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Introduction

Vacuum excitation due to time
dependent external conditions

Accelerated neutral objects
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DISSIPATIVE FORCES
PHOTON CREATION

Variation of electromagnetic properties of

the media (conductivity, permittivity, etc)
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Mirrors
OLD RESULTS FOR MOVING MIRRORS

Simplest case: massless scalar field in 1+1 D

Dirichlet boundary conditions
L(t) _
L = — / dx (GQ — Crm) G ((1,0) = (1, L(t)) =0
2 Jo

Static equidistant spectrum



Mirrors
OLD RESULTS FOR MOVING MIRRORS

Simplest case: massless scalar field in 1+1 D

I lf[’m o (52 B Ofﬁ) @ Dirichlet boundary conditions
’ o(t,0) = o(t, L(t)) = 0

\ o(t,x) = Z qn(t) sin (”m' )4— Static equidistant spectrum

L(t)

Instantaneous basis (useful for
intermediate calculations, no
intention to define N(t)!)

Set of coupled harmonic oscillators



SECULAR EFFECTS

external frequency = eigenfrequency

Equidistant spectrum

All modes are coupled

The number of particles created
grows quadratically with t.

Total energy in the cavity grows exponentially (Dodonov & Klimov 1996)



More general boundary conditions

Massive case # Non-equidistant spectrum

v

Possibility of parametric
resonance for a single
mode (or a few modes)

\/

Exponential growth

Cavities in 3+1 dimensions

Crocce, Dalvit & Mazzitelli, 1999, 2000. Numerics: P. Villar & A. Soba, PRE 2017



Very difficult to
observe...

Rate of photon production

by a single oscillating mirror
in vacuum

1G.T. Moore, J. Math. Phys. 11, 2679 (1970)
2A. Lambrecht, M.T. Jaekel and S. Reynaud, Phys.
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Single-mirror setups
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Rev. Lett.77, 615 (1996)
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For cavities the situation is
better due to parametric
resonace... but still

difficult

* In order to produce 5 GHz
photons, we need mechanical
oscillations with T0GHz

e Actual limit;: 6GHz

N =" pn=0(1)

AT € ,
N maxr = € @ < €

Mirrors

1078Q



One EM mode

Ifrit) =aLSinQ1t , a<<1, Q=20w,

Parametric resonance :
<0l N, I0> = Sinh?(aw, t/2) Photon generation o
More modes: infinite harmonic oscillators e a0 oo se dow oo O

Resonance conditions:

* Q=2 w, photon pair creation in mode k
* Q= w, + W pair creation in modes k and |

* Q = lw,— wl scattering between modes j and k

P I Villar, A. Soba, Phys. Rev. E 96, 013307 (2017)



“interference” effects in
the particle creation rate

-— — -—

“breathing” mode “shaker” mode

2 moving mirrors mmp

Mainly studied for Dirichlet fields in 1+1

Dalvit & Mazzitelli (1999) - Villar, Soba & Lombardo (fully numerical approach (2017)
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Secular behaviour for integer

«" values of g
qrt\ ) shaker mode, g=3 (compared with 1
L(t) = €Ay sin ( \ ) =0+ e L(1) mirror oscilation)

i i} ]
UL o) = A+ ¢eR(t) | Perturbation theory doesn’t work

R(t) = A —€Agsin(¢) + eAgsin ( \

when a or b do not vanish
Method: conformal transformation

€T A .411 . .
=3z [a “’S(O)] - Moore equation 2 RG improved
b= f\j%(mﬂ sin(). solution

Dalvit & Mazzitelli (1999) — Villar, Soba & Lombardo (2017)



The rate of particle creation depends
strongly on the relation among the
amplitudes, the frequency, and the
phase difference in the mirrors’
oscillations.

In some cases constructive interference
leads to exponential growth of particles
inside the cavity, while for other relations
there exists destructive interference with
no vacuum radiation.

Dalvit & Mazzitelli PARA (1999) — Villar, Soba & Lombardo PRA (2017)



EXPERIMENTAL VERIFICATION OF DCE (2011)

By applying a time-
dependent magnetic
flux through the
SQUID we get a
time-dependent
inductance, which in

d5,, coplanar waveguide
_)

turn produces a time- LO Effective
dependent boundary (D) S mirror
condition for the field C

) X Transmission line
in the waveguide

photon-flux density no"*

1 -
€r = 0 :\l
——
Lot
Modulated
inductance of
4J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori, Phys. Rev. Lett. 103, 147003 (2009) SQUID at high
5G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing, Nature 479, frequencies (>

376 (2011) 10 GHz)
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DIFFERENT EXPERIMENTAL REALIZATIONS OF DCE
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J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori, Phys. Rev. A 82, 052509

(2010).



MORE RECENT EXPERIMENTAL RESULTS

(doubly tunable resonator)

Particle creation with simultaneous excitation of both SQUIDs

Observation of interference effects.
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Figure 3. (a) Photon down-conversion. Measured with a single pump applied to the left flux line at the
bias point (0.3,0.3) ®q. (b) Histogram taken at the point marked with a black circle in (a). We measure
two m-shifted states. (¢) Double-pump measurement, where the phase difference, ¢ between the pump
signals is varied. Here the SQUID bias is (0.2,0.2) &g and the generated radiation for § = —1MHz is

displayed.

Svensson et al 2018



TUNABLE SUPERCONDUCTING CAVITY

Co Superconducting phase field:

h :
Model Lew= (2 ) —[) dx(¢” — v*¢") scalar field in the cavity
2C_] , Cavity. with
— Ejcos f(t)o; | capacitance Cy

and inductance L,

vV = 1/\/ L()C()
T E; and C, Energy and capacitance
Field propagation of the SQUID en x = d
Ve|OCIty (a) (bt [ Pl
I planar waveguid \SQUID B, C
- w{ J [ [ J \’-.?:\T‘\JEJ o
f(@t)= fo+0@)0(tr — t)e sin L2t,
(b) /_ﬂi?ﬁlﬁf
Transmission line H '
photon-flux density n2"* E
R .<:>:
— .

Quantum field in 1+1 dimensions with terms localized on the borders
Wustmann Shumeiko 2013




Model 5" =

h2 ..
E—¢d + 2EJ COS f(t)¢d + EL,canqu] — 0,
C
(a) b(a, ) [ Pexe(t)
Ec = (2¢1/(2Cy) \ |
_4’1)“ coplanar waveguide SQUID EJ,l-C.J.L

EL,C&V — (h/ze)z(]‘/LOd) (wi/_/_l,j — \ﬁEJz,:L/_’

LO Effective

(b) L - mirror

Transmission line

photon-flux density 72"

Unusual boundary conditions <«  localized degrees of freedom



PARTICLE CREATION IN A TUNABLE CAVITY

2e | 2 . _
_ Expansion of the field in terms of
Px.1) h\ Cod Z qn(t) COS Ky X, modes of the static cavity
n

2Ejcos fo  2Cy (ko dY? Equations that define the static

(knd)tank,d = E, o Cod spectrum

BV 8tr — sin )
—e¢ r — 1) sin( fy
EL,caVMn d2 Field equations

X sin §2t cos k,d Z qm(t)cosk,d,

én + Uzk,EQn —

Lombardo, Mazzitelli, Soba & Villar 2016, 2018



QUANTIZATION

Gu(t) = u, (t)a, + u*(t)a),

—ivkt for < 0.

uf;”(t) = e

TH

2vk,,

i () = ™ (1) + B (1),

n n

N, = (0;,1a% Ta®"'10,,) = |Bal*.

Particle number in mode n



SPECTRUM

k,d tan(k,d) + xo(k,d)* = V, cos fo.

3.2

|kj-kild

0 10 20 30 40 50 60 70 80 by = Vycos fo



SPECTRUM: SUMMARY

* The spectrum is determined by the static parameters
of the SQUID

» Parameters can be adjusted to have equidistant or
non-equidistant spectra

* The space of parameters is richer and easier to adjust
compared with the case of mirrors (would involve a
manipulation of their electromagnetic properties)



ANALYTICAL RESULTS: Multiple Scale Analysis

Gn + 0n (g = Y Sum()m

qn(t,7) = An(7)

m=£n

e—lknt

\ 2k,

B,(7)

k? cos® k,d
w,(t) =k, 1 — a— sin Q1
K2 M,

, Cos k,d cos k,,d
k; sin §21
M, M,,
4E
o =
EL,C&Vk%d2

Smn(t) =

€ sin( fp).

elknt
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ANALYTICAL RESULTS: Multiple Scale Analysis

dA, k2 costk,d
= S80S Ml p s — 2k,)
dt k, 2M,

k% cos k,d cos k,,d
+5 2

dB, _ _k% cos? knd A,8(S — 2k,) Resonance conditions
dt k, 2M,
k% cos k,d cos k,,d

QL,R - 2]{7” QL,R - |kn + kj‘

+ A0k, + k,, — 2)}.



NUMERICAL ANALYSIS
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FIG. 3. Log plot for |B,|* as a function of dimensionless time
T (time measured in units of d) for each mode of the field for a
short temporal scale. Herein, we consider ten modes and excite the
system by € = 2k;. The three first eigenfrequencies are k; = 0.849
(blue dot-dashed line), k, = 3.2819 (red solid line), and k3 = 6.1403
(green dashed line).
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FIG. 8. Log plot for |B,|* as a function of time for each mode
of the field. Herein, we consider ten modes and excite the system by
2 = 2k;. The blue dot-dashed line corresponds to the field mode 1:
| B;|?, the red solid line to field mode 2: | B,|?, and the green dashed
one to | B|? for the field mode 3.
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FIG. 9. Evolution of field mode 1 (| B, |?) for short dimensionless
time scale under external driving €2 = 2k;. We can fit this behavior
with a quadratic function.
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FIG. 7. Number of particles created as a function of the external
dimensionless frequency Q2d. The eigenfrequencies (in units of 1/d)
are kjd = 0.849 5, kod = 3.2819, k3d = 6.1403, and kyd = 9.093 0.
We can see that the higher peak corresponds to 2 = 2k; and the
following to 2 = 2k,. Less important are Q2 =k, +k, and Q2 =
ki + ks.



CONCLUSIONS: DCE

Numerical and analytical results for particle creation in a single or
doubly tunable superconducting cavity (even an array)

The description of the system involves generalized boundary conditions
or degrees of freedom concentrated on the boundaries

Parameters can be tunned to change the characteristics of the spectrum

Rate of particle creation strongly depends on the eigenvalues and
phases of the static eigenfunctions

Interference effects by dephasing the external magnetic fields on both
SQUIDs

Analytical results based on Multiple Scale Analysis

Numerical results confirm and extend analytical analysis



QUANTUM THERMODYNAMICS AND DCE

L(t) = Lo[1 — ed(¢)]
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FIG. 7. Work extracted from the engine. We can identify regions
. where no work can be extracted from the Otto cycle. The compres-

sion ratio used is € = 0.01.

We analyze the efficiency of the quantum Otto cycle applied to a superconducting cavity. We consider its
description in terms of a full quantum scalar field in a one-dimensional cavity with a time-dependent boundary
condition that can be externally controlled to perform and extract work unitarily from the system. We study
the performance of this machine when acting as a heat engine as well as a refrigerator. It is shown that, in a
nonadiabatic regime, the efficiency of the quantum cycle is affected by the dynamical Casimir effect that induces
a sort of quantum friction that diminishes the efficiency. We also find regions of parameters where the effect is so
strong that the machine can no longer function as an engine since the work that would be produced is completely
consumed by the quantum friction. However, this effect can be avoided for some particular temporal evolutions
of the boundary conditions that do not change the occupation number of the modes in the cavity, leading to a
highly improved efficiency.

Del Grosso, Lombardo, Mazzitelli & Villar, PRA 2022



Shortcut to adiabaticity in a cavity with a moving mirror

Shortcuts to adiabaticity constitute a powerful alternative that
speed up time evolution while mimicking adiabatic dynamics. We
described how to implement shortcuts to adiabaticity for the case
of the superconducting phase field inside a cavity with a moving
wall, in 1 + 1 dimensions.

The approach is based on solution to the problem that exploits
the conformal symmetry, and the shortcuts take place whenever
there is no dynamical Casimir effect. We obtain a fundamental
limit for the efficiency of an Otto cycle with the quantum field as a
working system, that depends on the maximum velocity that the
mirror can attain. We describe possible experimental realizations
of the shortcuts using superconducting circuits.
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FIG. 1. A reference trajectory (blue solid line) given by Eq. (15)
with € = 0.3 and t/Ly = 1. The corresponding effective trajectory
(orange dashed line) calculated from Eq. (13) gives the shortcut to
adiabaticity.
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FIG. 2. Energy density for an adiabatic shortcut corresponding
to the polynomial trajectory with length L, /Ly = 0.7 and t/Ly = 1
from t = —Ly to t = L; + t and the field initially in the vacuum
state. The energy density is a negative constant before and after the
compression and it is smaller at the end.
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FIG. 4. Power for an Otto cycle as a function of the timescale,
7, implementing the reference (solid line) or effective STA trajectory
(dashed line) for the expansion and compression strokes. The param-
eter used for the trajectory was € = 0.3, while the thermal baths used
for the cycle had temperatures 7oLy = 1 and T1Ly = 5.



