗

α]

× 1
1 − G∗

0T
∗
αG

∗
0T

∗
α

(δαβ + δαβG∗
0T

∗
α)

}
, (14)

where α = 1 if α = 2 and vice versa. Note that the matrix
(γ̂ (β)

α )ij has in general nonzero off-diagonal elements in ij , and
the force need not be parallel to the velocity. While Eq. (14)
contains both the thermal and zero point contributions to the
net Casimir force, at T = 0 K, the linear force coefficient γ̂ (β)

α

vanishes, and there is no linear response in velocity.
There is, however, response related to higher time deriva-

tives of displacement, in accordance with known results (see,
e.g. Refs. 11, 14, 25, and 26). The friction coefficient in
Eq. (14) has been previously computed for the special cases of
two parallel plates, and for a small particle in front of a plate.11

The first equality sign in Eq. (14) can be confirmed by
deriving the linear force coefficient directly. Then the term
−iG0[i(∂jT∗

α − Tα∂j ) − 2Tα∂j Im[G0]T∗
α]G∗

0 is found as the
disturbed field correlator due to the moving object given
by Eq. (C8).27 This field then undergoes scattering due to
the surrounding objects, and computing the force introduces
another gradient ∂i in analogy to Eq. (B4) and Ref. 15.

155117-3

Fluctuating part of the force 
acting on the particle

LINEAR RESPONSE RELATIONS IN FLUCTUATIONAL . . . PHYSICAL REVIEW B 88, 155117 (2013)

unequal, explicitly shows the following equality:

k(β)
α ≡ − d⟨H (β)⟩

dTα

∣∣∣∣
{Tα}=Tenv=T

= 1
kBT 2

∫ ∞

0
dt⟨H (α)(t)H (β)(0)⟩eq. (10)

Here we define the linear radiative heat transport coefficient
k(β)
α as a measure of the change in the heat absorption ⟨H (β)⟩

by object β in response to a small change in temperature of
α. It is interesting to note that for α ̸= β, Eq. (10) implies
a nonlocal correlation between fluctuations in the different
objects, in contrast to the purely local character of Eq. (1).

As a side note, Eq. (10) directly shows the positivity of the
linear transport coefficient k(α)

α , as equilibrium autocorrelation
functions have non-negative Fourier transforms.19 On the other
hand, Eq. (10) for α ̸= β does not allow us to make a statement
about the sign of −k(β)

α , which however is non-negative as
well.15,20

B. Casimir force

Now consider the change in the force F(β)13,15,18,21,22 when
all objects are at rest, but with one temperature perturbed to
nonequilibrium, as in Fig. 1. We find that variations in force
are related to the equilibrium correlation function of heat flux
and force [compare to Eqs. (A2) and (B4)] by

d⟨F(β)⟩
dTα

∣∣∣∣
{Tα}=Tenv=T

= − 1
kBT 2

∫ ∞

0
dt⟨F(β)(t)H (α)(0)⟩eq.

(11)

This relation is found by steps analogous to the ones above
Eq. (10), starting from the Lorentz force acting on β, given by
the volume integral

F
(β)
i (t) = 1

c

∫

r∈Vβ

d3rεijk{Jj (r,t) ,Bk(r,t)}S, (12)

where Bk is the kth component of the magnetic field, and εijk

is the Levi-Civita symbol. As before, the equality in Eq. (11) is
established by direct comparison to the result for the Casimir
force in the nonequilibrium situation with T1, T2, and Tenv
unequal given by Eq. (B3).15 [See Eq. (A2) for the explicit
result of the correlation function in Eq. (11).]

The relation (11) is anticipated from linear response in the
density matrix, yielding the time integral containing the energy
dissipation23 (in our case H ). The awaited general relation for
observable O(t),

d⟨O⟩
dTα

∣∣∣∣
Tα=T

= − 1
kBT 2

∫ ∞

0
dt⟨O(t)H (α)(0)⟩eq, (13)

is however yet unproven in this framework.

III. PERTURBING VELOCITY

A. Casimir force (vacuum friction)

The equilibrium system can also be perturbed by moving
object(s) α with a small velocity vα . The corresponding change
in the Casimir force acting on β, expressed in terms of the
linear force coefficient γ̂ (β)

α ≡ − d⟨F(β)⟩
dvα

|vα=0 (see Fig. 2), is

T 

T

T 

1  1

T

fr
(1) = −  1

(1)
1

1

T

2  

T

fr
(2) = −  1

(2)
1

FIG. 2. (Color online) An object moving with velocity v1 in the
presence of a static object, gives rise to the vacuum friction −γ̂

(1)
1 v1 ≡

d⟨F(1)⟩
dv1

|v1=0 v1 acting on the moving object, and the force −γ̂
(2)
1 v1 ≡

d⟨F(2)⟩
dv1

|v1=0 v1 acting on the static one.

related to the autocorrelation function of the Casimir force
in equilibrium,11,14,24 in analogy to the Kirkwood formula in
Eq. (2) (the diagonal part γ̂ (α)

α is the friction coefficient of
α). Here we explicitly confirm this relation for the fluctuating
electromagnetic field, thereby providing a closed expression
for the vacuum thermal friction. We find, elaborating in
analogy to the derivation of Eqs. (10) and (11), for the
fluctuations of the Casimir force,

(
γ̂ (β)

α

)
ij

= 1
kBT

∫ ∞

0
dt⟨δF (β)

i (t)δF (α)
j (0)⟩eq

= − h̄2

πkBT

∫ ∞

0
dω

eh̄ω/kBT

(eh̄ω/kBT − 1)2

× ImTr
{
∂i(1 + G0Tα)

1
1 − G0TαG0Tα

×G0[i(∂jT
∗
α − Tα∂j ) − 2Tα∂j Im[G0]T∗

α]

× 1
1 − G∗

0T
∗
αG

∗
0T

∗
α

(δαβ + δαβG∗
0T

∗
α)

}
, (14)

where α = 1 if α = 2 and vice versa. Note that the matrix
(γ̂ (β)

α )ij has in general nonzero off-diagonal elements in ij , and
the force need not be parallel to the velocity. While Eq. (14)
contains both the thermal and zero point contributions to the
net Casimir force, at T = 0 K, the linear force coefficient γ̂ (β)

α

vanishes, and there is no linear response in velocity.
There is, however, response related to higher time deriva-

tives of displacement, in accordance with known results (see,
e.g. Refs. 11, 14, 25, and 26). The friction coefficient in
Eq. (14) has been previously computed for the special cases of
two parallel plates, and for a small particle in front of a plate.11

The first equality sign in Eq. (14) can be confirmed by
deriving the linear force coefficient directly. Then the term
−iG0[i(∂jT∗

α − Tα∂j ) − 2Tα∂j Im[G0]T∗
α]G∗

0 is found as the
disturbed field correlator due to the moving object given
by Eq. (C8).27 This field then undergoes scattering due to
the surrounding objects, and computing the force introduces
another gradient ∂i in analogy to Eq. (B4) and Ref. 15.

155117-3

γ(β)
α

(T) T→0 0 No contribution linear in �  
at �

v
T = 0



Francesco Intravaia, AG Theoretical Optics & Photonics, Humboldt University of Berlin

A different approach

dipole’s correlation tensor 
(model independent) Electromagnetic 

Green tensor

Ffric = − Re{ 2
π ∫

∞

0
dω∫

d2k
(2π)2

k∫
∞

0
dτ e−i(ω−k⋅v)τ Tr [C(τ, v) ⋅ G𝖳

ℑ(k, za, ω)]}
(T = 0)

F. Intravaia, R. O. Behunin, C. Henkel, K. Busch, and D. A. R. Dalvit, Phys. Rev. A 94 (2016).

Contains other formulations: G. Dedkov and A. Kyasov, Phys. Solid State 44, 1809 (2002).
A. I. Volokitin and B. N. J. Persson, Rev. Mod. Phys. 79, 1291 (2007).
G. Pieplow and C. Henkel, New J. Phys. 15, 023027 (2013).
J. S. Høye, I. Brevik, and K. A. Milton, J. Phys. A Math. Theor. 48, 365004 (2015).

Without having recourse to the local thermal equilibrium approximation

= − 2∫
∞

0
dω∫

d2k
(2π)2

k Im Tr [S𝖳(k ⋅ v − ω, v) ⋅ G(k, za, ω)]
dipole’s power spectrum tensor 

(model independent)
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Cij(τ) = ⟨ ̂di(τ) ̂dj(0)⟩⟨d2(t)⟩

A glimpse in the theory

|Cij(τ) |

τ
R. Davidson and J. J. Kozak, J. Math. Phys. 11, 189 (1970)

P. L. Knight and P. W. Milonni, Phys. Lett. A 56, 275 (1976).

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. Atom-photon 
interactions. 

P. R. Berman and G. W. Ford, in Advances In Atomic, Molecular, and Optical 
Physics, volume 59, 175

Cij(τ) ∝ 1 − ( τ
τc )

2

Cij(τ) ∝
1

(ωaτ)2

Cij(τ) ∝ e−iωaτ−(γa/2)τ

Born-Markov approximation 

!12

F. Intravaia, R. O. Behunin, C. Henkel, K. Busch, and D. A. R. Dalvit, Phys. Rev. A 94 (2016).

Dipole’s correlation tensor 

Better description: Master Equation
G. Boedecker and C. Henkel, Ann. Physik 524, 805 (2012).

J. Klatt, C. M. Kropf, and S. Y. Buhmann, Phys. Rev. Lett. 126, 210401 (2021).
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Relevant for quantum friction
{ 0 ≤ ω < k ⋅ v ∼ |v | /za

S(ω) = ∫
∞

−∞

dτ
2π

eiωτC(τ)

A glimpse in the theory
F. Intravaia, R. O. Behunin, C. Henkel, K. Busch, and D. A. R. Dalvit, Phys. Rev. A 94 (2016).

Dipole's power spectrum tensor 
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LTE

LTE

+

Self-consistent 
description of the 

Nonequilibrium Steady 
State (NESS)

Beyond Local Thermal Equilibrium
F. Intravaia, R. O. Behunin, C. Henkel, K. Busch, and D. A. R. Dalvit, Phys. Rev. Lett. 117, 100402 (2016)
D. Reiche, F. Intravaia, J.-T. Hsiang, K. Busch, and B. L. Hu, Phys. Rev. A 102, 050203(R) (2020)
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Ffric = FLTE
fric +F J

fric Correction needed also for 
thermodynamical consistence
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Thank you for you attention!

!18



Enhanced decoherence for a 
neutral particle sliding on a 
metallic surface in vacuum  

FERNANDO C. LOMBARDO



QUANTUM FRICTION 
Two bodies which are not in contact and are 
in relative motion to each other at constant 
velocity experience a dissipative force that 
opposes the motion due to the exchange 
of Doppler shifted virtual photons. 
Quantum f r ic t ion i s very smal l in 
m a g n i t u d e a n d s h o rt ra n g e d , i t s 
experimental detection has become an 
absolute challenge so far, even though there 
have been a variety of configurations and 
theoretical efforts devoted to finding 
favorable conditions for its observation

Non-contact friction enhances the decoherence of the moving atom. Further, its effect can be 
enlarged by a thorough selection of the two-level particle and the Drude-Lorentz parameters of the 
material. Measuring decoherence times through velocity dependence of coherences could indirectly 
demonstrate the existence of quantum friction  

~v

a

x

y
z

!s,�

Quantum Open System approach to quantum friction: decoherence
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Decoherence and the Quantum-Classical Transition

Hilbert Space

A
A
A
AU Macroscopically quantum states

are never isolated

Hilbert Space is Huge

Every state is allowed. The
superposition principle reigns. If
 =  1 + 2, then

P = | 1|2 + | 2|2 + 2Re( 1 ⇤  2)

Classical states

They are a small subgroup,
where interferences are
forbidden. If  =  1 + 2, then

P = | 1|2 + | 2|2
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Decoherence and the Quantum- Classical Transition ...

New Paradigm: classicality is an emergent property

If we toss a coin, it is in either one state or the other
We perceive only one outcome!
2Re( 1 ⇤  2)
XXXXX    

 

Decoherence is at the root of the QC Transition

It is the dynamic supression of the quantum interferences induced in
subsystems due to the interacction of the environment
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Quantum-Classical Transition

For a system to be considered classical it should fulfill both conditions

The wave function should
predict a strong correlation

between the canonical variables
+

The interference between the
di↵erent classical configurations

should be insignificant
+

For example, the Wigner
Function should have a peak at

the classical trajectories

The reduced density matrix
becomes diagonal due to the
supression of the coherences

(DECOHERENCE)



Open quantum systems are characterized by non-unitary evolutions

Quantum 
System Environment

INTERACTION

The description of the dynamics is based on a master equation that considers non-unit effects such as 
decoherence and dissipation

·ρ(t) = − i [Hs, ρ] − D(t)[σx, [σx, ρ]] − f(t)[σx, [σy, ρ]] + iζ(t)[σx, {σy, ρ}]

Unitary evolution Diffusion and dissipation
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Closed quantum system Open quantum system

ρ11 ρ12
ρ21 ρ22

ρ(t) =
ρ11 𝒟(t)ρ12
𝒟(t)ρ21 ρ22

ρr(t) =

Two slit experiment With decoherence

𝒟(t) is the factor by which coherences are destroy
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QBM-Zero Temperature

In order to study the role of the vacuum fluctuations as a source of
decoherence we will start by the paradigmatic example of Quantum

Brownian Motion

Why? ! Visible e↵ects: Lamb Shift and Casimir E↵ect.

Not only does it
renormalize the system’s

parameters:
=) source of

NOISE and
DISSIPATION

We shall couple our system of mass M and frequency ⌦ to an
environment at zero temperature (QUANTUM ENVIRONMENT):
infinite set of harmonic oscillators of mass mn and frequency !n.
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QBM-Zero Temperature ...

Total action of the system+environment (~ = 1)

S [x , qn] =

Z t

0

ds


1

2
M(ẋ2 � ⌦2x2)

�
�

X

n

�nxqn

+

Z t

0

ds

"
X

n

1

2
mn(q̇

2

n � !2

nq
2

n)

#

Relevant
objects to
analyze

⇢r(x , x 0, t) =

Z
dq̄ ⇢(x , q̄, x 0, q̄, t)

Wr(x , p, t) =
1

2⇡

Z +1

�1
dy e ipy ⇢r(x +

y

2
, x � y

2
, t).

The paradigmatic QBM model
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QBM-Zero Temperature ...

The reduced density matrix satisfies

i
@

@t
⇢r(x , x 0, t) =

"
� 1

2M2

✓
@2

x � @2

x0

◆#
⇢r +

1

2
M⌦2(x2 � x 02)⇢r

+
1

2
M�⌦2(t)(x2 � x 02)⇢r � i�(t)(x � x 0)

✓
@x � @x0

◆
⇢r

� iMD(t)(x � x 0)2⇢r � f (t)(x � x 0)

✓
@x + @x0

◆
⇢r

At High Temperature ! �⌦2(t) ⇠ 0, f (t) ⇠ 0, �(t) ⇠ �0, and
D(t) ⇠ 2m�0KBT . CONSTANTS!

At T = 0! �⌦2(t), �(t), D(t) and f (t) are time dependent functions!
B.L. Hu, J.P. Paz, and Y. Zhang, Phys. Rev. D45, 2843 (1993)
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Decoherence Process

Aim

Study the dynamics of the particle in interaction with the environment

Procedure

We solve the master equation for the initial density matrix and obtain
⇢r (t) for all times. Initially:  (x , t = 0) =  1(x) + 2(x), a
superposition of two gaussian packets simmetrically localized

For t > 0, W (x , p, t) = W1(x , p, t) + W2(x , p, t) + Wint(x , p, t)

DECOHERENCE FACTOR

�(t) = exp(�Aint) =
1

2

Wint(x , p)|peak

[W1(x , p)|peakW2(x , p)|peak]
1

2

.

J.P.Paz, S. Habib, and W. H. Zurek, Phys.Rev.D 47, 488 (1993)
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FIG. 1. The Wigner function corresponding
to the initial conditions A (a): La=550, Pa =0,
and 3' (a'): LO=O, P0=5/6O. The coordi-
nates of the points 8 and 8' are (x =7,p =4)
and (x =4,p =7) respectively. The interfer-
ence between the two wave functions is respon-
sible for the oscillations.

above expressions are modified in a very simple way. In
fact, the Wigner function for the nonsymmetric case
W„,(x,p, t ) can be obtained from the one corresponding
to the symmetric case W,„(xp, t) [which is given by
(18)] as

W„,(x,p, t ) = W,„(x—x (t),p —p (t), t ), (30)

p, =2xmb, +2(L, +L2)b2 . (32)

D. Analysis of the solution
and the decoherence process

where the functions x (t) and p (t) describe the evolu-
tion of the midpoint between the two Gaussian peaks and
are defined by

Pl +P2 2(L1+L2 )b4I 4b3

W,„,(x,p) can also be examined using (20). From that
equation, we see that the peak value of W;„,(x,p) (in our
case the peak is always at the origin due to the symmetry
of the initial conditions but this does not have to be the
case), the wavelength of the oscillations, and their orien-
tation are all affected in a temperature-dependent
manner.
Starting from the initial conditions A and A ' [see Figs.

1(a) and 1(a')], we have numerically computed for vari-
ous environments the time evolution of the functions that
enter in (19) and (20). We will present the results in the
next section but would like to discuss our method of
analysis here. In order to do so, it will be useful to have
in mind the concrete example shown in Figs. 2(a)—2(d)
and 2(a') —2(d'). These figures correspond to the evolu-
tion of the Wigner function of a harmonic oscillator

Having already presented the basic technical in-
gredients of our method, in this subsection we will pay at-
tention to two, more conceptual, aspects. We will first
study the general features of the evolution of the Wigner
function and will later define and describe the "measure
of the effectiveness" of decoherence appropriate to this
problem. We will analyze its properties and compare
then with those of other possible choices.
From the solution given above, it is possible to imrnedi-

ately gain some qualitative understanding of the behavior
of the Wigner function. Let us consider first a symmetric
initial condition (i.e., x =O=p ) and analyze the two
direct terms in (18). The center of each of the two Gauss-
ian packets W', z(x,p) follows a trajectory given by the
equations x, 2 =+x, and p, 2 =+P, which, as can be seen
from (26) and (27), depend only on the spectral density of
the environment and not on the temperature. The tem-
perature affects the shape of these packets through its
inhuence on the variances 6, and 5z as well as on the
function P. The shape of the "isodensity" (W;=const)
contours of an individual Gaussian wave packet is always
an ellipse that may rotate in time due to the presence of
P. Apart from this rotation ("shearing" ), the state may
get squeezed due to the changes in the values of 6& 2 in-
duced by the interaction with the environment. The area
of the rotating ellipse is always equal to n.5, /52 which
may also vary with time (note that the peak value of W& 2
is inversely proportional to m.5, /52). We will later study
examples of environments for which some (or all) of these
effects are clearly seen. The effect of the environment on

t = 0.0

= 0.0
(b')

t= 0.1

t = 0.

FICx. 2. The time evolution of initial conditions A and A .
The oscillations disappear faster in the first case since the envi-
ronment can distinguish between the two peaks. In the second
case, the interference is damped over a dynamical time scale.
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Spin Boson Model...

An exactly solvable model

HSB =
1

2
~⌦�z +

1

2
�z

X

k

�k(gka
†
k + g⇤k ak) +

X

k

~!ka
†
kak ,

As [�z ,Hint] = 0, the populations remain constant, the master equation
for the reduced density matrix is

⇢̇r = �i⌦[�z , ⇢r]�D(t)[�z , [�z , ⇢r]],

with D(s) =
R s
0

ds 0
R1
0

d!I (!) coth

✓
!

2kBT

◆
cos(!(s � s 0))

So, the solution to this master equation is:

⇢r01(t) = e�i⌦t�A(t)⇢r01(0)

and A(t) =
R t
0

dsD(t) and �(t) = e�A(t) the decoherence factor
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Geometric Phase environmentally corrected...

⌫
�


�No decoherence

In conclusion

One could expect that the GP only to be observed at very low
temperature (or zero) when the atom is coupled to a bosonic bath
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Geometric Phase environmentally corrected...

We have coupled the system to di↵erent kinds of environments )
Di↵erent corrections to the unitary GP

When planning an experiment to measure GPs the decoherence time
becomes crucial because it is the time after which all phase information is
deleted and the GPs dissapear

tD ) e�A(tD ) ⇠ 1

We have estimated the decoherence factor for di↵erent environments:
ohmic (n = 1) and supraohmic (n = 3) in the high and zero temperature
regime
F.C.Lombardo & P.I.V, Phys. Rev A 74, 042311 (2006)



The presence of the plate reduces the decoherence time, but only for non-
vanishing relative velocity. 
Decoherence effect can be enlarged by a thorough selection of the two-level particle 
and the Drude-Lorentz parameters of the material

DECOHERENCE OVER THE ATOM
Enhancement of the decoherence due to friction

VIOTTI, LOMBARDO, AND VILLAR PHYSICAL REVIEW A 103, 032809 (2021)

FIG. 1. Scheme of the system under consideration, where the
two-level system moves at a fixed distance a from the dielectric plate.

the existence of frictional effect. Environmentally induced
decoherence can be decomposed into two contributions: cor-
rections induced by the solely electromagnetic vacuum in
the presence of the dielectric sheet and those induced by
the motion of the particle. In the end, we aim to prove that the
presence of velocity and hence noncontact friction enhances
the decoherence of the internal degrees of freedom of the mov-
ing atom, suggesting that measuring decoherence times could
be used to indirectly demonstrate the existence of quantum
friction.

The article is organized as follows. In Sec. II we provide
a description of the composite system under investigation.
In Sec. III we solve the complete system’s dynamics in the
nonretarded regime and weak-coupling limit without mak-
ing either Markovian or low-dissipation approximations. In
Sec. IV we present a complete analysis of the environmentally
induced dynamics of the system so as to track evidence of
quantum-fluctuation-induced effects due to the velocity of the
particle, focusing on the conditions under which those effects
are enhanced. This research is mainly conducted by observing
the suppression of the coherences of the internal degree of
freedom of the particle, where this destruction is found to be
fastened by the movement of the particle. We further include
an analysis of different materials and particles and study how
these features impact on the magnitude of the effects under
study. In Sec. V we summarize our main conclusions. Two
Appendixes complement the work.

II. SYSTEM

Here we consider a neutral particle moving through a
medium-assisted electromagnetic field vacuum. As shown in
Fig. 1, the particle is modeled as a two-level system whose
center of mass follows a prescribed trajectory rs(t ) = vt x̌ +
až at a fixed distance a from a dielectric semi-infinite planar
medium. At this point it is worth noting that we have em-
ployed the inverted circumflex to denote unit vectors so as to
save the circumflex to denote operator nature. The dynamics
of the composite system can be described by a Hamilto-
nian consisting of atomic, field, and interaction contributions

defined by

Ĥ = h̄
2
!σ̂z ⊗ 1 + Ĥem + Ĥint, (1)

where ! is energy gap of the two-level system and Ĥem is
the Hamiltonian of the electromagnetic field in the absence
of the particle, but in the presence of the dielectric half space
at z < 0. The interaction between the particle and the field
is given in the dipole (long-wavelength) approximation by
Ĥint = −d̂ ⊗ Ê(rs) and depends explicitly on time through
the position of the particle, which is treated as a classical
variable relying on its uncertainty to be unresolvable by the
characteristic wavelength of the electric field. We will re-
strict ourselves to the nonretarded (near-field) regime where
the particle-surface distance a is small enough to satisfy
a!/c # 1. In this regime, the finite time taken for a reflected
photon to reach the particle is negligible compared to its natu-
ral timescale and the interaction Hamiltonian can therefore be
written as Ĥint = d̂ ⊗ ∇#̂(rs), where the electric potential #̂,
expanded in a plane-wave basis corresponding to elementary
excitations, is [36,37]

#̂ =
∫

d2k
∫ ∞

0
dω[âk,ω,φ(k,ω)eik·r‖ + H.c.] (2)

and contains all the information of the electric field in the z >
0 region, dressed by the dielectric medium. The bosonic oper-
ators satisfy the commutation relation [âk,ω, â†

k′,ω′ ] = δ(k −
k′)δ(ω − ω′) and the single-excitation mode functions are
given by

φ(k,ω) =

√
ω'

ωs

√
h̄

2π2k
e−kz ωp

ω2 − ω2
s − iω'

, (3)

where the wave vector k = (kx, ky) is parallel to the medium
surface and k = |k|. The frequency ωs gives the surface
plasmon resonance and the material dissipation rate ' its
broadening while in the Drude model for metals the plasma
frequency ωp satisfies ω2

p = 2ω2
s .

III. NONUNITARY EVOLUTION OF THE SYSTEM

In order to address the dynamics of the two-level system,
we will derive the master equation satisfied by the reduce den-
sity matrix representing its state. This is done by integrating
out the degrees of freedom corresponding to the composite
environment, as indicated by the formalism of open quan-
tum systems [38]. By assuming an initially factorized state
ρ(0) = ρs(0) ⊗ ρvac

em with the dressed electromagnetic field in
its vacuum state, the master equation in the interaction picture,
up to second order in the coupling constant, is given by [39]

ρ̇s(t ) = −1

h̄2

∫ t

0
dt ′Trem[V (t ), [V (t ′), ρs(t ) ⊗ ρem]]. (4)

An explicit computation of this expression leads to the equa-
tion ruling the temporal evolution of the reduced density
matrix [40,41]. In this work we have considered the equation
governing the two-level system dynamics that results from
performing the secular approximation, also referred to as the
post-trace rotating-wave approximation. This approximation
consists of neglecting those terms which are fast oscillating
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the Hamiltonian of the electromagnetic field in the absence
of the particle, but in the presence of the dielectric half space
at z < 0. The interaction between the particle and the field
is given in the dipole (long-wavelength) approximation by
Ĥint = −d̂ ⊗ Ê(rs) and depends explicitly on time through
the position of the particle, which is treated as a classical
variable relying on its uncertainty to be unresolvable by the
characteristic wavelength of the electric field. We will re-
strict ourselves to the nonretarded (near-field) regime where
the particle-surface distance a is small enough to satisfy
a!/c # 1. In this regime, the finite time taken for a reflected
photon to reach the particle is negligible compared to its natu-
ral timescale and the interaction Hamiltonian can therefore be
written as Ĥint = d̂ ⊗ ∇#̂(rs), where the electric potential #̂,
expanded in a plane-wave basis corresponding to elementary
excitations, is [36,37]

#̂ =
∫

d2k
∫ ∞

0
dω[âk,ω,φ(k,ω)eik·r‖ + H.c.] (2)

and contains all the information of the electric field in the z >
0 region, dressed by the dielectric medium. The bosonic oper-
ators satisfy the commutation relation [âk,ω, â†

k′,ω′ ] = δ(k −
k′)δ(ω − ω′) and the single-excitation mode functions are
given by

φ(k,ω) =

√
ω'

ωs

√
h̄

2π2k
e−kz ωp

ω2 − ω2
s − iω'

, (3)

where the wave vector k = (kx, ky) is parallel to the medium
surface and k = |k|. The frequency ωs gives the surface
plasmon resonance and the material dissipation rate ' its
broadening while in the Drude model for metals the plasma
frequency ωp satisfies ω2

p = 2ω2
s .

III. NONUNITARY EVOLUTION OF THE SYSTEM

In order to address the dynamics of the two-level system,
we will derive the master equation satisfied by the reduce den-
sity matrix representing its state. This is done by integrating
out the degrees of freedom corresponding to the composite
environment, as indicated by the formalism of open quan-
tum systems [38]. By assuming an initially factorized state
ρ(0) = ρs(0) ⊗ ρvac

em with the dressed electromagnetic field in
its vacuum state, the master equation in the interaction picture,
up to second order in the coupling constant, is given by [39]

ρ̇s(t ) = −1

h̄2

∫ t

0
dt ′Trem[V (t ), [V (t ′), ρs(t ) ⊗ ρem]]. (4)

An explicit computation of this expression leads to the equa-
tion ruling the temporal evolution of the reduced density
matrix [40,41]. In this work we have considered the equation
governing the two-level system dynamics that results from
performing the secular approximation, also referred to as the
post-trace rotating-wave approximation. This approximation
consists of neglecting those terms which are fast oscillating
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FIG. 1. Scheme of the system under consideration, where the
two-level system moves at a fixed distance a from the dielectric plate.
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in the interaction picture and it can be performed based on
the assumption that dissipative corrections are weak enough
to expect to preserve accurate results in the timescales of the
phenomena [42,43]. Therefore, the equation we obtain is

ρ̇s = − i"
2

[σ̂z, ρs] + iζ (v, t )[σx, {σy, ρs}]

− 1
2

D(v, t )([σx, [σx, ρs]] + [σy, [σy, ρs]])

− 1
2

f (v, t )([σx, [σy, ρs]] − [σy, [σx, ρs]]), (5)

where the nonunitary effects are modeled by the diffusion
coefficients D(v, t ) and f (v, t ), while dissipative effects are
present in ζ (v, t ). All three coefficients consist of real func-
tions of time, with parameters introduced by the particle and
the medium-assisted field. These coefficients are developed
in Appendix A, where an analytical solution is given for
sufficiently low velocities of the particle.

It is important to mention that the diagonal elements of the
reduced density matrix are exactly the same whether secular
approximation is performed or not, since for this system it
only implies disregarding a dynamical interaction between
ρ12 and ρ21. By resorting to a change of variables, say, ρ− =
ρ11 − ρ22 and ρ+ = Tr(ρs) = 1, a formal solution can easily
be found through direct computation,

ρ−(t ) = exp
(

−4
∫

dt D(v, t )
)

ρ−(0)

− 4 exp
(

−4
∫

dt D(v, t )
) ∫ t

0
dt ′ζ (v, t ′)

× exp
(

4
∫

dt ′D(v, t ′)
)

. (6)

The nondiagonal elements in this approximation are

ρSEC
12 (t ) = ρ12(0) exp

(
−

∫ t

0
dt ′[2D(v, t ′)

+ 2i f (v, t ′) + i"]
)

, (7)

ρ21(t ) = ρ∗
12(t ). (8)

Hence, after applying the secular approximation, the reduced
density matrix describing the state of the particle’s internal
degree of freedom can be written as ρs(t ) = ρdiag + ρnond,
with

ρdiag =
(

ρ11(t ) 0
0 1 − ρ11(t )

)
(9)

and

ρnond =
(

0 ρ12(0)e−iξ (t )

ρ∗
12(0)eiξ (t ) 0

)

× exp
(

− 2
ωs

∫ t

0
dt ′D(v, t ′)

)
, (10)

with

ξ (t ) = i"̃t + 2i
∫ t

0
dt ′ f (v, t ′)

ωs
, (11)

1!10"1

FIG. 2. Matrix elements and purity evolution in natural cycles
N = t

2π/"̃
. (a) The system can be seen to tend to its ground state

independently of the initial state for low velocities. (b) For high
enough velocity, the asymptotic state is a mixed state. The parameter
values are (̃ = 1, r0/ωs = 10−2, "̃ = 0.2, and (a) u = 0.003 and
(b) u = 0.3. The inset in (a) displays the behavior of the asymptotic
value of ρ11 with dimensionless velocity u.

where we have used the dimensionless parameters t =
ωstreal, u = v/(ωsa), (̃ = (/ωs, and "̃ = "/ωs as defined in
Appendix A.

The dynamics of the system can be seen to display two
qualitatively different behaviors depending on the velocity of
the particle. While for high enough velocities the evolution
leads to a mixed asymptotic state, if the velocity is low the
system evolves to its ground state. We present both behaviors
in Fig. 2. In Fig. 2(a) the particle is considered to move
with dimensionless velocity u = 0.003. In that case, both the
coherences and the ρ11 element of the state are indefinitely
suppressed and tend to vanish for long enough times, leading
the system to its ground state. The purity of the state de-
creases until reaching a minimal value, from which it starts
to recover and finally tends to unity as the system tends to its
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×
!ω2

p ω
(
ω2 − ω2

s

)2 + !2ω2

× trig[#(t − t ′)]trig[(ω − ikv cos θk )(t − t ′)],

where we are referring to any of the coefficient functions as
N (v, t ) and either function sin(x) or cos(x) as trig.

Expressing the trigonometric function trig[(ω −
ikv cos θk )(t − t ′)] in terms of exponential functions, the
integral over k can be performed directly
∫ ∞

0
k2e−2ake±ikv cos(θ )(t−t ′ )dk = 2

[2a ∓ iv cos(θ )(t − t ′)]3
,

as well as the nonzero integrals over θk ,
∫ 2π

0
dθ

cos2 θ

[2a ± iv cos(θ )(t − t ′)]3
= 2π [2a2 − v2(t − t ′)2]

[4a2 + v2(t − t ′)2]5/2

×
∫ 2π

0
dθ

sin2 θ

[2a ± iv cos(θ )(t − t ′)]3
= π

[4a2 + v2(t − t ′)2]3/2

×
∫ 2π

0
dθ

1
[2a ± iv cos(θ )(t − t ′)]3

= π [8a2 − v2(t − t ′)2]
[4a2 + v2(t − t ′)2]5/2

.

Then, if we define dimensionless parameters

u = v

ωs × a
, #̃ = #

ωs
, !̃ = !

ωs
, (A1)

the dimensional coefficient r0 = d2ω2
p/h̄ω2

s a3, and change to
dimensionless variables

ω

ωs
→ ω,

!

ωs
→ t, (A2)

the functions can be written as

D(v, t ) = r0

2π

∫ t

0
dt ′

∫ ∞

0
dω

!̃ω

(ω2 − 1)2 + !̃2ω2
cos(#̃t ′) cos(ωt ′)P(ut ′), (A3)

f (v, t ) = r0

2π

∫ t

0
dt ′

∫ ∞

0
dω

!̃ω

(ω2 − 1)2 + !̃2ω2
sin(#̃t ′) cos(ωt ′)P(ut ′), (A4)

ζ (v, t ) = r0

2π

∫ t

0
dt ′

∫ ∞

0
dω

!̃ω

(ω2 − 1)2 + !̃2ω2
sin(#̃t ′) sin(ωt ′)P(ut ′), (A5)

where P(ut ′) is an algebraic function given by

P(ut ′) = 2n2
x

2 − u2t ′2

(4 + u2t ′2)5/2

+
n2

y

(4 + u2t ′2)3/2
+ n2

z
(8 − u2t ′2)

(4 + u2t ′2)5/2 . (A6)

In the following, we will consider only D(v, t ), since the
other coefficients can be treated in a very similar manner. The
expression to be integrated over ω,

1
2

∫ ∞

0
dω

!̃ω

(ω2 − 1)2 + !̃2ω2
(eiωt ′ + e−iωt ′

), (A7)

is holomorphic everywhere but on the poles given by the roots
of the denominator {ω̃r,−ω̃r, c.c.}, with

ω̃r = 1√
2

√
2 − !̃ + i

√
4 − !̃. (A8)

For !̃ values satisfying !̃ < 2 these are complex poles with
both real and imaginary nonvanishing parts, while for !̃ > 2,
ω̃r is purely imaginary. The integral in (A7) can be expressed
in terms of exponential integral functions as

1

4
√

4 − !̃2
[πeiωrt − ieiωrt E1(iωrt ) − ie−iωrt E1(−iωrt ) + c.c.],

(A9)

where the terms containing the functions E1 are negligible
when compared to the exponential term as long as !̃ ( 1 but
cease to be negligible for !̃ ∼ 1.

First, we will focus on the approximated result obtained
for low !̃ values (i.e., disregarding all terms containing E1
functions) to explain how we have considered the correction

introduced by them at the end of this Appendix. At this point,
we are only left with the time integral to be addressed. In order
to do so, we will extend t ′ to the complex plane and modify
the integration path conveniently (Fig. 7). By observing that
for nonrelativistic velocities of the particle, oscillations in

D(v, t ) = r0

4π

π
√

4 − !̃2

×
∫ t

0
dt ′(ei(ω̃r+#̃)t ′ + ei(ω̃r−#̃)t ′ + c.c.)P(ut ′)

(A10)

occur on a much faster timescale than P(ut ′) variation, we can
adopt the steepest-descent method to replace the integrals over

FIG. 7. Constant phase contours for an integral over the variable
t ′ which was extended to the complex plane.
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For !̃ values satisfying !̃ < 2 these are complex poles with
both real and imaginary nonvanishing parts, while for !̃ > 2,
ω̃r is purely imaginary. The integral in (A7) can be expressed
in terms of exponential integral functions as

1

4
√

4 − !̃2
[πeiωrt − ieiωrt E1(iωrt ) − ie−iωrt E1(−iωrt ) + c.c.],

(A9)

where the terms containing the functions E1 are negligible
when compared to the exponential term as long as !̃ ( 1 but
cease to be negligible for !̃ ∼ 1.

First, we will focus on the approximated result obtained
for low !̃ values (i.e., disregarding all terms containing E1
functions) to explain how we have considered the correction

introduced by them at the end of this Appendix. At this point,
we are only left with the time integral to be addressed. In order
to do so, we will extend t ′ to the complex plane and modify
the integration path conveniently (Fig. 7). By observing that
for nonrelativistic velocities of the particle, oscillations in

D(v, t ) = r0

4π

π
√

4 − !̃2

×
∫ t

0
dt ′(ei(ω̃r+#̃)t ′ + ei(ω̃r−#̃)t ′ + c.c.)P(ut ′)

(A10)

occur on a much faster timescale than P(ut ′) variation, we can
adopt the steepest-descent method to replace the integrals over

FIG. 7. Constant phase contours for an integral over the variable
t ′ which was extended to the complex plane.
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, #̃ = #

ωs
, !̃ = !

ωs
, (A1)

the dimensional coefficient r0 = d2ω2
p/h̄ω2

s a3, and change to
dimensionless variables

ω

ωs
→ ω,

!

ωs
→ t, (A2)
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D(v, t ) = r0

2π

∫ t

0
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∫ ∞

0
dω

!̃ω
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f (v, t ) = r0

2π

∫ t

0
dt ′

∫ ∞

0
dω

!̃ω

(ω2 − 1)2 + !̃2ω2
sin(#̃t ′) cos(ωt ′)P(ut ′), (A4)
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2π

∫ t

0
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∫ ∞

0
dω

!̃ω

(ω2 − 1)2 + !̃2ω2
sin(#̃t ′) sin(ωt ′)P(ut ′), (A5)
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where the terms containing the functions E1 are negligible
when compared to the exponential term as long as !̃ ( 1 but
cease to be negligible for !̃ ∼ 1.

First, we will focus on the approximated result obtained
for low !̃ values (i.e., disregarding all terms containing E1
functions) to explain how we have considered the correction

introduced by them at the end of this Appendix. At this point,
we are only left with the time integral to be addressed. In order
to do so, we will extend t ′ to the complex plane and modify
the integration path conveniently (Fig. 7). By observing that
for nonrelativistic velocities of the particle, oscillations in
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FIG. 8. Coefficient D(v, t ) evolution in natural cycles N = t
2π/"̃

,
comparing the analytical expression, the numerical result, and the
value obtained when performing a Markov approximation. The pa-
rameter values are a = 5 nm, #̃ = 1, "̃ = 0.2, u = 0.003, and d =
d (1, 0, 0).

the real axis intervals by integrals along a constant phase path
for each exponential.

Over these paths, the integral is dominated by the contribu-
tions at those points where the exponent is a local maximum,
allowing for an expansion of the algebraic function in the
parameter of the curve. Following this method, we get, up to
second order in the adimensional velocity u, the approximated
expression

D(v, t ) ∼ r0

8
1

√
4 − #̃2

×
[
−d (i)

8
Im

1
ω̃r + "̃

− 3
32

d (a)u2Im
1

(ω̃r + "̃)3

+ P(ut ′)Im
ei(ω̃r+"̃)t ′

ω̃r + "̃
+ 12R(ut )u2Im

ei(ω̃r+"̃)t ′

(ω̃r + "̃)3

−3Q(ut )tu2Re
ei(ω̃r+"̃)t ′

(ω̃r + "̃)2

]
+ ("̃ ↔ −"̃),

(A11)

where d (i) = 1 + n2
z and d (a) = 3n2

x + n2
y + 4n2

z . The ad-
ditional algebraic functions Q and R appearing in this
expression for D(v, t ) are given by

Q = 2
6 − u2t2

(4 + u2t2)7/2 n2
x +

n2
y

(4 + u2t2)5/2 + 16 − u2t2

(4 + u2t2)7/2 n2
z ,

R = 2
(6 − u2t2)2 − 30

(4 + u2t2)9/2 n2
x + (1 − u2t2)

(4 + u2t2)7/2 n2
y

+ 16 − 27u2t2 + u4t4

(4 + u2t2)9/2 n2
z ,

while approximate solutions can be found for f (v, t ) and
ζ (v, t ), following an analogous procedure.

In order to incorporate a correction that allows us to inves-
tigate greater #̃ values, we expand P(ut ) up to second order in

!

!

!

frequency

frequency

FIG. 9. Decoherence time as a function of the dimensionless
level spacing "̃ of the system, normalized with the null velocity
value, considering an n-Si (up) and a gold (down) dielectric. The pa-
rameter values are #̃ = 1 and u = 0.003 for n-Si and #̃ = 3 × 10−3,
u = 1.5 × 10−4, and d = d (1, 0, 0) for Au.

u in the integrand so that

P(ut ′) ∼ d (i)

8
− 3

64
d (a)u2t ′2. (A12)

This allows us to write the remaining part of the integral as

"D(v, t ) = r0

16π

1
√

4 − #̃2

[
d (i)

8
+ 3

64
d (a) u2∂2

"̃

]

×
∫ t

0
dt ′ {(−i)(ei(ωr+"̃)t E1(iωrt )

+ e−i(ωr+"̃)t E1(−iωrt )) + c.c.} + ("̃ ↔ −"̃).

(A13)
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expression
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u in the integrand so that

P(ut ′) ∼ d (i)

8
− 3
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d (a)u2t ′2. (A12)

This allows us to write the remaining part of the integral as

"D(v, t ) = r0

16π

1
√

4 − #̃2

[
d (i)

8
+ 3

64
d (a) u2∂2

"̃

]

×
∫ t

0
dt ′ {(−i)(ei(ωr+"̃)t E1(iωrt )
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Coherences and          are indefinitely suppressed 
and tent to vanish for long times, leading to the 
system to its ground state.  
Purity decreases until to reach a minimum value 
and tents to unity as the system tents to its pure 
ground state

ρ11
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FIG. 3. Coherence evolution, in natural cycles N = t
2π/"̃

, for
different velocity values. The inset shows the difference in the co-
herence as cycles proceed for smaller velocity values. The parameter
values are #̃ = 1, r0/ωs = 10−2, and "̃ = 0.2.

pure ground state. On the other hand, while the coherences
are totally extinguished, for a dimensionless velocity u = 0.3
the ρ11 element of the reduced density matrix is only sup-
pressed up to an asymptotic value. This behavior, displayed
in Fig. 2(b), leads to a mixed asymptotic state whose purity
never recovers but lands at a constant value depending on ρ11
as p = ρ2

11 + (1 − ρ11)2.
The inset in Fig. 2(a) shows the velocity dependence of the

asymptotic value of ρ11. The dimensionless velocity u = "̃/2
at which the dynamics of the system acquires a completely
different behavior coincides with the lower bound on the ve-
locity, which allows the atom to become excited at the expense
of its kinetic energy [44–46]. A few remarks can be made
from a more detailed observation of the coherence behaviors.
Figure 3 shows off-diagonal elements of the density matrix to
be suppressed by the environment. This destruction is seen not
only to be fastened by the relative motion between the particle
and the material, but also to happen sooner as the velocity is
increased; for example, the absolute value of the coherence
for a particle in relative motion with u = 0.3 becomes extinct
sooner than that with u = 0.15. The same monotonic behavior
is displayed in the inset, in which the difference between ab-
solute values |ρ12(t )| − |ρu=0

12 (t )| grows faster as the velocity
is increased.

However, as the difference between the value of |ρ12(t )|
for finite velocity and that for null velocity attains a max-
imum value and tends to vanish afterward, explorations of
the coherences at too late times would not allow any identi-
fication of the velocity-induced effects. As shown in Fig. 2,
the same observation would apply to the behavior of both
the populations and purity measurements for low velocities
as all these converge to a given value for long enough times,
independently of the velocity. For high velocities, however,
the velocity effect could be observed at late times on the
populations or purity measurements, while the coherences
will always be completely destroyed if one waits too long.

In the following, we will use the results obtained herein for
the reduced density matrix so as to define a scale in which
coherences in the internal degree of freedom of the atom are
destroyed by the influence of the electromagnetic field dressed
by the metallic material.

IV. ENVIRONMENTALLY INDUCED DESTRUCTION
OF COHERENCES

In this section we focus on the environmentally induced
destruction of the particle’s quantum coherences and define
a characteristic time in which the process takes place. The
density matrix defined by Eqs. (9) and (10) allows us to define
a decoherence timescale τD from the decoherence function
D(t ) = exp[− 2

ωs

∫ t
0 dt ′D(v, t ′)] as D(τD) = e−2.

For low velocities, up to second order in the dimensionless
velocity u, this decoherence timescale behaves as

τD = τMarkov
D +

[
−1

√
4 − #̃

2

g("̃, #̃)
h("̃, #̃)

+ 2
π"̃

]

+ 3
8

d (a)

d (i)
u2

{[

g("̃, #̃)
∂2
"̃

h("̃, #̃)

h2("̃, #̃)
−

∂2
"̃

g("̃, #̃)

h("̃, #̃)

]

+ 2
πh("̃, #̃)

[

∂2
"̃

h("̃, #̃)
"̃

−
∂2
"̃

h("̃, #̃)

"̃

]}

, (12)

where the term corresponding to the Markovian approxima-
tion can be expressed as

τMarkov
D = h̄ω2

s a3

d2ω2
p

32
d (i)

(
1

h("̃, #̃)
− 3

8
d (a)

d (i)
u2

∂2
"̃

h("̃, #̃)

h2("̃, #̃)

)

.

(13)
The functions h("̃, #̃) and g("̃, #̃) appearing in these expres-
sions are defined by

h("̃, #̃) = "̃#̃

("̃2 − 1)2 + "̃#̃
,

g("̃, #̃) = Re
[(

1 + 2i
π

ln(ω̃r/"̃)
)

×
(

1
(ω̃r + "̃)2

+ 1
(ω̃r − "̃)2

)]
, (14)

with ω̃r as defined in Eq. (A8) and the dependence on the
polarization orientation encoded in d (i) and d (a) as defined
after Eq. (A11). The dependence of the dynamics on the ve-
locity of the particle (which is already evident in the behavior
displayed in Figs. 2 and 3) can therefore be studied by the
use of the decoherence time τD, which happens to scale as
u2 for low velocities, as seen from Eqs. (12) and (13). This
quadratic behavior of the internal dynamics is in agreement
with the results found in [33], where among other aspects
of the internal dynamics of an atom the decay rate, which
is proportional to the Markovian limit of D(v, t ), is found to
scale as u2. A similar dependence on u was found in [35] for
the corrections induced by the noncontact friction force on the
accumulated geometric phase.

Decoherence time being approximated by τD ∼ a − bu2

reveals that the effect of the environment on the particle
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FIG. 3. Coherence evolution, in natural cycles N = t
2π/"̃

, for
different velocity values. The inset shows the difference in the co-
herence as cycles proceed for smaller velocity values. The parameter
values are #̃ = 1, r0/ωs = 10−2, and "̃ = 0.2.

pure ground state. On the other hand, while the coherences
are totally extinguished, for a dimensionless velocity u = 0.3
the ρ11 element of the reduced density matrix is only sup-
pressed up to an asymptotic value. This behavior, displayed
in Fig. 2(b), leads to a mixed asymptotic state whose purity
never recovers but lands at a constant value depending on ρ11
as p = ρ2

11 + (1 − ρ11)2.
The inset in Fig. 2(a) shows the velocity dependence of the

asymptotic value of ρ11. The dimensionless velocity u = "̃/2
at which the dynamics of the system acquires a completely
different behavior coincides with the lower bound on the ve-
locity, which allows the atom to become excited at the expense
of its kinetic energy [44–46]. A few remarks can be made
from a more detailed observation of the coherence behaviors.
Figure 3 shows off-diagonal elements of the density matrix to
be suppressed by the environment. This destruction is seen not
only to be fastened by the relative motion between the particle
and the material, but also to happen sooner as the velocity is
increased; for example, the absolute value of the coherence
for a particle in relative motion with u = 0.3 becomes extinct
sooner than that with u = 0.15. The same monotonic behavior
is displayed in the inset, in which the difference between ab-
solute values |ρ12(t )| − |ρu=0

12 (t )| grows faster as the velocity
is increased.

However, as the difference between the value of |ρ12(t )|
for finite velocity and that for null velocity attains a max-
imum value and tends to vanish afterward, explorations of
the coherences at too late times would not allow any identi-
fication of the velocity-induced effects. As shown in Fig. 2,
the same observation would apply to the behavior of both
the populations and purity measurements for low velocities
as all these converge to a given value for long enough times,
independently of the velocity. For high velocities, however,
the velocity effect could be observed at late times on the
populations or purity measurements, while the coherences
will always be completely destroyed if one waits too long.

In the following, we will use the results obtained herein for
the reduced density matrix so as to define a scale in which
coherences in the internal degree of freedom of the atom are
destroyed by the influence of the electromagnetic field dressed
by the metallic material.

IV. ENVIRONMENTALLY INDUCED DESTRUCTION
OF COHERENCES

In this section we focus on the environmentally induced
destruction of the particle’s quantum coherences and define
a characteristic time in which the process takes place. The
density matrix defined by Eqs. (9) and (10) allows us to define
a decoherence timescale τD from the decoherence function
D(t ) = exp[− 2

ωs

∫ t
0 dt ′D(v, t ′)] as D(τD) = e−2.

For low velocities, up to second order in the dimensionless
velocity u, this decoherence timescale behaves as

τD = τMarkov
D +
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The functions h("̃, #̃) and g("̃, #̃) appearing in these expres-
sions are defined by

h("̃, #̃) = "̃#̃

("̃2 − 1)2 + "̃#̃
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×
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with ω̃r as defined in Eq. (A8) and the dependence on the
polarization orientation encoded in d (i) and d (a) as defined
after Eq. (A11). The dependence of the dynamics on the ve-
locity of the particle (which is already evident in the behavior
displayed in Figs. 2 and 3) can therefore be studied by the
use of the decoherence time τD, which happens to scale as
u2 for low velocities, as seen from Eqs. (12) and (13). This
quadratic behavior of the internal dynamics is in agreement
with the results found in [33], where among other aspects
of the internal dynamics of an atom the decay rate, which
is proportional to the Markovian limit of D(v, t ), is found to
scale as u2. A similar dependence on u was found in [35] for
the corrections induced by the noncontact friction force on the
accumulated geometric phase.

Decoherence time being approximated by τD ∼ a − bu2

reveals that the effect of the environment on the particle
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different velocity values. The inset shows the difference in the co-
herence as cycles proceed for smaller velocity values. The parameter
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pure ground state. On the other hand, while the coherences
are totally extinguished, for a dimensionless velocity u = 0.3
the ρ11 element of the reduced density matrix is only sup-
pressed up to an asymptotic value. This behavior, displayed
in Fig. 2(b), leads to a mixed asymptotic state whose purity
never recovers but lands at a constant value depending on ρ11
as p = ρ2

11 + (1 − ρ11)2.
The inset in Fig. 2(a) shows the velocity dependence of the

asymptotic value of ρ11. The dimensionless velocity u = "̃/2
at which the dynamics of the system acquires a completely
different behavior coincides with the lower bound on the ve-
locity, which allows the atom to become excited at the expense
of its kinetic energy [44–46]. A few remarks can be made
from a more detailed observation of the coherence behaviors.
Figure 3 shows off-diagonal elements of the density matrix to
be suppressed by the environment. This destruction is seen not
only to be fastened by the relative motion between the particle
and the material, but also to happen sooner as the velocity is
increased; for example, the absolute value of the coherence
for a particle in relative motion with u = 0.3 becomes extinct
sooner than that with u = 0.15. The same monotonic behavior
is displayed in the inset, in which the difference between ab-
solute values |ρ12(t )| − |ρu=0

12 (t )| grows faster as the velocity
is increased.

However, as the difference between the value of |ρ12(t )|
for finite velocity and that for null velocity attains a max-
imum value and tends to vanish afterward, explorations of
the coherences at too late times would not allow any identi-
fication of the velocity-induced effects. As shown in Fig. 2,
the same observation would apply to the behavior of both
the populations and purity measurements for low velocities
as all these converge to a given value for long enough times,
independently of the velocity. For high velocities, however,
the velocity effect could be observed at late times on the
populations or purity measurements, while the coherences
will always be completely destroyed if one waits too long.

In the following, we will use the results obtained herein for
the reduced density matrix so as to define a scale in which
coherences in the internal degree of freedom of the atom are
destroyed by the influence of the electromagnetic field dressed
by the metallic material.

IV. ENVIRONMENTALLY INDUCED DESTRUCTION
OF COHERENCES

In this section we focus on the environmentally induced
destruction of the particle’s quantum coherences and define
a characteristic time in which the process takes place. The
density matrix defined by Eqs. (9) and (10) allows us to define
a decoherence timescale τD from the decoherence function
D(t ) = exp[− 2

ωs

∫ t
0 dt ′D(v, t ′)] as D(τD) = e−2.

For low velocities, up to second order in the dimensionless
velocity u, this decoherence timescale behaves as
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where the term corresponding to the Markovian approxima-
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The functions h("̃, #̃) and g("̃, #̃) appearing in these expres-
sions are defined by
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,
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with ω̃r as defined in Eq. (A8) and the dependence on the
polarization orientation encoded in d (i) and d (a) as defined
after Eq. (A11). The dependence of the dynamics on the ve-
locity of the particle (which is already evident in the behavior
displayed in Figs. 2 and 3) can therefore be studied by the
use of the decoherence time τD, which happens to scale as
u2 for low velocities, as seen from Eqs. (12) and (13). This
quadratic behavior of the internal dynamics is in agreement
with the results found in [33], where among other aspects
of the internal dynamics of an atom the decay rate, which
is proportional to the Markovian limit of D(v, t ), is found to
scale as u2. A similar dependence on u was found in [35] for
the corrections induced by the noncontact friction force on the
accumulated geometric phase.

Decoherence time being approximated by τD ∼ a − bu2

reveals that the effect of the environment on the particle
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FIG. 3. Coherence evolution, in natural cycles N = t
2π/"̃

, for
different velocity values. The inset shows the difference in the co-
herence as cycles proceed for smaller velocity values. The parameter
values are #̃ = 1, r0/ωs = 10−2, and "̃ = 0.2.

pure ground state. On the other hand, while the coherences
are totally extinguished, for a dimensionless velocity u = 0.3
the ρ11 element of the reduced density matrix is only sup-
pressed up to an asymptotic value. This behavior, displayed
in Fig. 2(b), leads to a mixed asymptotic state whose purity
never recovers but lands at a constant value depending on ρ11
as p = ρ2

11 + (1 − ρ11)2.
The inset in Fig. 2(a) shows the velocity dependence of the

asymptotic value of ρ11. The dimensionless velocity u = "̃/2
at which the dynamics of the system acquires a completely
different behavior coincides with the lower bound on the ve-
locity, which allows the atom to become excited at the expense
of its kinetic energy [44–46]. A few remarks can be made
from a more detailed observation of the coherence behaviors.
Figure 3 shows off-diagonal elements of the density matrix to
be suppressed by the environment. This destruction is seen not
only to be fastened by the relative motion between the particle
and the material, but also to happen sooner as the velocity is
increased; for example, the absolute value of the coherence
for a particle in relative motion with u = 0.3 becomes extinct
sooner than that with u = 0.15. The same monotonic behavior
is displayed in the inset, in which the difference between ab-
solute values |ρ12(t )| − |ρu=0

12 (t )| grows faster as the velocity
is increased.

However, as the difference between the value of |ρ12(t )|
for finite velocity and that for null velocity attains a max-
imum value and tends to vanish afterward, explorations of
the coherences at too late times would not allow any identi-
fication of the velocity-induced effects. As shown in Fig. 2,
the same observation would apply to the behavior of both
the populations and purity measurements for low velocities
as all these converge to a given value for long enough times,
independently of the velocity. For high velocities, however,
the velocity effect could be observed at late times on the
populations or purity measurements, while the coherences
will always be completely destroyed if one waits too long.

In the following, we will use the results obtained herein for
the reduced density matrix so as to define a scale in which
coherences in the internal degree of freedom of the atom are
destroyed by the influence of the electromagnetic field dressed
by the metallic material.

IV. ENVIRONMENTALLY INDUCED DESTRUCTION
OF COHERENCES

In this section we focus on the environmentally induced
destruction of the particle’s quantum coherences and define
a characteristic time in which the process takes place. The
density matrix defined by Eqs. (9) and (10) allows us to define
a decoherence timescale τD from the decoherence function
D(t ) = exp[− 2
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∫ t
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with ω̃r as defined in Eq. (A8) and the dependence on the
polarization orientation encoded in d (i) and d (a) as defined
after Eq. (A11). The dependence of the dynamics on the ve-
locity of the particle (which is already evident in the behavior
displayed in Figs. 2 and 3) can therefore be studied by the
use of the decoherence time τD, which happens to scale as
u2 for low velocities, as seen from Eqs. (12) and (13). This
quadratic behavior of the internal dynamics is in agreement
with the results found in [33], where among other aspects
of the internal dynamics of an atom the decay rate, which
is proportional to the Markovian limit of D(v, t ), is found to
scale as u2. A similar dependence on u was found in [35] for
the corrections induced by the noncontact friction force on the
accumulated geometric phase.

Decoherence time being approximated by τD ∼ a − bu2

reveals that the effect of the environment on the particle
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×
!ω2

p ω
(
ω2 − ω2

s

)2 + !2ω2

× trig[#(t − t ′)]trig[(ω − ikv cos θk )(t − t ′)],

where we are referring to any of the coefficient functions as
N (v, t ) and either function sin(x) or cos(x) as trig.

Expressing the trigonometric function trig[(ω −
ikv cos θk )(t − t ′)] in terms of exponential functions, the
integral over k can be performed directly
∫ ∞

0
k2e−2ake±ikv cos(θ )(t−t ′ )dk = 2

[2a ∓ iv cos(θ )(t − t ′)]3
,

as well as the nonzero integrals over θk ,
∫ 2π

0
dθ

cos2 θ

[2a ± iv cos(θ )(t − t ′)]3
= 2π [2a2 − v2(t − t ′)2]
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×
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.

Then, if we define dimensionless parameters

u = v

ωs × a
, #̃ = #

ωs
, !̃ = !

ωs
, (A1)

the dimensional coefficient r0 = d2ω2
p/h̄ω2

s a3, and change to
dimensionless variables

ω

ωs
→ ω,

!

ωs
→ t, (A2)

the functions can be written as
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2π
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sin(#̃t ′) sin(ωt ′)P(ut ′), (A5)

where P(ut ′) is an algebraic function given by

P(ut ′) = 2n2
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+
n2

y

(4 + u2t ′2)3/2
+ n2

z
(8 − u2t ′2)

(4 + u2t ′2)5/2 . (A6)

In the following, we will consider only D(v, t ), since the
other coefficients can be treated in a very similar manner. The
expression to be integrated over ω,

1
2

∫ ∞

0
dω

!̃ω

(ω2 − 1)2 + !̃2ω2
(eiωt ′ + e−iωt ′

), (A7)

is holomorphic everywhere but on the poles given by the roots
of the denominator {ω̃r,−ω̃r, c.c.}, with

ω̃r = 1√
2

√
2 − !̃ + i

√
4 − !̃. (A8)

For !̃ values satisfying !̃ < 2 these are complex poles with
both real and imaginary nonvanishing parts, while for !̃ > 2,
ω̃r is purely imaginary. The integral in (A7) can be expressed
in terms of exponential integral functions as

1

4
√

4 − !̃2
[πeiωrt − ieiωrt E1(iωrt ) − ie−iωrt E1(−iωrt ) + c.c.],

(A9)

where the terms containing the functions E1 are negligible
when compared to the exponential term as long as !̃ ( 1 but
cease to be negligible for !̃ ∼ 1.

First, we will focus on the approximated result obtained
for low !̃ values (i.e., disregarding all terms containing E1
functions) to explain how we have considered the correction

introduced by them at the end of this Appendix. At this point,
we are only left with the time integral to be addressed. In order
to do so, we will extend t ′ to the complex plane and modify
the integration path conveniently (Fig. 7). By observing that
for nonrelativistic velocities of the particle, oscillations in

D(v, t ) = r0

4π

π
√

4 − !̃2

×
∫ t

0
dt ′(ei(ω̃r+#̃)t ′ + ei(ω̃r−#̃)t ′ + c.c.)P(ut ′)

(A10)

occur on a much faster timescale than P(ut ′) variation, we can
adopt the steepest-descent method to replace the integrals over

FIG. 7. Constant phase contours for an integral over the variable
t ′ which was extended to the complex plane.
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FIG. 3. Coherence evolution, in natural cycles N = t
2π/"̃

, for
different velocity values. The inset shows the difference in the co-
herence as cycles proceed for smaller velocity values. The parameter
values are #̃ = 1, r0/ωs = 10−2, and "̃ = 0.2.

pure ground state. On the other hand, while the coherences
are totally extinguished, for a dimensionless velocity u = 0.3
the ρ11 element of the reduced density matrix is only sup-
pressed up to an asymptotic value. This behavior, displayed
in Fig. 2(b), leads to a mixed asymptotic state whose purity
never recovers but lands at a constant value depending on ρ11
as p = ρ2

11 + (1 − ρ11)2.
The inset in Fig. 2(a) shows the velocity dependence of the

asymptotic value of ρ11. The dimensionless velocity u = "̃/2
at which the dynamics of the system acquires a completely
different behavior coincides with the lower bound on the ve-
locity, which allows the atom to become excited at the expense
of its kinetic energy [44–46]. A few remarks can be made
from a more detailed observation of the coherence behaviors.
Figure 3 shows off-diagonal elements of the density matrix to
be suppressed by the environment. This destruction is seen not
only to be fastened by the relative motion between the particle
and the material, but also to happen sooner as the velocity is
increased; for example, the absolute value of the coherence
for a particle in relative motion with u = 0.3 becomes extinct
sooner than that with u = 0.15. The same monotonic behavior
is displayed in the inset, in which the difference between ab-
solute values |ρ12(t )| − |ρu=0

12 (t )| grows faster as the velocity
is increased.

However, as the difference between the value of |ρ12(t )|
for finite velocity and that for null velocity attains a max-
imum value and tends to vanish afterward, explorations of
the coherences at too late times would not allow any identi-
fication of the velocity-induced effects. As shown in Fig. 2,
the same observation would apply to the behavior of both
the populations and purity measurements for low velocities
as all these converge to a given value for long enough times,
independently of the velocity. For high velocities, however,
the velocity effect could be observed at late times on the
populations or purity measurements, while the coherences
will always be completely destroyed if one waits too long.

In the following, we will use the results obtained herein for
the reduced density matrix so as to define a scale in which
coherences in the internal degree of freedom of the atom are
destroyed by the influence of the electromagnetic field dressed
by the metallic material.

IV. ENVIRONMENTALLY INDUCED DESTRUCTION
OF COHERENCES

In this section we focus on the environmentally induced
destruction of the particle’s quantum coherences and define
a characteristic time in which the process takes place. The
density matrix defined by Eqs. (9) and (10) allows us to define
a decoherence timescale τD from the decoherence function
D(t ) = exp[− 2

ωs

∫ t
0 dt ′D(v, t ′)] as D(τD) = e−2.

For low velocities, up to second order in the dimensionless
velocity u, this decoherence timescale behaves as

τD = τMarkov
D +
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where the term corresponding to the Markovian approxima-
tion can be expressed as

τMarkov
D = h̄ω2

s a3

d2ω2
p

32
d (i)

(
1

h("̃, #̃)
− 3

8
d (a)

d (i)
u2

∂2
"̃

h("̃, #̃)

h2("̃, #̃)

)

.

(13)
The functions h("̃, #̃) and g("̃, #̃) appearing in these expres-
sions are defined by

h("̃, #̃) = "̃#̃

("̃2 − 1)2 + "̃#̃
,

g("̃, #̃) = Re
[(

1 + 2i
π

ln(ω̃r/"̃)
)

×
(

1
(ω̃r + "̃)2
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, (14)

with ω̃r as defined in Eq. (A8) and the dependence on the
polarization orientation encoded in d (i) and d (a) as defined
after Eq. (A11). The dependence of the dynamics on the ve-
locity of the particle (which is already evident in the behavior
displayed in Figs. 2 and 3) can therefore be studied by the
use of the decoherence time τD, which happens to scale as
u2 for low velocities, as seen from Eqs. (12) and (13). This
quadratic behavior of the internal dynamics is in agreement
with the results found in [33], where among other aspects
of the internal dynamics of an atom the decay rate, which
is proportional to the Markovian limit of D(v, t ), is found to
scale as u2. A similar dependence on u was found in [35] for
the corrections induced by the noncontact friction force on the
accumulated geometric phase.

Decoherence time being approximated by τD ∼ a − bu2

reveals that the effect of the environment on the particle
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FIG. 4. Decoherence time rate as a function of the adimensional
velocity u. The parameter values are !̃ = 1, "̃NV = 0.2, "̃Rb = 8,
and r0/ωs = 10−2.

contains two contributions of different nature: (i) a contribu-
tion induced by solely vacuum fluctuations (dressed by the
presence of the dielectric) and (ii) a contribution induced
by the motion of the particle in quantum vacuum. Then it
is instructive to study the factor b/a as it constitutes a rate
between these two contributions. We define τD as the net
effect of the environment on the particle, while τD|u=0 is the
decoherence time when the particle is static. If velocity effects
are insignificant, τD/τD|u=0 ∼ 1. Hence, by inspecting the rate
(τD/τD|u=0 − 1) we gain access to b/a. In Fig. 4 this rate is
plotted as a function of velocity for two different "̃ values
where a quadratic behavior can be easily noted. This behavior
is also confirmed by comparing the rate computed by Eq. (12)
and the one numerically obtained from the proper definition
of τD.

The difference in the scale factor on each curve reflects
how both the net effect of the environment on the particle
internal degree of freedom and the contribution derived from
the finite velocity are strongly dependent on the parameters of
the problem, which are introduced by the material of the half
space and the level spacing of the particle and its velocity. For
example, the relation b/a takes a numerical value b/a ∼ 6.417
for a nitrogen-vacancy (NV) center moving over an n-doped
silicon (n-Si) surface, while it takes a value b/a ∼ 0.216 for a
rubidium atom moving over the same surface.

The timescale defined in this way inherits also a depen-
dence on the orientation of the polarization of the system d =
d ( sin(θ ) cos(ϕ)x̂ + sin(θ ) sin(ϕ)ŷ + cos(θ )ẑ) (where ϕ and θ
are the spherical azimuthal and polar angles, respectively)
from the coefficients governing the dynamics. Figure 5 shows
the ϕ dependence for different fixed θ values, where it can be
seen that the decoherence time is at its smallest value when
the polarization is perpendicular to the dielectric surface. If
tilted, the coherences fall sooner when the polarization is in
the direction of the velocity. This behavior is in accordance
with that shown by Intravaia et al. in the inset of Fig. 5 in
[44], where they have shown the frictional force (computed up
to second order in the coupling constant) dependence on the

FIG. 5. Decoherence time as a function of the polarization di-
rection of the system. The parameter values are !̃ = 1, "̃ = 0.2,
u = 0.3, and r0/ωs = 10−2.

polarization direction. Herein, we find that for the same dipole
orientation the force increases and τD decreases, implying that
decoherence effects are stronger in that case. This permits a
direct link between decoherence and quantum friction since
they exhibit a qualitative inverse proportionality: The stronger
the decoherence effect, the stronger the frictional force.

Seeing in Fig. 4 that those variations introduced by the
different parameters concerning the material and particle seem
to be relevant for the magnitude of the effect, we complete
this section by examining some possibilities. For the dielectric
material we consider a dielectric to be a gold surface (Au) or
an n-doped silicon material (n-Si), gold having the parame-
ters of the Drude-Lorentz model ωAu

s ∼ 9.7 × 1015 rad/s and
!/ωs ∼ 0.003, while the n-Si parameters are !/ωs ∼ 1 and
ωn-Si

s ∼ 2.47 × 1014 rad/s. As for the particles (atoms), we
consider a Rb atom or a single NV center in diamond as an
effective two-level system. In Fig. 6 we show the behavior of
τD/τD|u=0 − 1 in the polarization direction for different sets
of frequencies. Therein, we include all four combinations:
Dotted lines represent the decoherence time Rb atom and Au,
dashed lines correspond to a Rb atom and n-Si, dot-dashed
lines correspond to the NV center and Au, and solid lines
correspond to the NV center and n-Si. In this way, we can get
insight into the importance of the velocity-dependent effects
since the bigger the magnitude of the quantity displayed is,
the more important the u2 contribution becomes. The results
obtained enhance the idea that the velocity effects induced on
the atom depend considerably on the material and particle.
The rate between the decoherence timescale at finite velocity
and that at null velocity is increased by a factor 102 when
comparing an NV center moving over an n-Si–coated surface
with a Rb atom moving over a gold-coated surface.

We conclude from our analysis that the election of n-Si as
the material and an NV center as our system would enhance
the effect the most. The NV center consists of a vacancy,
or missing carbon atom, in the diamond lattice lying next to
a nitrogen atom, which has been substituted for one of the
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FIG. 4. Decoherence time rate as a function of the adimensional
velocity u. The parameter values are !̃ = 1, "̃NV = 0.2, "̃Rb = 8,
and r0/ωs = 10−2.

contains two contributions of different nature: (i) a contribu-
tion induced by solely vacuum fluctuations (dressed by the
presence of the dielectric) and (ii) a contribution induced
by the motion of the particle in quantum vacuum. Then it
is instructive to study the factor b/a as it constitutes a rate
between these two contributions. We define τD as the net
effect of the environment on the particle, while τD|u=0 is the
decoherence time when the particle is static. If velocity effects
are insignificant, τD/τD|u=0 ∼ 1. Hence, by inspecting the rate
(τD/τD|u=0 − 1) we gain access to b/a. In Fig. 4 this rate is
plotted as a function of velocity for two different "̃ values
where a quadratic behavior can be easily noted. This behavior
is also confirmed by comparing the rate computed by Eq. (12)
and the one numerically obtained from the proper definition
of τD.

The difference in the scale factor on each curve reflects
how both the net effect of the environment on the particle
internal degree of freedom and the contribution derived from
the finite velocity are strongly dependent on the parameters of
the problem, which are introduced by the material of the half
space and the level spacing of the particle and its velocity. For
example, the relation b/a takes a numerical value b/a ∼ 6.417
for a nitrogen-vacancy (NV) center moving over an n-doped
silicon (n-Si) surface, while it takes a value b/a ∼ 0.216 for a
rubidium atom moving over the same surface.

The timescale defined in this way inherits also a depen-
dence on the orientation of the polarization of the system d =
d ( sin(θ ) cos(ϕ)x̂ + sin(θ ) sin(ϕ)ŷ + cos(θ )ẑ) (where ϕ and θ
are the spherical azimuthal and polar angles, respectively)
from the coefficients governing the dynamics. Figure 5 shows
the ϕ dependence for different fixed θ values, where it can be
seen that the decoherence time is at its smallest value when
the polarization is perpendicular to the dielectric surface. If
tilted, the coherences fall sooner when the polarization is in
the direction of the velocity. This behavior is in accordance
with that shown by Intravaia et al. in the inset of Fig. 5 in
[44], where they have shown the frictional force (computed up
to second order in the coupling constant) dependence on the

FIG. 5. Decoherence time as a function of the polarization di-
rection of the system. The parameter values are !̃ = 1, "̃ = 0.2,
u = 0.3, and r0/ωs = 10−2.

polarization direction. Herein, we find that for the same dipole
orientation the force increases and τD decreases, implying that
decoherence effects are stronger in that case. This permits a
direct link between decoherence and quantum friction since
they exhibit a qualitative inverse proportionality: The stronger
the decoherence effect, the stronger the frictional force.

Seeing in Fig. 4 that those variations introduced by the
different parameters concerning the material and particle seem
to be relevant for the magnitude of the effect, we complete
this section by examining some possibilities. For the dielectric
material we consider a dielectric to be a gold surface (Au) or
an n-doped silicon material (n-Si), gold having the parame-
ters of the Drude-Lorentz model ωAu

s ∼ 9.7 × 1015 rad/s and
!/ωs ∼ 0.003, while the n-Si parameters are !/ωs ∼ 1 and
ωn-Si

s ∼ 2.47 × 1014 rad/s. As for the particles (atoms), we
consider a Rb atom or a single NV center in diamond as an
effective two-level system. In Fig. 6 we show the behavior of
τD/τD|u=0 − 1 in the polarization direction for different sets
of frequencies. Therein, we include all four combinations:
Dotted lines represent the decoherence time Rb atom and Au,
dashed lines correspond to a Rb atom and n-Si, dot-dashed
lines correspond to the NV center and Au, and solid lines
correspond to the NV center and n-Si. In this way, we can get
insight into the importance of the velocity-dependent effects
since the bigger the magnitude of the quantity displayed is,
the more important the u2 contribution becomes. The results
obtained enhance the idea that the velocity effects induced on
the atom depend considerably on the material and particle.
The rate between the decoherence timescale at finite velocity
and that at null velocity is increased by a factor 102 when
comparing an NV center moving over an n-Si–coated surface
with a Rb atom moving over a gold-coated surface.

We conclude from our analysis that the election of n-Si as
the material and an NV center as our system would enhance
the effect the most. The NV center consists of a vacancy,
or missing carbon atom, in the diamond lattice lying next to
a nitrogen atom, which has been substituted for one of the
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FIG. 8. Coefficient D(v, t ) evolution in natural cycles N = t
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value obtained when performing a Markov approximation. The pa-
rameter values are a = 5 nm, #̃ = 1, "̃ = 0.2, u = 0.003, and d =
d (1, 0, 0).

the real axis intervals by integrals along a constant phase path
for each exponential.

Over these paths, the integral is dominated by the contribu-
tions at those points where the exponent is a local maximum,
allowing for an expansion of the algebraic function in the
parameter of the curve. Following this method, we get, up to
second order in the adimensional velocity u, the approximated
expression
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while approximate solutions can be found for f (v, t ) and
ζ (v, t ), following an analogous procedure.

In order to incorporate a correction that allows us to inves-
tigate greater #̃ values, we expand P(ut ) up to second order in
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FIG. 9. Decoherence time as a function of the dimensionless
level spacing "̃ of the system, normalized with the null velocity
value, considering an n-Si (up) and a gold (down) dielectric. The pa-
rameter values are #̃ = 1 and u = 0.003 for n-Si and #̃ = 3 × 10−3,
u = 1.5 × 10−4, and d = d (1, 0, 0) for Au.
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Model: Two level system as particle immersed in EM field in front of Drude-Lorentz dielectric plate

Decoherence time is at its smallest value when the polarization is perpendicular to the dielectric 
surface. If tilted, the coherences fall sooner when the polarization is in the direction of the 
velocity. We showed that for the same dipole orientation the force increases and τD decreases, 
implying that decoherence effects are stronger in that case.  Direct link between decoherence and 
quantum friction since they exhibit a qualitative inverse proportionality: the larger the decoherence 
effect (shorter decoherence time), the bigger the frictional force. The results obtained reinforce 
the idea that the velocity-dependent effects induced on the atom depend on the material and 
particle. 𝜏D   ∕𝜏Du=0 

can be enhanced up to a factor 10^2  by considering an NV center moving over an n-Si 
coated surface, when compared to an Rb atom moving over a gold-coated surface  

  
L. Viotti, F.C.Lombardo &. P.I. Villar Phys. Rev. A 103, 032809 (2021) 

NV + n-Si

Rb + n-Si

Rb + Au
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Quantum dissipative effects in moving mirrors: A functional approach
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We use a functional approach to study various aspects of the quantum effective dynamics of moving,
planar, dispersive mirrors, coupled to scalar or Dirac fields, in different numbers of dimensions. We first
compute the Euclidean effective action, and use it to derive the imaginary part of the ‘‘in-out’’ effective
action. We also obtain, for the case of the real scalar field in 1! 1 dimensions, the Schwinger-Keldysh
effective action and a semiclassical Langevin equation that describes the motion of the mirror including
noise and dissipative effects due to its coupling to the quantum fields.
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I. INTRODUCTION

In the presence of a moving, accelerated mirror, the
electromagnetic field evolves from the vacuum to an ex-
cited state, containing a nonvanishing number of photons.
This ‘‘motion induced radiation’’ or ‘‘dynamical Casimir
effect’’ (DCE) has been the subject of intense theoretical
research since its discovery in the seventies [1,2]. While
this phenomenon was initially regarded as being of just
theoretical interest (for example, as a toy model for black
hole evaporation), in recent years it has been pointed out
that the experimental verification of the DCE might not be,
after all, so far out of reach [3,4].

Indeed, taking advantage of parametric resonance am-
plification, this effect could be dramatically increased [5],
since the number of photons created within a cavity with a
moving mirror should grow exponentially at resonance
(i.e., when the mirror’s oscillatory frequency doubles one
of the eigenfrequencies of the unperturbed cavity). For the
case of microwave cavities, the mechanical frequency of
the mirror should, however, be extremely high (# 1 GHz)
for this to happen, and this poses the main stumbling block
for an experimental verification of the effect.

It has also been suggested that the DCE could be mea-
sured in experiments in which the moving mirror is re-
placed by a semiconductor slab which suddenly changes its
conductivity due to illumination with short laser pulses [6].
Unfortunately, the unavoidable losses in the semiconductor
could put the viability of this proposal in jeopardy [7]. Yet
another alternative that has been advanced [8] amounts to
considering an array of nanoresonators, moving coherently
at frequencies in the GHz range. The detection of the
created photons could, in this case, be performed using
an inverted population of Rydberg atoms.

From the theoretical point of view, the DCE has been
analyzed for a variety of geometries and using many differ-
ent theoretical tools. A particularly interesting functional
approach has been proposed by Golestanian and Kardar
[9]. They introduce auxiliary fields in the functional inte-
gral for the quantum field, whose role is to impose the

boundary conditions on the mirrors. This method has been
successfully applied, for example, to the calculation of the
Euclidean effective action for one and two (slightly de-
formed) moving mirrors in d! 1 dimensions [10], deriv-
ing also the effective equation of motion for the mirror by
analytic continuation of the Euclidean effective action.

In view of the possibility of detecting the DCE using
nanoresonators [8], it is of interest to extend this formalism
in several directions. On the one hand, it is important to
generalize the method, in order to be able to consider
dispersive mirrors, rather than just perfectly conducting
ones. On the other hand, since the nanoresonators could
eventually show quantum behavior [11], it is worthwhile to
consider their quantum to classical transition, and to de-
scribe their effective dynamics in terms of a semiclassical
Langevin equation. This paper is a step in that direction
[12].

Besides, to exhibit the quite general nature of the phe-
nomenon, it is also interesting to extend the formalism to
consider mirrors coupled to different fields, like the case of
a moving wall that imposes bag conditions on a Dirac field.
In this article, we first show how to generalize the func-
tional approach of [9], to calculate the Euclidean effective
action for moving dispersive mirrors coupled to real scalar
and then to Dirac fields. We also show how the case of a
relativistic mirror also fits in the formalism, by performing
minor modifications. We then compute the Schwinger-
Keldysh or closed time path (CTP) effective action for a
mirror coupled to a scalar field. More realistic situations (a
cavity with two no-flat mirrors coupled to the electromag-
netic field) will be considered in a forthcoming publication.

This article is organized as follows: in Sec. II, we use a
path-integral approach to evaluate the Euclidean effective
action for a single, perfect or imperfect, nonrelativistic
moving mirror in 1! 1 dimensions, both for the real scalar
and Dirac field cases. By ‘‘perfect mirror’’ we mean one
that imposes Dirichlet boundary conditions, when coupled
to a scalar field, or bag conditions in the Dirac field case. In
both cases, the boundary conditions due to the perfect
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Quantum dissipative effects in moving imperfect mirrors: Sidewise and normal motions
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We extend our previous work on the functional approach to the dynamical Casimir effect, to compute

dissipative effects due to the relative motion of two flat, parallel, imperfect mirrors in vacuum. The

interaction between the internal degrees of freedom of the mirrors and the vacuum field is modeled with a

nonlocal term in the vacuum field action. We consider two different situations: either the motion is

‘‘normal,’’ i.e., the mirrors advance or recede changing the distance aðtÞ between them; or it is ‘‘parallel,’’

namely, a remains constant, but there is a relative sliding motion of the mirrors’ planes. For the latter, we

show explicitly that there is a nonvanishing frictional force, even for a constant shifting speed.
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I. INTRODUCTION

Interesting manifestations of the vacuum electromag-
netic field fluctuations may arise when a neutral body
(‘‘mirror’’) is subjected to the influence of certain time-
dependent external conditions. A nice particular example
of this kind of phenomenon occurs when those varying
conditions amount to amotion of the body. When this body
is an accelerated mirror, this is the celebrated dynamical
Casimir effect (DCE), or ‘‘motion induced radiation,’’
whereby real photons are created out of the vacuum. As
with any radiation phenomenon, it can be described from at
least two points of view: for the external agent driving the
body, this process is perceived as the cause of a dissipative
force (which reacts against the change in the external
conditions), while, on the other hand, an observer measur-
ing electromagnetic field properties detects creation of real
photons out of the vacuum.

Under the currently accessible experimental conditions,
both the dissipative force and the number of photons that
may be created by a single accelerated mirror are decep-
tively small. The main reason is that (for an oscillatory
motion) it would be necessary to attain prohibitively high
mechanical frequencies for the effect to be detected. There
are, however, some experimental setups where the effect
may be purposely enhanced; for example, when a moving
mirror is part of an electromagnetic cavity, the mechanical
oscillations of the mirror may resonate with the corre-
sponding normal cavity modes. In that case, parametric
amplification produces an exponential growth in the num-
ber of emitted photons, at least for the idealized case of
‘‘perfect’’ mirrors, namely, ones that behave as ideal con-
ductors. For this kind of configuration, the estimated effect
is much closer to experimental verification and there are,

indeed, several ongoing experiments with that goal in
mind.
On the other hand, some alternative proposals invoke the

use of time-dependent changes in the electromagnetic prop-
erties of the body, wherebymechanical motion is altogether
avoided. For general reviews of these, and other aspects of
the dynamical Casimir effect, see, for example [1].
An interesting particular case of motion induced effects

is the so-called ‘‘quantum friction,’’ also due to the vacuum
electromagnetic fluctuations, where the theory predicts the
appearance of noncontact frictional forces between neutral
bodies in relative sidewise motion. This effect can be
understood in terms of the interchange of virtual photons
between the bodies, that then produce excitations of their
internal degrees of freedom. This quantum friction has
been analyzed [2] (and debated [3]) at length, mainly for
the case of half-spaces shifting with constant velocity (see
also the references in [4], where two atoms on parallel
trajectories, or an atom moving on a half-space are con-
sidered as a first approach to the more general situation of
emission of light from sheared dielectric surfaces).
Therefore, dissipative effects on moving bodies may not

only be produced by the excitation of real photons out of
the quantum vacuum, but also of the mirror’s internal
degrees of freedom, by the mediation of the vacuum field
(in this case by virtual photons). Note, however, that there
is another source of quantum dissipation, independent
of the coupling to the electromagnetic field, which is the
excitation of the internal degrees of freedom due to
‘‘fictitious,’’ inertial forces [5] in an accelerated system.
In a previous paper [6] we used a functional approach to

study the DCE for a single zero-width mirror, in a model
where the interaction between the internal degrees of
freedom and the vacuum field was described by a local
!-potential term in the vacuum field action, which had
support on the (time-dependent) mirror’s position. Al-
though sufficient to explain the production of real photons
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We study quantum dissipative effects due to the accelerated motion of a single, imperfect, zero-width

mirror. It is assumed that the microscopic degrees of freedom on the mirror are confined to it, like in

plasma or graphene sheets. Therefore, the mirror is described by a vacuum polarization tensor !!"

concentrated on a time-dependent surface. Under certain assumptions about the microscopic model for the

mirror, we obtain a rather general expression for the Euclidean effective action, a functional of the time-

dependent mirror’s position, in terms of two invariants that characterize the tensor !!". The final result

can be written in terms of the TE and TM reflection coefficients of the mirror, with qualitatively different

contributions coming from them. We apply that general expression to derive the imaginary part of the

‘‘in-out’’ effective action, which measures dissipative effects induced by the mirror’s motion, in different

models, in particular for an accelerated graphene sheet.
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I. INTRODUCTION

One of the most remarkable manifestations of the
quantum nature of the electromagnetic (EM) field is the
so-called ‘‘motion induced radiation’’ or ‘‘dynamical
Casimir effect’’ (DCE), whereby the accelerated motion
of a mirror can make the EM field vacuum to evolve to an
excited state, namely, one containing a nonvanishing num-
ber of photons [1].

Predictions about potentially observable DCE phe-
nomena have been obtained for a variety of geometries
and systems, and by means of quite different theoretical
tools [2]. In this paper we concentrate on the calculation of
the DCE for the case of ‘‘imperfect mirrors,’’ by which we
mean those that do not necessarily impose perfect conduc-
tor boundary conditions.

To conduct this study, we shall follow our previous work
for scalar and spinorial vacuum fields [3,4] in which we
used the particularly convenient functional approach pro-
posed in Ref. [5]. This approach is based on the introduc-
tion of auxiliary fields inside the functional integral for the
vacuum field, whose role is to impose the proper boundary
conditions for the scalar field on each mirror. We shall
here use an adapted version of the method, designed to deal
with the case of imperfect mirrors, in the presence of the
quantum EM field.

In a recent work [6], the DCE for imperfect mirrors has
been analyzed using a scattering approach, for the case of a
quantum scalar field. Here, instead, we will consider the
EM case, and for mirrors that can be described by means of
their vacuum polarization tensors (VPT), which in turn are
assumed to come from the integration of charged micro-
scopic degrees of freedom constrained to them. Our results
are therefore applicable, for instance, to plasma and
graphene sheets.

Formally, we will compute the Euclidean effective ac-
tion, and use analytic continuation to obtain the imaginary
part of the real-time ‘‘in-out’’ effective action. The latter is
proportional to the probability of vacuum decay, an effect
due to the mirror’s acceleration.
The paper is organized as follows: in Sec. II, we describe

the kind of system that we shall consider, and define the
corresponding effective action, within the framework of a
perturbative expansion in powers of the departure of the
mirror from its equilibrium position (a planar, static con-
figuration). We obtain a general expression for the effective
action at the second order in that expansion, in terms of two
scalar functions which entirely define the response func-
tions of the mirror. Moreover, up to this order, the result
can be written as an integral that involves the transverse
electric (TE) and transverse magnetic (TM) reflection
coefficients of the mirror.
In Sec. III we evaluate the Euclidean effective action

for different examples, discarding terms that do not con-
tribute to the imaginary part of the vacuum energy (i.e., to
the vacuum decay probability) when rotated back to
Minkowski spacetime. The examples considered are dis-
tinguished by the different choices for the mirror’s VPT.
We consider, in particular, the VPT corresponding to a
graphene sheet described by massless fermions.
We present our conclusions in Sec. IV.

II. THE MODEL AND ITS EUCLIDEAN
EFFECTIVE ACTION

A. The model

We shall begin by defining here the characteristics of the
system and its geometry, as well as the conventions and
approximations adopted to describe it.
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We study the Casimir friction due to the relative, uniform, lateral motion of two parallel semitransparent
mirrors coupled to a vacuum real scalar field ϕ. We follow a functional approach, whereby nonlocal terms
in the action for ϕ, concentrated on the mirrors’ loci, appear after functional integration of the microscopic
degrees of freedom. This action for ϕ, which incorporates the relevant properties of the mirrors, is then used
as the starting point for two complementary evaluations: Firstly, we calculate the in-out effective action for
the system, which develops an imaginary part, hence a nonvanishing probability for the decay (because of
friction) of the initial vacuum state. Secondly, we evaluate another observable: the vacuum expectation
value of the frictional force, using the in-in or closed time path formalism. Explicit results are presented for
zero-width mirrors and half-spaces, in a model where the microscopic degrees of freedom at the mirrors are
a set of identical quantum harmonic oscillators, linearly coupled to ϕ.
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I. INTRODUCTION

The quantum nature of microscopic systems may, under
some special circumstances, manifest itself in the form of
interesting macroscopic effects. On the other hand, one of
the most distinctive features of quantum phenomena are the
vacuum fluctuations, among which one of the most
celebrated examples are the zero-point electromagnetic
field fluctuations. These, however, do not produce any
observable effect in free space. This may change drastically
when nontrivial boundary conditions are imposed on the
electromagnetic field: in the Casimir effect (and related
phenomena), a force appears even between two neutral
macroscopic bodies. Indeed, this effect can be understood
as due to the fact that vacuum fluctuations induce (vacuum)
currents in each object, the interaction between which
results in a macroscopic force [1].
The very same quantum fluctuations may also produce

qualitatively different observable effects in different setups.
One that has received much attention is the existence of a
frictional force when plane mirrors which are not in contact
undergo constant-speed relative parallel motion. At the
classical level, a distribution of electrical charges outside a
dielectric surface induces image charges of the opposite
sign, that produce an attractive force on the external charge
distribution. If the external charges move parallel to the
surface, for lossy media the position of the images does not
coincide with the instantaneous specular reflection, giving
rise to a lateral, frictional force. At the quantum level, in the
case of two flat parallel mirrors separated by vacuum, the

zero-point energy of the electrons on each surface produces
charge fluctuations, that in turn induce image charges on
the other, giving rise to the static Casimir force [1]. When
lossy mirrors are set in relative parallel motion, a frictional
force is generated by the phase lag between the charges and
currents induced by the vacuum fluctuations on each
surface. That phase lag is not present for perfect mirrors
[2,3]. A different situation, which also leads to friction, is
due to the quantum Cerenkov effect between nondispersive
media [4] at a relative speed which surpasses a threshold
determined by the speed of light in the media. In any case,
the effect can be understood in terms of an exchange of
virtual photons between two bodies, which in turn excite
their internal degrees of freedom. This effect has been
analyzed [2] (and debated [3,5]) at length, mainly for the
case of media which fill half-spaces, shifting with constant
velocity. The frictional force between two atoms in relative
constant motion has also been computed, along with the
dissipative force acting on an atom moving parallel to a
plate with constant velocity: in Ref. [6], these geometries
are studied using microscopic simple models for the atoms.
Reference [7] contains a detailed account of the works on
the subject, pointing out some contradictory results in
earlier literature. Note that quantum dissipative effects on
moving bodies may also be due to the excitation of real
photons out of the quantum vacuum, an effect known as the
dynamical Casimir effect (see, for instance, Ref. [8]). The
latter, however, unlike the quantum friction phenomenon,
requires the existence on nonvanishing accelerations.
In this paper, we present a detailed study of quantum

friction between two mirrors which undergo constant
parallel speed relative motion, using functional methods.*mbelfarias@df.uba.ar
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In this work, we consider a particle moving in front of a dielectric plate and study two of the most
relevant effects of the vacuum field fluctuations: the dissipation and the decoherence of the particle’s
internal degrees of freedom. We consider the particle to follow a classical, macroscopically fixed trajectory.
To study the dissipative effects, we calculate the in-out effective action by functionally integrating over the
vacuum field and the microscopic degrees of freedom of both the plate and the particle. This in-out effective
action develops an imaginary part and, hence, a nonvanishing probability for the decay (because of friction)
of the initial vacuum state. We analyze how the dissipation is affected by the relative velocity between the
particle and the plate and the properties of the microscopic degrees of freedom. In order to study the effects
of decoherence over the internal degrees of freedom of the particle, we calculate the closed time path or
Schwinger-Keldysh influence action, by functionally integrating over the vacuum field and the microscopic
degrees of freedom of the plate. We estimate the decoherence time as the time needed by two different
quantum configurations (of the internal degree of freedom of the particle) to be possible to differentiate
from one another. We analyze the way in which the presence of the mirror affects the decoherence and the
possible ways to maximize or reduce its effects.
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I. INTRODUCTION

Over the past few years, increasing attention has been
paid to the interaction between a particle and a (perfect or
imperfect) mirror or any dielectric surface [1–7]. One of the
main interests has been to calculate the frictional force
exerted over the particle by the plate, mediated by the
vacuum field fluctuations. As in the case of the quantum
friction between two plates [8–10], there is still no general
agreement about the nature of this frictional force. These
frictional effects are interesting, macroscopically observ-
able consequences of the quantum nature of microscopic
systems. However, frictional and normal (Casimir) forces
are not the only effects of the vacuum quantum fluctuations.
Any quantum system that interacts with an environment
will suffer the process of decoherence, which is one of the
main ingredients necessary to understand the quantum-
classical transition. The vacuum field is, clearly, an envi-
ronment that cannot be switched off, since any particle
(charged or with a nonvanishing dipole moment) will
unavoidably interact with the electromagnetic field fluctu-
ations. The effects of the electromagnetic field over the
coherence of the quantum state of a particle, and the way in
which this effect is modified by the presence of a
conducting plate, has already been studied for interference
experiments [11,12]. However, in the many studies of the
quantum friction over a moving particle in front of a

dielectric plate, the effects of decoherence have not yet
been taken into consideration. In this work, we will study
the decoherence of the internal degree of freedom of the
particle. The loss of coherence of the particle’s dipolar
moment becomes relevant in any Ramsey interferometry
experiment, where the depolarization of the atom could be
macroscopically observed by means of the Ramsey fringes.
In the case of a Rydberg atom, this phenomenon could be
also observed as a decay of the Raby oscillations [13,14].
In this work, we consider a neutral particle moving in

front of an imperfect mirror. The trajectory of the particle
will be, in this paper, kept as an externally fixed variable.
This accounts for many of the cases of interest, for example,
when the particle is the tip of an atomic force microscope.
When we specify the system, we will have the particle
moving at a constant velocity v, as in the most popular
scenario in the literature [1,2]. We are interested in the
dynamics of the internal degree of freedom of the particle,
that wewill model as a quantum harmonic oscillator, being a
simple model for the particle’s electric dipole, and that will
be coupled in position to the vacuum field.Wewill also use a
simple model for the microscopic degrees of freedom of the
mirror, as we have done in a previous work [15]: a set of
uncoupled harmonic oscillators, each of them also interact-
ing locally with the vacuum field. Even though this is a
simple model, it allows us to calculate some relevant
quantities without much further assumption.
We will study the effects both of friction and of

decoherence over the moving particle, from the perspective*mbelfarias@df.uba.ar
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We study the Casimir friction phenomenon in a system consisting of two flat, infinite, and parallel
graphene sheets, which are coupled to the vacuum electromagnetic (EM) field. Those couplings are
implemented, in the description we use, by means of specific terms in the effective action for the EM field.
They incorporate the distinctive properties of graphene, as well as the relative sliding motion of the sheets.
Based on this description, we evaluate two observables due to the same physical effect: the probability of
vacuum decay and the frictional force. The system exhibits a threshold for frictional effects; namely, they
only exist if the speed of the sliding motion is larger than the Fermi velocity of the charge carriers in
graphene.
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I. INTRODUCTION

Under propitious circumstances, quantum vacuum fluc-
tuations produce macroscopically observable consequences.
Such is the case when a quantum field, and hence its
fluctuations, satisfy nontrivial boundary conditions. One
of the most celebrated physical realizations of this is the
Casimir force between two neutral bodies having nontrivial
EM response functions (which, in some cases, behave as
approximate realizations of idealized boundary conditions).
This effect has been predicted and experimentally measured
for several different geometries [1–6].
Qualitatively different effects, also due to the vacuum

fluctuations, may arise when the bodies are set into motion
or, more generally, when some external agent renders the
boundary condition(s) time dependent. The resulting effect
may involve dissipation and, when the boundary conditions
experiment nonvanishing accelerations, real photons can
be excited out of the quantum vacuum. This embodies the
most frequently considered version of the so called
dynamical Casimir effect (DCE) [7], also known as
“motion-induced radiation”.
Amore startling situation appearswhen a purely quantum,

dissipative, frictional force arises between bodies moving
with constant relative speed. Here, the effect is due to the
quantum degrees of freedom, living on the moving media,
which are excited out of the vacuum, while the EM field is
nevertheless required as a mediator for those fluctuations.
The resulting effect, termed “Casimir friction,” has been
extensively studied and some of the issues involved in its
calculation have spurred some debate [8–11].

We recall that Casimir friction predictions have been
obtained mostly for dielectric materials. In this paper, we
study the same effect, but for two graphene sheets. We
argue that graphene has unusual properties which render its
theoretical study more interesting. Indeed, because of
graphene’s low dimensionality and particular crystalline
structure, its low-energy excitations behave as massless
Dirac fermions (with the Fermi velocity vF playing the
role of light’s speed). This yields an unusual semimetallic
behavior [12], as well as peculiar transport and optical
properties [13–15].
In natural units (which we adopt here) the mass dimen-

sions of the response function of graphene in momentum
space can only be given by the momentum itself. Indeed,
the only other ingredients: vF and the effective electric
charge of the fermions, are dimensionless. And, when a
sheet is moving at a constant speed v, another dimension-
less object, v itself, enters into the game (see below). Thus
the nontrivial dependence of the macroscopic, Casimir
friction observables, will exhibit the remarkable property of
being a function of v and vF, the overall (trivial) dimen-
sions of the respective magnitude being determined purely
by geometry: size and distance between sheets, like in the
static Casimir effect between perfect mirrors.
A somewhat related but different effect, also termed

quantum friction,” has been studied for graphene in
Ref. [16]. Note, however, that in that work the system
consists of a single static graphene sheet over an SiO 2
substrate. The frictional force acts, in this case, on
graphenes charge carriers, which are assumed to have a
constant drift velocity v with respect to the substrate.
In our study below, we start from a consideration of the

microscopic model for two graphene sheets coupled to the
EM field. Those microscopic degrees of freedom corre-
spond to Dirac fields in 2þ 1 dimensions which, in a
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We study quantum dissipative effects that result from the nonrelativistic motion of an atom, coupled to a
quantum real scalar field, in the presence of a static imperfect mirror. Our study consists of two parts: in the
first, we consider accelerated motion in free space, namely, switching off the coupling to the mirror. This
results in motion induced radiation, which we quantify via the vacuum persistence amplitude. In the model
we use, the atom is described by a quantum harmonic oscillator (QHO). We show that its natural frequency
poses a threshold which separates different regimes, involving or not the internal excitation of the oscillator,
with the ulterior emission of a photon. At higher orders in the coupling to the field, pairs of photons may be
created by virtue of the dynamical Casimir effect (DCE). In the second part, we switch on the coupling to
the mirror, which we describe by localized microscopic degrees of freedom. We show that this leads to the
existence of quantum contactless friction as well as to corrections to the free space emission considered
in the first part. The latter are similar to the effect of a dielectric on the spontaneous emission of an excited
atom. We have found that, when the atom is accelerated and close to the plate, it is crucial to take into
account the losses in the dielectric in order to obtain finite results for the vacuum persistence amplitude.
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I. INTRODUCTION

Many interesting physical phenomena arise when quan-
tum systems are subjected to the influence of external
time-dependent conditions. For instance, accelerated neu-
tral objects may radiate photons, even in the absence of
permanent dipole moments. This is the so-called motion
induced radiation or dynamical Casimir effect (DCE) [1].
On the other hand, neutral objects moving sidewise with
constant relative speed may influence each other by a
frictional force proportional to a power of the velocity
(quantum friction) [2].
In this work, we study quantum dissipative effects which

are due to the motion of an atom coupled to a vacuum real
scalar field. We consider the cases of an isolated atom and
an atom in the presence of a (planar) plate. The latter will be
assumed to behave as an “imperfect” mirror regarding the
reflection or transmission properties it manifests, under the
propagation of vacuum-field waves.
Our description of the microscopic degrees of freedom

(d.o.f.) will be similar for both the plane and the atom.

Indeed, in both cases, they will be assumed to be modes
linearly coupled to the vacuum field and to have a
harmonic-oscillator-like action, with an intrinsic frequency
parameter. We assume the plate to be homogeneous, so that
the frequency will be 1, and the same for all the points on
the plate. This is essentially the model considered in [3] in
which we analyzed quantum friction, except that here we
also include a damping parameter to account for losses in
the dielectric. For the pointlike particle, on the other hand,
we use a single harmonic oscillator, with a linear coupling
to the vacuum field. In Ref. [4] thermal corrections were
also considered.
We use a model based on the assumptions above to

derive the vacuum persistence amplitude as a functional of
the trajectory of the particle, for different kinds of motion.
Our goal is to explore the following phenomena: internal
excitation of the atom with emission of a photon, photon
pair creation via the DCE, quantum contactless friction, and
corrections to free emission due to the presence of the
mirror.
Regarding related works, the relevance of the internal

d.o.f. of the plate in the context of optomechanics has been
analyzed and reviewed in Ref. [5]. In Ref. [6], the radiation
produced by an atom moving nonrelativistically in free
space has been studied in detail (see also Ref. [7]). It was
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Thermal corrections to quantum friction and decoherence:
A closed-time-path approach to atom-surface interaction
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In this paper we study the dissipative effects and decoherence induced on a particle moving at constant
speed in front of a dielectric plate in quantum vacuum, developing a closed-time-path (CTP) integral
formulation in order to account for the corrections to these phenomena generated by finite temperatures.
We compute the frictional force of the moving particle and find that it contains two different contributions:
a pure quantum term due to quantum fluctuations (even present at vanishing temperatures) and a
temperature-dependent component generated by thermal fluctuations (the bigger the contribution, the
higher the temperature). We further estimate the decoherence timescale for the internal degree of freedom
of the quantum particle. As expected, decoherence time is reduced by temperature; however, this feature is
stronger for large velocities and for resonant situations. When the particle approaches relativistic speed,
decoherence time becomes independent of temperature. The finite temperature corrections to the force or
even in the decoherence timescale could be used to track traces of quantum friction through the study of the
velocity dependence since the sole evidence of this dependence provides an indirect testimony of the
existence of a quantum frictional force.
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I. INTRODUCTION

One of the most exciting features of modern quantum
field theory consists of the nontrivial structure of the
vacuum state and the zero-point or vacuum fluctuations
[1]. Among the most remarkable observable consequences
of quantum vacuum fluctuations, we can mention the
Casimir static force between neutral objects that has been
experimentally demonstrated [2–7]. A less celebrated and
renowned phenomenon is the appearance of a dissipative
force when two neutral lossy bodies are placed at a short
distance and set into relative parallel motion at constant
speed [8–15]. This force is known as quantum friction
(QF) and is said to be due to the exchange of Doppler-
shifted virtual photons. However, its prediction has inspired
a lengthy debate on its origin [16,17]. Due to its short range
and small magnitude, precision measurements of quantum
forces are incredibly difficult and the quantum frictional
force has eluded experimental detection so far. A great deal
of effort has been placed lately into trying to find conditions
that would enhance the force, such as considering non-
parallel motion [18], and using promising 2D materials
belonging to the graphene family [19–21]. Even though
many studies have found some situations for which the force
would be increased by several orders of magnitude, its

experimental demonstration is still to come. Lately, some
authors suggested tracking traces of quantum friction
through the dependence upon the velocity of some other
measurable property of the system [22,23].
Frictional and normal Casimir forces are not the only

effects of vacuum quantum fluctuations. For any quantum
system, the influence of the environment plays a role at a
fundamental level: the system’s dynamics can no longer be
described in terms of pure quantum states and unitary
evolution. From a practical point of view, all real systems
interact with an environment to a greater or lesser extent,
which means that we expect their quantum evolution to be
altered by decoherence. In the particular case of vacuum
fluctuations it is important to note that vacuum field is an
environment that cannot be switched off: all matter will
unavoidably interact with the electromagnetic vacuum. In
that fashion, some of us have investigated the possibility of
detecting quantum friction through the decoherence of the
internal degree of freedom of a particle that moves in front of
an imperfect plate [24], finding that velocity-dependent
corrections to the decoherence time can be relevant for
certain choices of the material and the particle’s polar-
izability. Traces of quantum friction in the decoherence
timescale could, under some circumstances, be easier to
detect than the frictional force itself. The loss of coherence of
the particle’s dipolar moment becomes relevant in any
Ramsey interferometry experiment,where the depolarization
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Abstract: We study the motion-induced radiation due to the non-relativistic motion of an atom,
coupled to the vacuum electromagnetic field by an electric dipole term, in the presence of a static
graphene plate. After computing the probability of emission for an accelerated atom in empty space,
we evaluate the corrections due to the presence of the plate. We show that the effect of the plate is to
increase the probability of emission when the atom is near the plate and oscillates along a direction
perpendicular to it. On the contrary, for parallel oscillations, there is a suppression. We also evaluate
the quantum friction on an atom moving at constant velocity parallel to the plate. We show that there
is a threshold for quantum friction: friction occurs only when the velocity of the atom is larger than
the Fermi velocity of the electrons in graphene.

Keywords: dynamical Casimir effect; quantum friction; graphene

1. Introduction
Casimir and Casimir–Polder forces are physical manifestations of the vacuum fluctua-

tions of the electromagnetic field which involve, respectively, the interaction between static
bodies and between an atom and a body. The dependence of those effects on the geometry
of the system, as well as on the electromagnetic properties of the material media and
the atom, has been intensively investigated in the last decades, at both zero and nonzero
temperatures [1–3].

Graphene, a single layer of carbon atoms, can be effectively described as a two-
dimensional material. It owes its remarkable physical properties to its planar hexagonal
crystal structure and to the fact that the electronic degrees of freedom can be described, at
low energies, as Dirac fermions: indeed, they satisfy a linear dispersion relation, i.e., they
behave as massless fermions that propagate with the Fermi velocity vF ' 0.003c [4]. This
yields an unusual behavior for the conductivity, as well as peculiar transport and optical
properties [5,6]. These features have understandably raised the interest in the analysis of
the interaction of graphene with the vacuum electromagnetic field fluctuations [7].

In natural units, the response function of graphene is determined by two dimensionless
quantities, vF, and the fine structure constant. Therefore, in the simplest configuration
of two planar graphene sheets separated by a distance d at zero temperature, simple
dimensional analysis implies that the static Casimir force has the same distance dependence
as for perfect conductors; namely, it is proportional to 1/d4 (the force is weaker than
for ideal conductors). However, new interesting effects appear at finite temperature [8].
Besides, the phenomenology becomes richer when considering more realistic descriptions
for graphene, for example by including a gap in the dispersion relation or a non-vanishing
chemical potential [9,10].

From a theoretical standpoint, the system is often amenable to a full ab-initio de-
scription in the context of a continuum quantum field theory, treating the microscopic
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EXPERIMENTAL PROPOSAL

12cm diameter Au-coated Si disks   
rotated up to Ω = 2π7000 rad/s.

Our feasible experimental setup would be 
based on the use of a single NV center in 
diamond as an effective two-level system 
at the tip of a modified AFM tip. 
The distance can be controlled from a few 
nanometers to tenths of nanometers with 
sub-nanometer resolution. The NV system 
presents itself as an excellent tool for 
studying geometric phases 

M.B. Farías, F.C.L,  A.Soba, P.I. Villar & R.S. Decca; npj Quantum 
Information (2020) 25 

Non-inertial effects can be completely 
neglected in order to  model a particle 
moving at a constant speed on the 
material sheet. Since it is critical to keep 
the separation uniform, to prevent 
spurious decoherence, it is important to 
asses the plausibility of the proposed 
experimental setup.



EXPERIMENTAL PROPOSAL

12cm diameter Au-coated Si disks   
rotated up to Ω = 2π7000 rad/s.

Our feasible experimental setup would be 
based on the use of a single NV center in 
diamond as an effective two-level system 
at the tip of a modified AFM tip. 
The distance can be controlled from a few 
nanometers to tenths of nanometers with 
sub-nanometer resolution
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S t a t e - o f - t h e - a r t p h a s e - d e t e c t i o n 
experiments in NV centers in diamond 
permit the detection of ∼ 50 mrad phase 
change over 10^6 repetitions 



I n t h e p r o p o s e d 
experimental setup, the 
sample is constituted by a 
Si disk laminated in metal 
(we propose to use Au or 
n-doped Si coating). The 
coated Si disk is mounted 
on a turntable.

Parameters of the 
Drude-Lorentz model  
Au  
ωpl = 1.37 10^16rad/s 
Γ/ωpl ∼ 0.05 
n-Si 
ωpl = 3.5 10^14 rad/s 
Γ/ωpl ∼ 1 

EXPERIMENTAL PROPOSAL
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●We have further obtained an analytical y numerical expression for 
the decoherence time  

●Both the net effect of the environment on the particle and the 
velocity-dependent effect are strongly dependent on the material 
parameters and the atom level spacing, allowing as to amplify or 
weaken the magnitude by a sensible choice 

●A link between decoherence time and quantum friction can be 
established since non contact quantum friction seems to enhance 
the decoherence on the moving atom. Measuring decoherence 
time one can indirectly demonstrate the existence of quantum 
friction 

●We have found a scenario to indirectly detect QF by measuring the 
the corrections on the Geometric phase induced by decoherence 
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