Dynamical Casimir effects with atoms:

 from the emission of photon pairs to a quantum Sagnac phasePaulo A. Maia Neto

Emerging Regimes and Implications of Quantum and Thermal Fluctuational Electrodynamics - KITP, July 2022

Current team

UFRJ

Guilherme Matos (graduate student)
François Impens

UFF

Reynaldo de Melo e Souza (former PhD)

Previous collaboration

UFRJ - Macaé

Claudio Ccapa (former postdoc)

Northern Arizona University
Ryan Behunin (then at LANL)

Outline

Microscopic Dynamical Casimir Effect
Geometric and non-local Casimir atomic phases

- Quantum Sagnac Effect

Microscopic dynamical Casimir Effect

Atomic origin of the DCE?

consider an atom in a potential well, frequency ω_{cm}
Microscopic dynamical Casimir effect

Internal degrees of freedom are quantum and define energy levels

collection of atoms, spatio-temporal modulations: Dalvit \& Kort-Kamp 2021

Angular spectra: comparison with material surface Melo e Souza, Impens \& MN 2018
(a) $\mathrm{TE} 90^{\circ}$

(b) $\mathrm{TM} 90^{\circ}$

(c) $\mathrm{TE} 90^{\circ}$

(d) TM

atom+surface: Belen-Farias et al 2019; Fosco, Lombardo \& Mazzitelli 2021

Two-level atom:

set in prescribed harmonic motion:

$$
\mathbf{r}(t)=\mathbf{a} \cos \left(\omega_{\mathrm{cm}} t\right)
$$

Classical treatment of the center-of-mass atomic position

Atom initially in ground state

Microscopic dynamical Casimir effect: model

Oscillating two-level atom

$$
\omega_{\mathrm{cm}}>\omega_{0}
$$

Two regimes

Related problem: molecule moving on top of a grating

Volume 88, number $5 \quad$ physical review letters $\quad 4$ February 2002
Coherent Radiation from Neutral Molecules Moving above a Grating Alexey Belyanin,* Vitaly Kocharovsky, and Vladimir Kocharovsky

Federico Capasso ${ }^{*}$

2
manal

Microscopic dynamical Casimir effect: model

Dipole interaction for an atom at rest:

$$
\hat{V}(\mathbf{r}(t))=-\hat{\mathbf{d}} \cdot \hat{\mathbf{E}}(\mathbf{r}(t))
$$

Average atomic position
Electric field operator

$$
\mathbf{r}(t)=\langle\hat{\mathbf{r}}\rangle(t)
$$

External velocity

$$
\mathbf{v}(t)=\frac{d \mathbf{r}(t)}{d t}
$$

Dipolar interaction for a moving atom:

$$
\hat{V}_{R}(\mathbf{r}(t))=\hat{V}(\mathbf{r}(t))-\hat{\mathbf{d}} \cdot \mathbf{v}(t) \times \hat{\mathbf{B}}(\mathbf{r}(t))
$$

Microscopic dynamical Casimir effect: model

Initial quantum state: $|\Psi(0)\rangle=|g\rangle \otimes|0\rangle$

Use 2nd-order perturbation with

How to describe the MDCE photon pair production?

$$
\begin{aligned}
& \hat{V}_{R}(\mathbf{r}(t))=-\hat{\mathbf{d}} \cdot(\hat{E}(\mathbf{r}(t)+\mathbf{v}(t) \times \hat{\mathbf{B}}(\mathbf{r}(t)) \\
& \text { Dalvit \& Kort-Kamp } 2021
\end{aligned}
$$

Use 1st order perturbation with an effective field Hamiltonian [Passante, Power, Thirunamachandran, 1998]

$$
\begin{aligned}
& \hat{H}_{\mathrm{eff}}(\mathbf{r}(t))=-\frac{\alpha(0)}{2} \hat{E}^{\prime}(\mathbf{r}(t))^{2} \\
& \hat{\mathbf{E}}^{\prime}(\mathbf{r}(t))=\hat{\mathbf{E}}(\mathbf{r}(t))+\frac{\mathbf{v}(t)}{c} \times \hat{\mathbf{B}}(\mathbf{r}(t)) \\
& \text { ground state polarizability } \alpha\left(\omega_{\mathbf{k}}\right) \simeq \alpha(0)
\end{aligned}
$$

Microscopic dynamical Casimir effect: model

$$
\begin{aligned}
& \hat{H}_{\mathrm{eff}}(\mathbf{r}(t))=-\frac{\alpha(0)}{2} \hat{E}^{\prime}(\mathbf{r}(t))^{2} \\
& \hat{\mathbf{E}}^{\prime}(\mathbf{r}(t))=\hat{\mathbf{E}}(\mathbf{r}(t))+\frac{\mathbf{v}(t)}{c} \times \hat{\mathbf{B}}(\mathbf{r}(t))
\end{aligned}
$$

Quadratic in the field operators \Longrightarrow creation of photon pairs
Field state (first-order perturbation):

$$
|\psi(t)\rangle=|0\rangle+\sum_{\mathbf{k}_{1} \lambda_{1} \mathbf{k}_{2} \lambda_{2}} c_{\mathbf{k}_{1} \lambda_{1} \mathbf{k}_{2} \lambda_{2}}(t)\left|1_{\mathbf{k}_{1} \lambda_{1}} 1_{\mathbf{k}_{2} \lambda_{2}}\right\rangle
$$

Time-dependent perturbation theory/Fermi golden rule

$$
\omega_{\mathrm{cm}}=\omega_{1}+\omega_{2}
$$

Microscopic dynamical Casimir effect: model

Probability of emission obtained from $\left.\left|\left\langle 1_{\mathbf{k}_{1} \lambda_{1}} 1_{\mathbf{k}_{\mathbf{2}} \lambda_{2}}\right| \hat{H}_{\mathrm{eff}}(\mathbf{r}(t), t)\right| 0\right\rangle\left.\right|^{2}$ Probability to detect a photon along a given direction/polarization: sum over all possible idle photons!

Transverse Electric (TE)
Transverse Magnetic (TM)

Oscillation along \mathbf{n}

Oscillation along \mathbf{n}

Reference plane defined by the vectors (\mathbf{k}, \mathbf{n})

Microscopic dynamical Casimir effect

Microscopic vs Macroscopic Dynamical Casimir Effect

Sum contribution from a macroscopic collection of atoms:
Constructive interference condition for a quasi continuous array of atoms with identical oscillations:

$$
\left(\mathbf{k}_{1}-\mathbf{k}_{2}\right) \times \mathbf{n}=0
$$

Only 2-photon modes that fulfill this condition of transverse momentum conservation contribute significantly.

We "impose" this condition to compare the prediction of our microscopic model with macroscopic results.

Microscopic dynamical Casimir effect

Angular spectra of atom/mirror:

(b) TM

Microscopic DCE
R. M. Souza, F Impens, PAMN, Phys Rev. A (2018).

D Dalvit, W Kort-Kamp, Universe (2021).

Macroscopic DCE

PAMN, L. Machado, Phys Rev. A (1996).
(d) $\mathrm{TM} 90^{\circ}$

$$
\omega=0.3 \omega_{\mathrm{cm}}, 0.5 \omega_{\mathrm{cm}}, 0.7 \omega_{\mathrm{cm}}
$$

Total photon emission rate

$$
\begin{aligned}
& \alpha(0)=4 \pi \epsilon_{0} a^{3} \quad v_{\max }=\omega_{\mathrm{cm}} r_{\max } \\
& \frac{d N}{d t}=\frac{23}{5670 \pi}\left(\frac{a}{r_{\max }}\right)^{6}\left(\frac{v_{\max }}{c}\right)^{8} \omega_{\mathrm{cm}}
\end{aligned}
$$

Look for 'dynamical Casimir - like' effects with atom interferometers probing the Casimir-Polder interaction with a surface...

Outline

- Microscopic Dynamical Casimir Effect

Geometric and non-local Casimir atomic phases
© Quantum Sagnac Effect

non-local Casimir atomic phase

Observation of Atom Wave Phase Shifts Induced by Van Der Waals Atom-Surface Interactions

John D. Perreault and Alexander D. Cronin University of Arizona, Tucson, Arizona 85721, USA

In both paths, atom remains in the internal ground state

Atom-Surface interaction

FIG. 3. Interference pattern observed when the grating G_{4} is inserted into path α or β of the atom interferometer. Each interference pattern represents 5 s of data. The intensity error bars are arrived at by assuming Poisson statistics for the number of detected atoms. The dashed line in the plots is a visual aid to help illustrate the measured phase shift of 0.3 rad . Notice how the phase shift induced by placing G_{4} in path α or β has opposite sign. The sign of the phase shift is also consistent with the atom experiencing an attractive potential as it passes through G_{4}.

Casimir atom interferometry in the quasi-static limit

$$
t=0 \quad t=T
$$

Casimir atomic phase in the quasi-static limit

$$
\phi^{\mathrm{qs}}=-\frac{1}{\hbar} \int_{0}^{T} d t U_{\mathrm{vdW}}(\mathbf{r}(t))
$$

Dispersive potential
 (e.g. van der Waals potential)

John D. Perreault and Alexander D. Cronin, PRL 95, 133201 (2005); S. Lepoutre et al., EPL 88, 20002 (2009); S. Lepoutre et al. , EPJD 62, 309 (2011)

non-local Casimir atomic phase

Quasi-static Casimir phase: $\quad \phi^{\mathrm{qs}}=-\frac{1}{\hbar} \int_{0}^{T} d t U_{\mathrm{vdW}}(\mathbf{r}(t))$
Full Casimir phase (including atomic motion): $\phi=-\frac{1}{\hbar} \int_{0}^{T} d t \bar{U}_{\mathrm{vdW}}(\mathbf{r}(t))$
Coarse-Grained Potential: $\quad \bar{U}_{\mathrm{vdW}}(\mathbf{r}(t))=\frac{1}{\tau(t)} \int_{t}^{t+\tau(t)} d t^{\prime} U_{\mathrm{vdW}}\left(\mathbf{r}\left(t^{\prime}\right)\right)$
$\tau(t)$ Virtual photon exchange duration

All atomic positions during the photon exchange taken into account!

Local Dynamical Casimir-like phase:

$$
\phi^{\mathrm{mot}}=-\frac{1}{\hbar} \int_{0}^{T} d t\left(\bar{U}_{\mathrm{vdW}}(\mathbf{r}(t))-U_{\mathrm{vdW}}(\mathbf{r}(t))\right)
$$

$$
\left(\mathbf{r}_{k}(t), t\right)
$$

non-local Casimir atomic phase

atom-surface van der Waals interaction:
 fluctuating dipole interacts with its own field, after reflection by surface

 interferometer: self-interaction also with a different wave-packet component

F Impens, R Behunin, C Ccapa-Ttira and PAMN, EPL 2013

non-local Casimir atomic phase

- Atomic phases are normally local
- Phase non-locality emerges as a dynamical-like Casimir effect

non-local Casimir atomic phase

Casimir atomic phases beyond the quasi-static limit

Interaction Hamiltonian: $\hat{V}(\mathbf{r}(t))=-\hat{\mathbf{d}} \cdot \hat{\mathbf{E}}(\hat{\mathbf{r}}(t))$
Dipole operator Electric field operator
Neutral atoms with no permanent dipole: $\langle\hat{\mathbf{d}}\rangle=\langle\hat{V}(\mathbf{r}(t), t)\rangle=0$

Time-ordering operator

$$
\begin{aligned}
& |\Psi\rangle_{t}=\frac{1}{\sqrt{2}}\left(\left|\psi_{1}\right\rangle_{t} \otimes \mathscr{T} \exp \left(-\frac{i}{\hbar} \int_{0}^{t} d t^{\prime} \hat{V}\left(\mathbf{r}_{1}\left(t^{\prime}\right), t^{\prime}\right)\right)\left|\psi_{A}\right\rangle_{0} \otimes\left|\psi_{F}\right\rangle_{C}+\left|\psi_{2}\right\rangle_{t} \otimes \mathscr{T} \exp \left(-\frac{i}{\hbar} \int_{0}^{t} d t^{\prime} \hat{V}\left(\mathbf{r}_{2}\left(t^{\prime}\right), t^{\prime}\right)\right)\left|\psi_{A}\right\rangle_{0} \otimes\left|\psi_{F}\right\rangle_{0}\right) \\
& \left|\psi_{A F}^{(1)}(t)\right\rangle \\
& \left|\psi_{A F}^{(2)}(t)\right\rangle
\end{aligned}
$$

non-local Casimir atomic phase

Reduced density operator for the external degree of freedom $\rho=\operatorname{Tr}_{A F}(|\Psi\rangle\langle\Psi|)$ Coherence multiplied by

$$
e^{i \Delta \phi_{12}}=\left\langle\psi_{A F}^{(2)}(t) \mid \psi_{A F}^{(1)}(t)\right\rangle
$$

$e^{i \Delta \phi_{12}}=\left\langle\psi_{A F}(0)\right| \widetilde{\mathcal{T}} e^{\frac{i}{\hbar} \int_{0}^{t} d t^{\prime} \hat{V}\left(\mathbf{r}_{2}\left(t^{\prime}\right), t^{\prime}\right)} \mathcal{T} e^{-\frac{i}{\hbar} \int_{0}^{t} d t^{\prime} \hat{V}\left(\mathbf{r}_{1}\left(t^{\prime}\right), t^{\prime}\right)}\left|\psi_{A F}(0)\right\rangle$

Anti time-ordering operator
Time-ordering operator

Complex phase $\Delta \phi_{12}$ has a positive imagine part (entaglement with environment/decoherence) Real part of $\Delta \phi_{12}$ is the interferometric phase

non-local Casimir atomic phase

Reduced density operator for the external degree of freedom $\rho=\operatorname{Tr}_{A F}(|\Psi\rangle\langle\Psi|)$
Coherence multiplied by

$$
e^{i \Delta \phi_{12}}=\left\langle\psi_{A F}^{(2)}(t) \mid \psi_{A F}^{(1)}(t)\right\rangle
$$

$e^{i \Delta \phi_{12}}=\left\langle\psi_{A F}(0)\right| \widetilde{\mathcal{T}} e^{\frac{i}{\hbar} \int_{0}^{t} d t^{\prime} \hat{V}\left(\mathbf{r}_{2}\left(t^{\prime}\right), t^{\prime}\right)} \mathcal{T} e^{-\frac{i}{\hbar} \int_{0}^{t} d t^{\prime} \hat{V}\left(\mathbf{r}_{1}\left(t^{\prime}\right), t^{\prime}\right)}\left|\psi_{A F}(0)\right\rangle$

Anti time-ordering operator
Time-ordering operator

Casimir phase obtained by picking up two interactions (2nd-order diagram)

Two possibilities: Pick-up 2 interactions on the same path (->Local Casimir phases)
Pick up 2 interactions on two distinct paths (-> Nonlocal Casimir phases)

non-local Casimir atomic phase

Local Casimir atomic phases

$e^{i \Delta \phi_{12}}=\left\langle\psi_{A F}(0) \left\lvert\, \tilde{\mathcal{T}} e^{\frac{i}{\hbar} \int_{0}^{t} d t^{\prime} \hat{V}\left(\mathbf{r}_{2}\left(t^{\prime}\right), t^{\prime}\right.} \tau e^{-\frac{i}{\hbar} \int_{0}^{t} d t^{\prime} \hat{V}\left(\mathbf{r}_{1}\left(t^{\prime}\right), t^{\prime}\right)} \psi_{A F}(0)\right.\right\rangle$

Local Casimir phases obtained by picking up two interactions on the same path

Contains the standard quasistatic phase reported in several experiments

non-local Casimir atomic phase

$$
e^{i \Delta \phi_{12}}=\left\langle\psi_{A F}(0)\left\langle\mathcal{T} e^{\frac{i}{\hbar} \int_{0}^{t} d t^{\prime} \hat{V}_{R}\left(\mathbf{r}_{2}\left(t^{\prime}\right), t^{\prime}\right.} \bar{T} e^{-\frac{i}{\hbar} \int_{0}^{t} d t^{\prime} \hat{V}_{R}\left(\mathbf{r}_{1}\left(t^{\prime}\right), \eta^{\prime}\right)}\right| \psi_{\mathrm{AF}}(0)\right.
$$

Nonlocal Casimir phases obtained by picking up two interactions on distinct paths

Vanishes in the quasi-static limit (but survives when accounting for

Dynamical Casimir-like effect! the atomic motion)

non-local Casimir atomic phase

$$
\begin{aligned}
\Delta \phi_{12}= & \varphi_{11}-\varphi_{22}+\varphi_{12}-\varphi_{21} \\
& \text { Local phases } \quad \text { Nonlocal phases }
\end{aligned}
$$

$$
\varphi_{k l}=\frac{1}{4} \iint_{-\frac{T}{2}}^{\frac{T}{2}} d t d t^{\prime}\left[g_{\hat{\mathbf{d}}}^{H}\left(t, t^{\prime}\right) \mathcal{G}_{\hat{\mathbf{E}}}^{R, S}\left(\mathbf{r}_{k}(t), t ; \mathbf{r}_{l}\left(t^{\prime}\right), t^{\prime}\right)+g_{\hat{\mathbf{d}}}^{R}\left(t, t^{\prime}\right) \mathcal{G}_{\hat{\mathbf{E}}}^{H, S}\left(\mathbf{r}_{k}(t), t ; \mathbf{r}_{l}\left(t^{\prime}\right), t^{\prime}\right)\right]
$$

Dipole fluctuations

Electric field fluctuations
$\boldsymbol{G}_{\hat{\mathrm{O}} i j}^{R}\left(t, t^{\prime}\right)=\frac{i}{\hbar} \Theta\left(t-t^{\prime}\right)\left\langle\left[\hat{O}_{i}(t), \hat{O}_{j}\left(t^{\prime}\right)\right]\right\rangle \quad$ Retarded Green's functions= susceptibility functions $\boldsymbol{G}_{\hat{\mathbf{O}}}^{i j}{ }_{i j}\left(t, t^{\prime}\right)=\frac{1}{\hbar}\left\langle\left\{\hat{O}_{i}(t), \hat{O}_{j}\left(t^{\prime}\right)\right\}\right\rangle \quad$ Hadamard Green's functions= source of quantum fluctuations

t^{\prime} Retarded time
t Current time

$$
\tau=t-t^{\prime} \text { Duration of the virtual photon exchange }
$$

difference between diagrams arises from the motion normal to the surface

non-local Casimir atomic phase

Two diagrams with the "image method"

Single 2-level atom in a coherent superposition of two wave-packets

Phase invariant under time rescaling $T \rightarrow \lambda T$
Changes sign with reversed propagation: $\mathbf{v}_{1,2} \rightarrow-\mathbf{v}_{1,2} \Rightarrow \phi_{12} \rightarrow-\phi_{12}$ Geometric phase!
FI, R. O. Behunin, Claudio Ccapa Ttira and Paulo A. Maia Neto, EPL, 10160006 (2013); J. Phys B 46245503 (2013);
For a review: FI, R. de Melo e Souza, G. C. Matos, EPL (2022).

Outline

- Microscopic Dynamical Casimir Effect
© Geometric and non-local Casimir atomic phases
B Quantum Sagnac Effect

GHz rotation of optically trapped nanoparticles

nature nanotechnology	LETTERS org/10.1038/s41565-019-0605-9
Ultrasensitive torque detection with an optically levitated nanorotor	
Jonghoon Ahn', Zhuiing Xu', Jaehoon Bang', Peng Ju, Xingyu Gao and Tongcang Lio ${ }^{12334 *}$	
uum. Our syst n. Moreover, we h speed beyond	plex nanofabricarotate at a record). Our calculations

Featured in Physics

GHz Rotation of an Optically Trapped Nanoparticle in Vacuum

René Reimann, Michael Doderer, Erik Hebestreit, Rozenn Diehl, Martin Frimmer, Dominik Windey, Felix Tebbenjohanns, and Lukas Novotny
Phys. Rev. Lett. 121, 033602 - Published 20 July 2018; Erratum Phys. Rev. Lett. 126, 159901 (2021)
Physiç See Focus story: The Fastest Spinners

Sagnac Effect with Light/Atomic Waves

Sagnac effect (1913):

Unified expression for Sagnac Phase for atomic/light waves:

$$
\Delta \boldsymbol{\phi}=\frac{4 \pi}{\lambda v} \boldsymbol{\Omega} \cdot \mathbf{A}
$$

Aplications: Inertial navigation systems in aircrafts

Phase difference between the two interferometers arms proportional to the angular rotation frequency Ω and to the enclosed area

Georges Sagnac (Fonte:Alchetron)

Sagnac Effect for atomic waves:
(Ch. Bordé 1989, Bouyer\&Kasevich 1998) (com ${ }^{87}$ Rb)
$\frac{\Delta \phi_{a t}}{\Delta \phi_{l}}=\frac{\lambda_{l} v_{l}}{\lambda_{a t} v_{a t}}=\frac{m c^{2}}{\hbar \omega} \sim 10^{11}$ Stronger non-inertial effect for atomic waves!

Sagnac Atom Interferometer

Ex: embarked atom interferometer

Sagnac effect in an inertial frame?

Inertial frame and rotating conductor

An alternative point-of-view: an Aharonov-Bohm-like effect Lorentz Force: $\vec{F}=q \vec{v} \times \vec{B}$
Coriolis Force: $\vec{F}=2 m \vec{v} \times \vec{\Omega} \longleftrightarrow \vec{B}_{\text {eff }}=\frac{2 m}{q} \vec{\Omega}$

Rotation of a body in an inertial frame

Trace of the rotation??

Effective magnetic field confined to the body

Quantum Sagnac phase near a spinning particle

Spinning nano-particle

$$
\varphi_{k l}=\frac{1}{4} \iint_{-\frac{T}{2}}^{\frac{T}{2}} d t d t^{\prime}\left[g_{\hat{\mathbf{d}}}^{H}\left(t, t^{\prime}\right) \mathcal{G}_{\hat{\mathbf{E}}}^{R, S}\left(\mathbf{r}_{k}(t), t ; \mathbf{r}_{l}\left(t^{\prime}\right), t^{\prime}\right)+(R \leftrightarrow H)\right]
$$

What are the electric-field Green's function in presence of a spinning body?

Scattered electric field Green's functions

\mathbf{E} at (\mathbf{r}, t),
$\mathbf{d} \operatorname{at}\left(\mathbf{r}^{\prime}, t^{\prime}\right)$

Retarded field Green's function = Response to the dipole excitation

$$
E_{i}(\mathbf{r}, t)=G_{\hat{\mathbf{E}}, i j}^{R}\left(\mathbf{r}, t ; \mathbf{r}^{\prime}, t^{\prime}\right) d_{j}\left(t^{\prime}\right)
$$ Instantaneous dipole excitation

\mathbf{E} at (\mathbf{r}, t)
\mathbf{d} at $\left(\mathbf{r}^{\prime}, t^{\prime}\right)$
Instantaneous dipole excitation

Scattered field Green's function: Object Polarizability tensor

$$
\boldsymbol{G}_{\hat{\mathbf{E}}}^{R, S}\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right)=\boldsymbol{G}^{0}(\mathbf{r}, \mathbf{0}, \omega) \cdot \boldsymbol{\alpha}(\omega) \cdot \boldsymbol{G}_{\boldsymbol{\lambda}}^{0}\left(\mathbf{0}, \mathbf{r}^{\prime}, \omega\right)
$$

Dipole approximation

Free electric field Green functions

Polarizability tensor of a spinning nano-particle?

A. Manjavacas e F. J. García de Abajo, Phys Rev. A 82,063827 (2010).

Rotating spherical nanosphere in the dipole approximation

Dipole response obtained in the sphere frame.
Switch from sphere frame / inertial frame Leading non-relativistic order

Polarizability induced by the rotation:

$$
\alpha_{i j}^{\boldsymbol{\Omega}}(\omega)=i \alpha_{S}^{\prime}(\omega) \epsilon_{i j k} \Omega_{k}
$$

Antisymmetric
Levi-Civitta tensor
$\alpha_{S}(\omega)=$ Polarizability of the sphere at rest
Requires dispersion!

Quantum Sagnac phase

Local Sagnac phase:
G. C. Matos, Reinaldo de Melo e Souza, PAMN, and F Impens,
Phys. Rev. Lett. 127, 270401 (2021).

Local Quantum Sagnac phase in the limit $c \rightarrow+\infty$

$$
\phi_{\mathrm{vdW}, \mathrm{k}}^{\Omega}=\frac{9}{2} \frac{\omega_{0} \alpha_{0}^{\mathrm{A}} \tilde{\alpha}_{S, R}^{\prime \prime}\left(\omega_{0}\right)}{\left(4 \pi \epsilon_{0}\right)^{2}} \int_{\mathcal{P}_{k}} d \mathbf{r} \cdot \frac{\boldsymbol{\Omega} \times \mathbf{r}}{r^{8}}
$$

Real part of the spherical particle polarizability

$$
\tilde{\alpha}_{S, R}(\omega)=\operatorname{Re}\left[\alpha_{S}(\omega)\right]
$$

$\alpha_{0}^{A}=$ static atomic polarizability

Quantum Sagnac phase for specific atom-interferometer geometries

Circular trajectories

Linear trajectories

Local Quantum Sagnac phase difference: Local Quantum Sagnac phase:

$$
\Delta \phi_{\{r=R\}}^{\Omega}=9 \pi \ell_{\Omega}^{6} / R^{6}
$$

Only local phase contributions.

$$
\ell_{\Omega}=\left(\frac{\omega_{0} \alpha_{0} \alpha_{R}^{\prime \prime}\left(\omega_{0}\right) \Omega}{\left(4 \pi \epsilon_{0}\right)^{2}}\right)^{1 / 6}
$$

$$
\phi_{\left\{y=y_{0},-\infty \leq x \leq+\infty, z=0\right\}}^{\Omega}=\frac{45 \pi \ell_{\Omega}^{6}}{32\left|y_{0}\right|^{5} y_{0}}
$$

Non-local Quantum Sagnac phase shift! Total quantum Sagnac phase difference:

$$
\Delta \phi_{12}^{\Omega}=\frac{{ }^{66} \pi \ell_{\Omega}^{6} \operatorname{sgn}\left(y_{0}\right)}{32 y_{0}^{6}}
$$

Enhancement of the Quantum Sagnac phase with plasmon resonance

Goal: Choose atom/nano-particle to maximize second polarizability derivative $\tilde{\alpha}_{S, R}^{\prime \prime}(\omega)$ at the 2-level atom frequency ω_{0}

Quantum plasmon resonances of individual met: nanoparticles
$\underline{\text { Jonathan A. Scholl }} \square$, Ai Leen Koh $\& \underline{\text { Jennifer A. Dionne }} \boxtimes$
Nature 483, 421-427 (2012) | Cite this article
Enhancement with plasmon resonance
$\tilde{\alpha}(\omega)=\left(4 \pi \epsilon_{0}\right) a^{3} \frac{\epsilon(\omega)-1}{\epsilon(\omega)+2}$
Plasmon resonance at the frequency
$\epsilon\left(\omega_{\mathrm{res}}\right)=-2$
Considered example for numerical applications:
Na atom ($3 s_{1 / 2}-3 p_{3 / 2}$)/ K nano-sphere
$\omega_{0}=3.198 \times 10^{15} \mathrm{rad} / \mathrm{s}$

Estimation of the Quantum Sagnac phase in an atom-Interferometer

Atomic wave-packets of finite width
Total phase = quasi-static van der Walls

+ quantum Sagnac phase

$$
\phi(\Omega, x, z, v)=\phi^{\operatorname{vdW}}(x, z, v)+\phi^{\Omega}(x, z)
$$

Accessible quantum Signac phase

$$
\bar{\phi}^{\Omega}(\Omega, v) \equiv \bar{\phi}(\Omega, v)-\bar{\phi}(0, v)
$$

averaging over wave-packet width (as in Alexander D. Cronin and John D. Perreault, Phys. Rev. A 70, 043607 (2004))
Considered parameters:
$\Omega=2 \pi \times 5 \mathrm{GHz}$ (obtained in J. An et al., Nat. Nanotechnol. 15, 89 (2020).)

 Nanosphere radius $a=30-50 \mathrm{~nm}$ Atomic beam of width $w=10-100 \mathrm{~nm}$

Na atoms
K nanoparticle
$(\Omega, v) \simeq 0.1 \mathrm{mrad}$ Atomic velocities $v=1-5 \mathrm{~km} / \mathrm{s}$

Funding:

© FAPERJ
© Pronex - FAPEMIG
© INCT/FAPESP - Complex Fluids
© PICS, Convergence International (France)
© CNPq, CAPES: PROBRAL (DAAD-
Germany)
© KITP - UCSB
Thank you!

Quantum Sagnac phase near a spinning particle

Closed Atom Interferometer: $\quad \phi_{1}^{\Omega}-\phi_{2}^{\Omega}=\frac{1}{\hbar} \oint d \mathbf{r} \cdot \overrightarrow{\mathcal{A}}(\mathbf{r})$
Effective potential vector: $\mathcal{A}(\mathbf{r})=\frac{9}{2} \frac{\hbar \omega_{0} \alpha_{0}^{\mathrm{A}} \tilde{\alpha}_{S, R}^{\prime \prime}\left(\omega_{0}\right)}{\left(4 \pi \epsilon_{0}\right)^{2}} \frac{\boldsymbol{\Omega} \times \mathbf{r}}{r^{8}}$ Analogy with Aharonov-Bohm
Effective "geometric" magnetic field: $\mathcal{B}(\mathbf{r})=\nabla \times \mathcal{A}(\mathbf{r})=\frac{-27 l_{\Omega}^{6}}{r^{8}} \frac{\Omega}{\Omega}$
Length scale $\quad \ell_{\Omega}=\left(\frac{\omega_{0} \alpha_{0} \alpha_{R}^{\prime \prime}\left(\omega_{0}\right) \Omega}{\left(4 \pi \epsilon_{0}\right)^{2}}\right)^{1 / 6}$
Alternative derivations of QSP:

- From a Berry connection \longrightarrow Quantum Sagnac phase $==$ Berry phase
- From an instantaneous dipole/dipole potential (in the limit $c \rightarrow+\infty$)

F Impens, R. de Melo e Souza, G. C. Maros, PAMN, EPL (2022).

