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OLD RESULTS FOR MOVING MIRRORS

Simplest case: massless scalar field in 1+1 D

Dirichlet boundary conditions

Static equidistant spectrum



OLD RESULTS FOR MOVING MIRRORS

Simplest case: massless scalar field in 1+1 D

Dirichlet boundary conditions

Static equidistant spectrum

Instantaneous basis (useful for
intermediate calculations, no
intention to define N(t)!)

Set of coupled harmonic oscillators

Mirrors



Equidistant spectrum

All modes are coupled

The number of particles created
grows quadratically with t. 

Total energy in the cavity grows exponentially (Dodonov & Klimov 1996) 

external frequency = eigenfrequency
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More general boundary conditions

Massive case

Cavities in 3+1 dimensions

Non-equidistant spectrum

Exponential growth 

Crocce, Dalvit & Mazzitelli, 1999, 2000. Numerics: P. Villar & A. Soba, PRE 2017

Possibility of parametric
resonance for a single
mode (or a few modes)



Very difficult to 
observe…

Rate of photon production
by a single oscillating mirror
in vacuum

1 photon/day!!

El efecto Casimir dinámico

Un espejo que oscila emite fotones!

�! Efecto Casimir dinámico 1

Flujo de fotones2: N = ⌦T
6⇡

�
v
c

�2
, v = ⌦a

vmax
c = 10�7, ⌦ = 10GHz , A = 10cm2 =) 1

fotón/d́ıa!

1G.T. Moore, J. Math. Phys. 11, 2679 (1970)
2A. Lambrecht, M.T. Jaekel and S. Reynaud, Phys. Rev. Lett.77, 615 (1996)
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For cavities the situation is
better due to parametric
resonace… but still
difficult

• In order to produce 5 GHz 
photons, we need mechanical 
oscillations with 10GHz

• Actual limit: 6GHz

El efecto Casimir dinámico

El efecto se amplifica en una cavidad

Vamos a considerar

Campo escalar cuántico

Sin masa

1 + 1 dimensiones

Un espejo móvil
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El efecto Casimir dinámico

1 modo EM

Si r(t) = aL sin(⌦t), a ⌧ 1 , ⌦ = 2!k resonancia paramétri-

ca

Campo clásico: la solución de vaćıo sigue siendo solución bajo

evolución temporal.

Campo cuántico: h0|Nk |0i = sinh2(!kat/2) generación de fo-

tones!

3

Más modos =) infinitos osciladores armónicos acoplados

Condiciones de resonancia:

Si ⌦ = 2!j generación de pares en el modo j

Si ⌦ = !j + !k generación de pares en los modos j y k

Si ⌦ = |!j � !k | scattering entre los modos j y k

3P I Villar, A. Soba, Phys. Rev. E 96, 013307 (2017)
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One EM mode

If r(t) = a L Sin(Ω t)  ,   a << 1  ,  Ω = 2 ωk
Parametric resonance

<0| Nk|0> = Sinh2(aωk t/2) Photon generation

More modes: infinite harmonic oscillators

Resonance conditions: 

• Ω = 2 ωk photon pair creation in mode k

• Ω = ωk + ωj pair creation in modes k and j

• Ω = |ωk – ωj| scattering between modes j and k
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2 moving mirrors “interference” effects in 
the particle creation rate

“shaker”  mode“breathing”  mode

Mainly studied for Dirichlet fields in 1+1

Dalvit & Mazzitelli (1999) – Villar, Soba & Lombardo (fully numerical approach (2017)



Secular behaviour for integer
values of q

Method: conformal transformation
à Moore equation à RG improved
solution

Dalvit & Mazzitelli (1999) – Villar, Soba & Lombardo (2017)

when a or b do not vanish

shaker mode, q=3 (compared with 1 
mirror oscilation)

Perturbation theory doesn’t work



The rate of particle creation depends
strongly on the relation among the
amplitudes, the frequency, and the
phase difference in the mirrors’ 
oscillations.

In some cases constructive interference
leads to exponential growth of particles
inside the cavity, while for other relations
there exists destructive interference with
no vacuum radiation.

Dalvit & Mazzitelli PARA (1999) – Villar, Soba & Lombardo PRA (2017)



Modulated 
inductance of  
SQUID at high 
frequencies (> 
10 GHz) 

EXPERIMENTAL VERIFICATION OF DCE (2011) 

By applying a time-
dependent magnetic 
flux through the 
SQUID we get a 
time-dependent 
inductance, which in 
turn produces a time-
dependent boundary 
condition for the field 
in the waveguide

Verificación experimental

Propuesta4

Medición 5

4J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori, Phys. Rev. Lett. 103, 147003 (2009)
5G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing, Nature 479,

376 (2011)
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Time dependent boundary
condition

Verificación experimental

Propuesta4 Medición 5

4J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori, Phys. Rev. Lett. 103, 147003 (2009)
5G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing, Nature 479,

376 (2011)
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DIFFERENT EXPERIMENTAL REALIZATIONS OF DCE 

holacaracola

Fluctuaciones cuánticas e interacciones de Casimir entre
objetos micro y macroscópicos:

fuerzas, creación de fotones, coherencia y entrelazamiento
Presentacion Convocatoria PICT 2018

[50] C. Braggio, G. Bressi, G. Carugno, C. Del Noce, G. Galeazzi, A. Lombardi, A. Pal-
mieri, G. Ruoso, and D. Zanello, Europhys. Lett. 70, 754 (2005).

[51] E. Segev, B. Abdo, O. Shtempluck, E. Buks, and B. Yurke, Phys. Lett. A 370, 202
(2007).

[52] S. De Liberato, C. Ciuti, and I. Carusotto, Phys. Rev. Lett. 98, 103602 (2007).

[53] J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori, Phys. Rev. Lett. 103,
147003 (2009).

[54] J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori, Phys. Rev. A 82, 052509
(2010).

[55] S. De Liberato, D. Gerace, I. Carusotto, and C. Ciuti,

[56] L. Garziano, A. Ridolfo, R. Stassi, O. Di Stefano, and S.

[57] L. Garziano, R. Stassi, A. Ridolfo, O. Di Stefano, and S. Savasta, Phys. Rev. A 90,
043817 (2014).

[58] D. Hagenmuller, Phys. Rev. B 93, 235309 (2016).

[59] O. Di Stefano, R. Stassi, L. Garziano, A. F. Kockum, S. Savasta, and F. Nori, New
J. Phys. 19, 053010 (2017).

[60] S. De Liberato, Nat. Commun. 8, 1465 (2017).

[61] J.Q. You and F. Nori, Phys. Today 58, No. 11, 42 (2005).

[62] J. Q. You and F. Nori, Nature (London) 474, 589 (2011).

[63] Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Rev. Mod. Phys. 85, 623 (2013).

[64] X. Gu, A. F. Kockum, A. Miranowicz, Y-x. Liu, and F. Nori, Phys. Rep. 718–719, 1
(2017)

[65] W. H. Louisell, A. Yariv, and A. E. Siegman, Phys. Rev. 124, 1646 (1961).

[66] S. E. Harris, M. K. Oshman, and R. L. Byer, Phys. Rev. Lett. 18, 732 (1967).

[67] F. X. Dezael and A. Lambrecht, Europhys. Lett. 89, 14001 (2010).

[68] G. Plunien, R. Schutzhold, and G. So↵, Phys. Rev. Lett. 84, 1882 (2000).

[69] J. Haro and E. Elizalde, Phys. Rev. Lett. 97, 130401 (2006).

[70] V. V. Dodonov, Phys. Rev. A 58, 4147 (1998).

[71] M.-T. Jaekel and S. Reynaud, J. Phys. I (France) 3, 1 (1993).

[72] P. A. Maia Neto and S. Reynaud, Phys. Rev. A 47, 1639 (1993).

[73] M. Kardar and R. Golestanian, Rev. Mod. Phys. 71, 1233 (1999).

[74] M. F. Maghrebi, R. Golestanian, and M. Kardar, Phys. Rev. D 87, 025016 (2013).

18



MORE RECENT EXPERIMENTAL RESULTS
(doubly tunable resonator)

• Particle creation with simultaneous excitation of both SQUIDs

• Observation of interference effects.

Svensson et al  2018



Superconducting phase field: 
scalar field in the cavity

Wustmann Shumeiko 2013

TUNABLE SUPERCONDUCTING CAVITY

Model

Quantum field in 1+1 dimensions with terms localized on the borders

LOMBARDO, MAZZITELLI, SOBA, AND VILLAR PHYSICAL REVIEW A 93, 032501 (2016)

satisfying generalized Robin boundary conditions. The gen-
eralization involves not only time-dependent parameters, but
also the presence of the second time derivative φ̈. This term
indicates that, in fact, there is a degree of freedom localized at
x = d. (The mechanical analog would be a string ended with
a mass, the boundary condition being the equation of motion
of the mass; see, for instance, [14].) If the time dependence of
the boundary conditions starts at t = 0, the constant values of
Ai and Bi for t < 0 determine the spectrum of the static cavity
that can be tuned setting different values for the properties of
the SQUIDs.

We are thus led to the problem of analyzing particle
creation for a scalar field in 1 + 1 dimensions subjected to the
boundary conditions Eq. (1). This problem has been partially
addressed in previous works. Reference [15] considered the
case of a single mirror with time-dependent Robin boundary
conditions, and computed perturbatively the spectrum of
created particles. In Ref. [16] a similar problem was studied
analytically, considering nontrivial boundary conditions at one
or two points, and paying particular attention on whether
the time-dependent Robin parameter reproduces the boundary
condition for a moving mirror or not. The effects produced by
the inclusion of the term proportional to φ̈, not considered in
[16], have been analyzed for waveguides ended by a SQUID
in [17]. Some of us [14] considered the case of a closed cavity
with general boundary conditions, showing that parametric
resonance may induce an exponential growth in the number of
particles inside the cavity.

In the present paper we will present a detailed numerical
analysis of the particle creation rate, along with analytical
calculations that describe the main features of the numerical
results. (For previous numerical approaches in the case of
Dirichlet or Neumann boundary conditions, see [18].) As we
will see, particle creation depends crucially on the properties
of the static spectrum of the cavity, and also on the amplitude
of the time-dependent part of the functions A2(t) and B2(t).
This is to be expected from previous results for the case of
moving mirrors that impose Dirichlet or Neumann boundary
conditions. Indeed, when the spectrum is not equidistant,
parametric resonance involves a finite number of modes, and
the number of particles in these modes grow exponentially
when the external frequency is properly chosen [19]. On
the other hand, for equidistant spectra, the coupling between
an infinite number of modes makes the number of particles
to grow quadratically or linearly in time, for short or long
time scales, respectively [5], while the total energy grows
exponentially. We will show that similar situations hold for the
superconducting cavities. Moreover, the numerical approach
will allow us to address cases where the boundary conditions
oscillate with a large amplitude (that are in principle accessible
for experiments) but do not admit an analytical description.

The paper is organized as follows. In Sec. II we describe
the model for a (linearized) superconducting cavity with
time-dependent boundary conditions and show that the system
can be described as a set of coupled harmonic oscillators. In
Sec. III we study analytically the particle creation rate using
multiple scale analysis (MSA), emphasizing the dependence
of the results with the main characteristics of the spectrum.
Section IV contains the numerical results, along with a
brief discussion of the numerical method. We compute the

particle creation rate for spectra of different characteristics and
compare numerical and analytical results. Section V contains a
discussion of the results and the main conclusions of our work.

II. TUNABLE SUPERCONDUCTING CAVITY

We shall consider a superconducting cavity of length d
which is decoupled from the input line at x = 0 and has a
SQUID at x = d. For the theoretical description we follow
closely Ref. [20]. The cavity, which is assumed to have
capacitance C0 and inductance L0 per unit length, is described
by the superconducting phase field φ(x,t) with the Lagrangian

Lcav =
(

!
2e

)2
C0

2

∫ d

0
dx(φ̇2 − v2φ′2)

+
[(

!
2e

)2 2CJ

2
φ̇2

d − EJ cos f (t)φ2
d

]
, (2)

where v = 1/
√

L0C0 is the field propagation velocity, φd the
value of the field at the boundary by φ(d,t), and f (t) is the
phase across the SQUID controlled by external magnetic flux.
EJ and CJ denote the Josephson energy and capacitance,
respectively. The Lagrangian in Eq. (2) contains additional
contributions proportional to higher powers of φd that will not
be considered in the rest of this paper.

As anticipated, the description of the cavity involves the
field φ(x,t) for 0 < x < d and the additional degree of
freedom φd . The dynamical equations read

φ̈ − v2φ′′ = 0 (3)

and

!2

EC

φ̈d + 2EJ cos f (t)φd + EL,cavdφ′
d = 0, (4)

where EC = (2e)2/(2CJ ) and EL,cav = (!/2e)2(1/L0d). The
equation above comes from the variation of the action with
respect to φd and can be considered as a generalized boundary
condition for the field. We could consider general boundary
conditions also at x = 0, but for the sake of simplicity we will
assume that φ′(0,t) = 0. (Physically this corresponds to the
situation where the cavity is decoupled.)

It will be useful to write the Lagrangian in terms of
eigenfunctions of the static cavity. Assuming that

f (t) = f0 + θ (t)θ (tF − t)ε sin $t, (5)

we can expand the field as

φ(x,t) = 2e

!

√
2

C0d

∑

n

qn(t) cos knx, (6)

where the eigenfrequencies kn satisfy Eq. (4) in the static case
f = f0:

(knd) tan knd = 2EJ cos f0

EL,cav
− 2CJ

C0d
(knd)2. (7)

In terms of the new variables qn(t) the Lagrangian reads

Lcav = 1
2

∑

n

[
Mnq̇

2
n − Mnω

2
nq

2
n

]
+ EJ φ2

d [cos f0 − cos f (t)],

(8)

032501-2

Cavity with
capacitance C0

and inductance L0
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satisfying generalized Robin boundary conditions. The gen-
eralization involves not only time-dependent parameters, but
also the presence of the second time derivative φ̈. This term
indicates that, in fact, there is a degree of freedom localized at
x = d. (The mechanical analog would be a string ended with
a mass, the boundary condition being the equation of motion
of the mass; see, for instance, [14].) If the time dependence of
the boundary conditions starts at t = 0, the constant values of
Ai and Bi for t < 0 determine the spectrum of the static cavity
that can be tuned setting different values for the properties of
the SQUIDs.

We are thus led to the problem of analyzing particle
creation for a scalar field in 1 + 1 dimensions subjected to the
boundary conditions Eq. (1). This problem has been partially
addressed in previous works. Reference [15] considered the
case of a single mirror with time-dependent Robin boundary
conditions, and computed perturbatively the spectrum of
created particles. In Ref. [16] a similar problem was studied
analytically, considering nontrivial boundary conditions at one
or two points, and paying particular attention on whether
the time-dependent Robin parameter reproduces the boundary
condition for a moving mirror or not. The effects produced by
the inclusion of the term proportional to φ̈, not considered in
[16], have been analyzed for waveguides ended by a SQUID
in [17]. Some of us [14] considered the case of a closed cavity
with general boundary conditions, showing that parametric
resonance may induce an exponential growth in the number of
particles inside the cavity.

In the present paper we will present a detailed numerical
analysis of the particle creation rate, along with analytical
calculations that describe the main features of the numerical
results. (For previous numerical approaches in the case of
Dirichlet or Neumann boundary conditions, see [18].) As we
will see, particle creation depends crucially on the properties
of the static spectrum of the cavity, and also on the amplitude
of the time-dependent part of the functions A2(t) and B2(t).
This is to be expected from previous results for the case of
moving mirrors that impose Dirichlet or Neumann boundary
conditions. Indeed, when the spectrum is not equidistant,
parametric resonance involves a finite number of modes, and
the number of particles in these modes grow exponentially
when the external frequency is properly chosen [19]. On
the other hand, for equidistant spectra, the coupling between
an infinite number of modes makes the number of particles
to grow quadratically or linearly in time, for short or long
time scales, respectively [5], while the total energy grows
exponentially. We will show that similar situations hold for the
superconducting cavities. Moreover, the numerical approach
will allow us to address cases where the boundary conditions
oscillate with a large amplitude (that are in principle accessible
for experiments) but do not admit an analytical description.

The paper is organized as follows. In Sec. II we describe
the model for a (linearized) superconducting cavity with
time-dependent boundary conditions and show that the system
can be described as a set of coupled harmonic oscillators. In
Sec. III we study analytically the particle creation rate using
multiple scale analysis (MSA), emphasizing the dependence
of the results with the main characteristics of the spectrum.
Section IV contains the numerical results, along with a
brief discussion of the numerical method. We compute the

particle creation rate for spectra of different characteristics and
compare numerical and analytical results. Section V contains a
discussion of the results and the main conclusions of our work.

II. TUNABLE SUPERCONDUCTING CAVITY

We shall consider a superconducting cavity of length d
which is decoupled from the input line at x = 0 and has a
SQUID at x = d. For the theoretical description we follow
closely Ref. [20]. The cavity, which is assumed to have
capacitance C0 and inductance L0 per unit length, is described
by the superconducting phase field φ(x,t) with the Lagrangian

Lcav =
(

!
2e

)2
C0

2

∫ d

0
dx(φ̇2 − v2φ′2)

+
[(

!
2e

)2 2CJ

2
φ̇2

d − EJ cos f (t)φ2
d

]
, (2)

where v = 1/
√

L0C0 is the field propagation velocity, φd the
value of the field at the boundary by φ(d,t), and f (t) is the
phase across the SQUID controlled by external magnetic flux.
EJ and CJ denote the Josephson energy and capacitance,
respectively. The Lagrangian in Eq. (2) contains additional
contributions proportional to higher powers of φd that will not
be considered in the rest of this paper.

As anticipated, the description of the cavity involves the
field φ(x,t) for 0 < x < d and the additional degree of
freedom φd . The dynamical equations read

φ̈ − v2φ′′ = 0 (3)

and

!2

EC

φ̈d + 2EJ cos f (t)φd + EL,cavdφ′
d = 0, (4)

where EC = (2e)2/(2CJ ) and EL,cav = (!/2e)2(1/L0d). The
equation above comes from the variation of the action with
respect to φd and can be considered as a generalized boundary
condition for the field. We could consider general boundary
conditions also at x = 0, but for the sake of simplicity we will
assume that φ′(0,t) = 0. (Physically this corresponds to the
situation where the cavity is decoupled.)

It will be useful to write the Lagrangian in terms of
eigenfunctions of the static cavity. Assuming that

f (t) = f0 + θ (t)θ (tF − t)ε sin $t, (5)

we can expand the field as

φ(x,t) = 2e

!

√
2

C0d

∑

n

qn(t) cos knx, (6)

where the eigenfrequencies kn satisfy Eq. (4) in the static case
f = f0:

(knd) tan knd = 2EJ cos f0

EL,cav
− 2CJ

C0d
(knd)2. (7)

In terms of the new variables qn(t) the Lagrangian reads

Lcav = 1
2

∑

n

[
Mnq̇

2
n − Mnω

2
nq

2
n

]
+ EJ φ2

d [cos f0 − cos f (t)],

(8)
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Field propagation
velocity
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satisfying generalized Robin boundary conditions. The gen-
eralization involves not only time-dependent parameters, but
also the presence of the second time derivative φ̈. This term
indicates that, in fact, there is a degree of freedom localized at
x = d. (The mechanical analog would be a string ended with
a mass, the boundary condition being the equation of motion
of the mass; see, for instance, [14].) If the time dependence of
the boundary conditions starts at t = 0, the constant values of
Ai and Bi for t < 0 determine the spectrum of the static cavity
that can be tuned setting different values for the properties of
the SQUIDs.

We are thus led to the problem of analyzing particle
creation for a scalar field in 1 + 1 dimensions subjected to the
boundary conditions Eq. (1). This problem has been partially
addressed in previous works. Reference [15] considered the
case of a single mirror with time-dependent Robin boundary
conditions, and computed perturbatively the spectrum of
created particles. In Ref. [16] a similar problem was studied
analytically, considering nontrivial boundary conditions at one
or two points, and paying particular attention on whether
the time-dependent Robin parameter reproduces the boundary
condition for a moving mirror or not. The effects produced by
the inclusion of the term proportional to φ̈, not considered in
[16], have been analyzed for waveguides ended by a SQUID
in [17]. Some of us [14] considered the case of a closed cavity
with general boundary conditions, showing that parametric
resonance may induce an exponential growth in the number of
particles inside the cavity.

In the present paper we will present a detailed numerical
analysis of the particle creation rate, along with analytical
calculations that describe the main features of the numerical
results. (For previous numerical approaches in the case of
Dirichlet or Neumann boundary conditions, see [18].) As we
will see, particle creation depends crucially on the properties
of the static spectrum of the cavity, and also on the amplitude
of the time-dependent part of the functions A2(t) and B2(t).
This is to be expected from previous results for the case of
moving mirrors that impose Dirichlet or Neumann boundary
conditions. Indeed, when the spectrum is not equidistant,
parametric resonance involves a finite number of modes, and
the number of particles in these modes grow exponentially
when the external frequency is properly chosen [19]. On
the other hand, for equidistant spectra, the coupling between
an infinite number of modes makes the number of particles
to grow quadratically or linearly in time, for short or long
time scales, respectively [5], while the total energy grows
exponentially. We will show that similar situations hold for the
superconducting cavities. Moreover, the numerical approach
will allow us to address cases where the boundary conditions
oscillate with a large amplitude (that are in principle accessible
for experiments) but do not admit an analytical description.

The paper is organized as follows. In Sec. II we describe
the model for a (linearized) superconducting cavity with
time-dependent boundary conditions and show that the system
can be described as a set of coupled harmonic oscillators. In
Sec. III we study analytically the particle creation rate using
multiple scale analysis (MSA), emphasizing the dependence
of the results with the main characteristics of the spectrum.
Section IV contains the numerical results, along with a
brief discussion of the numerical method. We compute the

particle creation rate for spectra of different characteristics and
compare numerical and analytical results. Section V contains a
discussion of the results and the main conclusions of our work.

II. TUNABLE SUPERCONDUCTING CAVITY

We shall consider a superconducting cavity of length d
which is decoupled from the input line at x = 0 and has a
SQUID at x = d. For the theoretical description we follow
closely Ref. [20]. The cavity, which is assumed to have
capacitance C0 and inductance L0 per unit length, is described
by the superconducting phase field φ(x,t) with the Lagrangian

Lcav =
(

!
2e

)2
C0

2

∫ d

0
dx(φ̇2 − v2φ′2)

+
[(

!
2e

)2 2CJ

2
φ̇2

d − EJ cos f (t)φ2
d

]
, (2)

where v = 1/
√

L0C0 is the field propagation velocity, φd the
value of the field at the boundary by φ(d,t), and f (t) is the
phase across the SQUID controlled by external magnetic flux.
EJ and CJ denote the Josephson energy and capacitance,
respectively. The Lagrangian in Eq. (2) contains additional
contributions proportional to higher powers of φd that will not
be considered in the rest of this paper.

As anticipated, the description of the cavity involves the
field φ(x,t) for 0 < x < d and the additional degree of
freedom φd . The dynamical equations read

φ̈ − v2φ′′ = 0 (3)

and

!2

EC

φ̈d + 2EJ cos f (t)φd + EL,cavdφ′
d = 0, (4)

where EC = (2e)2/(2CJ ) and EL,cav = (!/2e)2(1/L0d). The
equation above comes from the variation of the action with
respect to φd and can be considered as a generalized boundary
condition for the field. We could consider general boundary
conditions also at x = 0, but for the sake of simplicity we will
assume that φ′(0,t) = 0. (Physically this corresponds to the
situation where the cavity is decoupled.)

It will be useful to write the Lagrangian in terms of
eigenfunctions of the static cavity. Assuming that

f (t) = f0 + θ (t)θ (tF − t)ε sin $t, (5)

we can expand the field as

φ(x,t) = 2e
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√
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C0d

∑
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qn(t) cos knx, (6)

where the eigenfrequencies kn satisfy Eq. (4) in the static case
f = f0:

(knd) tan knd = 2EJ cos f0

EL,cav
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C0d
(knd)2. (7)

In terms of the new variables qn(t) the Lagrangian reads
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satisfying generalized Robin boundary conditions. The gen-
eralization involves not only time-dependent parameters, but
also the presence of the second time derivative φ̈. This term
indicates that, in fact, there is a degree of freedom localized at
x = d. (The mechanical analog would be a string ended with
a mass, the boundary condition being the equation of motion
of the mass; see, for instance, [14].) If the time dependence of
the boundary conditions starts at t = 0, the constant values of
Ai and Bi for t < 0 determine the spectrum of the static cavity
that can be tuned setting different values for the properties of
the SQUIDs.

We are thus led to the problem of analyzing particle
creation for a scalar field in 1 + 1 dimensions subjected to the
boundary conditions Eq. (1). This problem has been partially
addressed in previous works. Reference [15] considered the
case of a single mirror with time-dependent Robin boundary
conditions, and computed perturbatively the spectrum of
created particles. In Ref. [16] a similar problem was studied
analytically, considering nontrivial boundary conditions at one
or two points, and paying particular attention on whether
the time-dependent Robin parameter reproduces the boundary
condition for a moving mirror or not. The effects produced by
the inclusion of the term proportional to φ̈, not considered in
[16], have been analyzed for waveguides ended by a SQUID
in [17]. Some of us [14] considered the case of a closed cavity
with general boundary conditions, showing that parametric
resonance may induce an exponential growth in the number of
particles inside the cavity.

In the present paper we will present a detailed numerical
analysis of the particle creation rate, along with analytical
calculations that describe the main features of the numerical
results. (For previous numerical approaches in the case of
Dirichlet or Neumann boundary conditions, see [18].) As we
will see, particle creation depends crucially on the properties
of the static spectrum of the cavity, and also on the amplitude
of the time-dependent part of the functions A2(t) and B2(t).
This is to be expected from previous results for the case of
moving mirrors that impose Dirichlet or Neumann boundary
conditions. Indeed, when the spectrum is not equidistant,
parametric resonance involves a finite number of modes, and
the number of particles in these modes grow exponentially
when the external frequency is properly chosen [19]. On
the other hand, for equidistant spectra, the coupling between
an infinite number of modes makes the number of particles
to grow quadratically or linearly in time, for short or long
time scales, respectively [5], while the total energy grows
exponentially. We will show that similar situations hold for the
superconducting cavities. Moreover, the numerical approach
will allow us to address cases where the boundary conditions
oscillate with a large amplitude (that are in principle accessible
for experiments) but do not admit an analytical description.

The paper is organized as follows. In Sec. II we describe
the model for a (linearized) superconducting cavity with
time-dependent boundary conditions and show that the system
can be described as a set of coupled harmonic oscillators. In
Sec. III we study analytically the particle creation rate using
multiple scale analysis (MSA), emphasizing the dependence
of the results with the main characteristics of the spectrum.
Section IV contains the numerical results, along with a
brief discussion of the numerical method. We compute the

particle creation rate for spectra of different characteristics and
compare numerical and analytical results. Section V contains a
discussion of the results and the main conclusions of our work.

II. TUNABLE SUPERCONDUCTING CAVITY

We shall consider a superconducting cavity of length d
which is decoupled from the input line at x = 0 and has a
SQUID at x = d. For the theoretical description we follow
closely Ref. [20]. The cavity, which is assumed to have
capacitance C0 and inductance L0 per unit length, is described
by the superconducting phase field φ(x,t) with the Lagrangian

Lcav =
(

!
2e

)2
C0

2

∫ d

0
dx(φ̇2 − v2φ′2)

+
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]
, (2)

where v = 1/
√

L0C0 is the field propagation velocity, φd the
value of the field at the boundary by φ(d,t), and f (t) is the
phase across the SQUID controlled by external magnetic flux.
EJ and CJ denote the Josephson energy and capacitance,
respectively. The Lagrangian in Eq. (2) contains additional
contributions proportional to higher powers of φd that will not
be considered in the rest of this paper.

As anticipated, the description of the cavity involves the
field φ(x,t) for 0 < x < d and the additional degree of
freedom φd . The dynamical equations read

φ̈ − v2φ′′ = 0 (3)

and
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EC

φ̈d + 2EJ cos f (t)φd + EL,cavdφ′
d = 0, (4)

where EC = (2e)2/(2CJ ) and EL,cav = (!/2e)2(1/L0d). The
equation above comes from the variation of the action with
respect to φd and can be considered as a generalized boundary
condition for the field. We could consider general boundary
conditions also at x = 0, but for the sake of simplicity we will
assume that φ′(0,t) = 0. (Physically this corresponds to the
situation where the cavity is decoupled.)

It will be useful to write the Lagrangian in terms of
eigenfunctions of the static cavity. Assuming that

f (t) = f0 + θ (t)θ (tF − t)ε sin $t, (5)

we can expand the field as

φ(x,t) = 2e

!

√
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C0d

∑

n

qn(t) cos knx, (6)

where the eigenfrequencies kn satisfy Eq. (4) in the static case
f = f0:

(knd) tan knd = 2EJ cos f0

EL,cav
− 2CJ

C0d
(knd)2. (7)

In terms of the new variables qn(t) the Lagrangian reads

Lcav = 1
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satisfying generalized Robin boundary conditions. The gen-
eralization involves not only time-dependent parameters, but
also the presence of the second time derivative φ̈. This term
indicates that, in fact, there is a degree of freedom localized at
x = d. (The mechanical analog would be a string ended with
a mass, the boundary condition being the equation of motion
of the mass; see, for instance, [14].) If the time dependence of
the boundary conditions starts at t = 0, the constant values of
Ai and Bi for t < 0 determine the spectrum of the static cavity
that can be tuned setting different values for the properties of
the SQUIDs.

We are thus led to the problem of analyzing particle
creation for a scalar field in 1 + 1 dimensions subjected to the
boundary conditions Eq. (1). This problem has been partially
addressed in previous works. Reference [15] considered the
case of a single mirror with time-dependent Robin boundary
conditions, and computed perturbatively the spectrum of
created particles. In Ref. [16] a similar problem was studied
analytically, considering nontrivial boundary conditions at one
or two points, and paying particular attention on whether
the time-dependent Robin parameter reproduces the boundary
condition for a moving mirror or not. The effects produced by
the inclusion of the term proportional to φ̈, not considered in
[16], have been analyzed for waveguides ended by a SQUID
in [17]. Some of us [14] considered the case of a closed cavity
with general boundary conditions, showing that parametric
resonance may induce an exponential growth in the number of
particles inside the cavity.

In the present paper we will present a detailed numerical
analysis of the particle creation rate, along with analytical
calculations that describe the main features of the numerical
results. (For previous numerical approaches in the case of
Dirichlet or Neumann boundary conditions, see [18].) As we
will see, particle creation depends crucially on the properties
of the static spectrum of the cavity, and also on the amplitude
of the time-dependent part of the functions A2(t) and B2(t).
This is to be expected from previous results for the case of
moving mirrors that impose Dirichlet or Neumann boundary
conditions. Indeed, when the spectrum is not equidistant,
parametric resonance involves a finite number of modes, and
the number of particles in these modes grow exponentially
when the external frequency is properly chosen [19]. On
the other hand, for equidistant spectra, the coupling between
an infinite number of modes makes the number of particles
to grow quadratically or linearly in time, for short or long
time scales, respectively [5], while the total energy grows
exponentially. We will show that similar situations hold for the
superconducting cavities. Moreover, the numerical approach
will allow us to address cases where the boundary conditions
oscillate with a large amplitude (that are in principle accessible
for experiments) but do not admit an analytical description.

The paper is organized as follows. In Sec. II we describe
the model for a (linearized) superconducting cavity with
time-dependent boundary conditions and show that the system
can be described as a set of coupled harmonic oscillators. In
Sec. III we study analytically the particle creation rate using
multiple scale analysis (MSA), emphasizing the dependence
of the results with the main characteristics of the spectrum.
Section IV contains the numerical results, along with a
brief discussion of the numerical method. We compute the

particle creation rate for spectra of different characteristics and
compare numerical and analytical results. Section V contains a
discussion of the results and the main conclusions of our work.

II. TUNABLE SUPERCONDUCTING CAVITY

We shall consider a superconducting cavity of length d
which is decoupled from the input line at x = 0 and has a
SQUID at x = d. For the theoretical description we follow
closely Ref. [20]. The cavity, which is assumed to have
capacitance C0 and inductance L0 per unit length, is described
by the superconducting phase field φ(x,t) with the Lagrangian

Lcav =
(

!
2e

)2
C0

2

∫ d

0
dx(φ̇2 − v2φ′2)

+
[(

!
2e

)2 2CJ

2
φ̇2

d − EJ cos f (t)φ2
d

]
, (2)

where v = 1/
√

L0C0 is the field propagation velocity, φd the
value of the field at the boundary by φ(d,t), and f (t) is the
phase across the SQUID controlled by external magnetic flux.
EJ and CJ denote the Josephson energy and capacitance,
respectively. The Lagrangian in Eq. (2) contains additional
contributions proportional to higher powers of φd that will not
be considered in the rest of this paper.

As anticipated, the description of the cavity involves the
field φ(x,t) for 0 < x < d and the additional degree of
freedom φd . The dynamical equations read

φ̈ − v2φ′′ = 0 (3)

and

!2

EC

φ̈d + 2EJ cos f (t)φd + EL,cavdφ′
d = 0, (4)

where EC = (2e)2/(2CJ ) and EL,cav = (!/2e)2(1/L0d). The
equation above comes from the variation of the action with
respect to φd and can be considered as a generalized boundary
condition for the field. We could consider general boundary
conditions also at x = 0, but for the sake of simplicity we will
assume that φ′(0,t) = 0. (Physically this corresponds to the
situation where the cavity is decoupled.)

It will be useful to write the Lagrangian in terms of
eigenfunctions of the static cavity. Assuming that

f (t) = f0 + θ (t)θ (tF − t)ε sin $t, (5)

we can expand the field as

φ(x,t) = 2e

!

√
2

C0d

∑

n

qn(t) cos knx, (6)

where the eigenfrequencies kn satisfy Eq. (4) in the static case
f = f0:

(knd) tan knd = 2EJ cos f0

EL,cav
− 2CJ

C0d
(knd)2. (7)

In terms of the new variables qn(t) the Lagrangian reads

Lcav = 1
2

∑

n

[
Mnq̇

2
n − Mnω

2
nq

2
n

]
+ EJ φ2

d [cos f0 − cos f (t)],
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satisfying generalized Robin boundary conditions. The gen-
eralization involves not only time-dependent parameters, but
also the presence of the second time derivative φ̈. This term
indicates that, in fact, there is a degree of freedom localized at
x = d. (The mechanical analog would be a string ended with
a mass, the boundary condition being the equation of motion
of the mass; see, for instance, [14].) If the time dependence of
the boundary conditions starts at t = 0, the constant values of
Ai and Bi for t < 0 determine the spectrum of the static cavity
that can be tuned setting different values for the properties of
the SQUIDs.

We are thus led to the problem of analyzing particle
creation for a scalar field in 1 + 1 dimensions subjected to the
boundary conditions Eq. (1). This problem has been partially
addressed in previous works. Reference [15] considered the
case of a single mirror with time-dependent Robin boundary
conditions, and computed perturbatively the spectrum of
created particles. In Ref. [16] a similar problem was studied
analytically, considering nontrivial boundary conditions at one
or two points, and paying particular attention on whether
the time-dependent Robin parameter reproduces the boundary
condition for a moving mirror or not. The effects produced by
the inclusion of the term proportional to φ̈, not considered in
[16], have been analyzed for waveguides ended by a SQUID
in [17]. Some of us [14] considered the case of a closed cavity
with general boundary conditions, showing that parametric
resonance may induce an exponential growth in the number of
particles inside the cavity.

In the present paper we will present a detailed numerical
analysis of the particle creation rate, along with analytical
calculations that describe the main features of the numerical
results. (For previous numerical approaches in the case of
Dirichlet or Neumann boundary conditions, see [18].) As we
will see, particle creation depends crucially on the properties
of the static spectrum of the cavity, and also on the amplitude
of the time-dependent part of the functions A2(t) and B2(t).
This is to be expected from previous results for the case of
moving mirrors that impose Dirichlet or Neumann boundary
conditions. Indeed, when the spectrum is not equidistant,
parametric resonance involves a finite number of modes, and
the number of particles in these modes grow exponentially
when the external frequency is properly chosen [19]. On
the other hand, for equidistant spectra, the coupling between
an infinite number of modes makes the number of particles
to grow quadratically or linearly in time, for short or long
time scales, respectively [5], while the total energy grows
exponentially. We will show that similar situations hold for the
superconducting cavities. Moreover, the numerical approach
will allow us to address cases where the boundary conditions
oscillate with a large amplitude (that are in principle accessible
for experiments) but do not admit an analytical description.

The paper is organized as follows. In Sec. II we describe
the model for a (linearized) superconducting cavity with
time-dependent boundary conditions and show that the system
can be described as a set of coupled harmonic oscillators. In
Sec. III we study analytically the particle creation rate using
multiple scale analysis (MSA), emphasizing the dependence
of the results with the main characteristics of the spectrum.
Section IV contains the numerical results, along with a
brief discussion of the numerical method. We compute the

particle creation rate for spectra of different characteristics and
compare numerical and analytical results. Section V contains a
discussion of the results and the main conclusions of our work.

II. TUNABLE SUPERCONDUCTING CAVITY

We shall consider a superconducting cavity of length d
which is decoupled from the input line at x = 0 and has a
SQUID at x = d. For the theoretical description we follow
closely Ref. [20]. The cavity, which is assumed to have
capacitance C0 and inductance L0 per unit length, is described
by the superconducting phase field φ(x,t) with the Lagrangian

Lcav =
(

!
2e

)2
C0

2

∫ d

0
dx(φ̇2 − v2φ′2)

+
[(

!
2e

)2 2CJ

2
φ̇2

d − EJ cos f (t)φ2
d

]
, (2)

where v = 1/
√

L0C0 is the field propagation velocity, φd the
value of the field at the boundary by φ(d,t), and f (t) is the
phase across the SQUID controlled by external magnetic flux.
EJ and CJ denote the Josephson energy and capacitance,
respectively. The Lagrangian in Eq. (2) contains additional
contributions proportional to higher powers of φd that will not
be considered in the rest of this paper.

As anticipated, the description of the cavity involves the
field φ(x,t) for 0 < x < d and the additional degree of
freedom φd . The dynamical equations read

φ̈ − v2φ′′ = 0 (3)

and

!2

EC

φ̈d + 2EJ cos f (t)φd + EL,cavdφ′
d = 0, (4)

where EC = (2e)2/(2CJ ) and EL,cav = (!/2e)2(1/L0d). The
equation above comes from the variation of the action with
respect to φd and can be considered as a generalized boundary
condition for the field. We could consider general boundary
conditions also at x = 0, but for the sake of simplicity we will
assume that φ′(0,t) = 0. (Physically this corresponds to the
situation where the cavity is decoupled.)

It will be useful to write the Lagrangian in terms of
eigenfunctions of the static cavity. Assuming that

f (t) = f0 + θ (t)θ (tF − t)ε sin $t, (5)

we can expand the field as

φ(x,t) = 2e

!

√
2

C0d

∑

n

qn(t) cos knx, (6)

where the eigenfrequencies kn satisfy Eq. (4) in the static case
f = f0:

(knd) tan knd = 2EJ cos f0

EL,cav
− 2CJ

C0d
(knd)2. (7)

In terms of the new variables qn(t) the Lagrangian reads

Lcav = 1
2

∑
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[
Mnq̇

2
n − Mnω

2
nq

2
n

]
+ EJ φ2

d [cos f0 − cos f (t)],
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satisfying generalized Robin boundary conditions. The gen-
eralization involves not only time-dependent parameters, but
also the presence of the second time derivative φ̈. This term
indicates that, in fact, there is a degree of freedom localized at
x = d. (The mechanical analog would be a string ended with
a mass, the boundary condition being the equation of motion
of the mass; see, for instance, [14].) If the time dependence of
the boundary conditions starts at t = 0, the constant values of
Ai and Bi for t < 0 determine the spectrum of the static cavity
that can be tuned setting different values for the properties of
the SQUIDs.

We are thus led to the problem of analyzing particle
creation for a scalar field in 1 + 1 dimensions subjected to the
boundary conditions Eq. (1). This problem has been partially
addressed in previous works. Reference [15] considered the
case of a single mirror with time-dependent Robin boundary
conditions, and computed perturbatively the spectrum of
created particles. In Ref. [16] a similar problem was studied
analytically, considering nontrivial boundary conditions at one
or two points, and paying particular attention on whether
the time-dependent Robin parameter reproduces the boundary
condition for a moving mirror or not. The effects produced by
the inclusion of the term proportional to φ̈, not considered in
[16], have been analyzed for waveguides ended by a SQUID
in [17]. Some of us [14] considered the case of a closed cavity
with general boundary conditions, showing that parametric
resonance may induce an exponential growth in the number of
particles inside the cavity.

In the present paper we will present a detailed numerical
analysis of the particle creation rate, along with analytical
calculations that describe the main features of the numerical
results. (For previous numerical approaches in the case of
Dirichlet or Neumann boundary conditions, see [18].) As we
will see, particle creation depends crucially on the properties
of the static spectrum of the cavity, and also on the amplitude
of the time-dependent part of the functions A2(t) and B2(t).
This is to be expected from previous results for the case of
moving mirrors that impose Dirichlet or Neumann boundary
conditions. Indeed, when the spectrum is not equidistant,
parametric resonance involves a finite number of modes, and
the number of particles in these modes grow exponentially
when the external frequency is properly chosen [19]. On
the other hand, for equidistant spectra, the coupling between
an infinite number of modes makes the number of particles
to grow quadratically or linearly in time, for short or long
time scales, respectively [5], while the total energy grows
exponentially. We will show that similar situations hold for the
superconducting cavities. Moreover, the numerical approach
will allow us to address cases where the boundary conditions
oscillate with a large amplitude (that are in principle accessible
for experiments) but do not admit an analytical description.

The paper is organized as follows. In Sec. II we describe
the model for a (linearized) superconducting cavity with
time-dependent boundary conditions and show that the system
can be described as a set of coupled harmonic oscillators. In
Sec. III we study analytically the particle creation rate using
multiple scale analysis (MSA), emphasizing the dependence
of the results with the main characteristics of the spectrum.
Section IV contains the numerical results, along with a
brief discussion of the numerical method. We compute the

particle creation rate for spectra of different characteristics and
compare numerical and analytical results. Section V contains a
discussion of the results and the main conclusions of our work.

II. TUNABLE SUPERCONDUCTING CAVITY

We shall consider a superconducting cavity of length d
which is decoupled from the input line at x = 0 and has a
SQUID at x = d. For the theoretical description we follow
closely Ref. [20]. The cavity, which is assumed to have
capacitance C0 and inductance L0 per unit length, is described
by the superconducting phase field φ(x,t) with the Lagrangian

Lcav =
(
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)2
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2

∫ d

0
dx(φ̇2 − v2φ′2)

+
[(
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φ̇2

d − EJ cos f (t)φ2
d

]
, (2)

where v = 1/
√

L0C0 is the field propagation velocity, φd the
value of the field at the boundary by φ(d,t), and f (t) is the
phase across the SQUID controlled by external magnetic flux.
EJ and CJ denote the Josephson energy and capacitance,
respectively. The Lagrangian in Eq. (2) contains additional
contributions proportional to higher powers of φd that will not
be considered in the rest of this paper.

As anticipated, the description of the cavity involves the
field φ(x,t) for 0 < x < d and the additional degree of
freedom φd . The dynamical equations read

φ̈ − v2φ′′ = 0 (3)

and

!2

EC

φ̈d + 2EJ cos f (t)φd + EL,cavdφ′
d = 0, (4)

where EC = (2e)2/(2CJ ) and EL,cav = (!/2e)2(1/L0d). The
equation above comes from the variation of the action with
respect to φd and can be considered as a generalized boundary
condition for the field. We could consider general boundary
conditions also at x = 0, but for the sake of simplicity we will
assume that φ′(0,t) = 0. (Physically this corresponds to the
situation where the cavity is decoupled.)

It will be useful to write the Lagrangian in terms of
eigenfunctions of the static cavity. Assuming that

f (t) = f0 + θ (t)θ (tF − t)ε sin $t, (5)

we can expand the field as

φ(x,t) = 2e
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√
2

C0d

∑

n

qn(t) cos knx, (6)

where the eigenfrequencies kn satisfy Eq. (4) in the static case
f = f0:

(knd) tan knd = 2EJ cos f0
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(knd)2. (7)

In terms of the new variables qn(t) the Lagrangian reads
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satisfying generalized Robin boundary conditions. The gen-
eralization involves not only time-dependent parameters, but
also the presence of the second time derivative φ̈. This term
indicates that, in fact, there is a degree of freedom localized at
x = d. (The mechanical analog would be a string ended with
a mass, the boundary condition being the equation of motion
of the mass; see, for instance, [14].) If the time dependence of
the boundary conditions starts at t = 0, the constant values of
Ai and Bi for t < 0 determine the spectrum of the static cavity
that can be tuned setting different values for the properties of
the SQUIDs.

We are thus led to the problem of analyzing particle
creation for a scalar field in 1 + 1 dimensions subjected to the
boundary conditions Eq. (1). This problem has been partially
addressed in previous works. Reference [15] considered the
case of a single mirror with time-dependent Robin boundary
conditions, and computed perturbatively the spectrum of
created particles. In Ref. [16] a similar problem was studied
analytically, considering nontrivial boundary conditions at one
or two points, and paying particular attention on whether
the time-dependent Robin parameter reproduces the boundary
condition for a moving mirror or not. The effects produced by
the inclusion of the term proportional to φ̈, not considered in
[16], have been analyzed for waveguides ended by a SQUID
in [17]. Some of us [14] considered the case of a closed cavity
with general boundary conditions, showing that parametric
resonance may induce an exponential growth in the number of
particles inside the cavity.

In the present paper we will present a detailed numerical
analysis of the particle creation rate, along with analytical
calculations that describe the main features of the numerical
results. (For previous numerical approaches in the case of
Dirichlet or Neumann boundary conditions, see [18].) As we
will see, particle creation depends crucially on the properties
of the static spectrum of the cavity, and also on the amplitude
of the time-dependent part of the functions A2(t) and B2(t).
This is to be expected from previous results for the case of
moving mirrors that impose Dirichlet or Neumann boundary
conditions. Indeed, when the spectrum is not equidistant,
parametric resonance involves a finite number of modes, and
the number of particles in these modes grow exponentially
when the external frequency is properly chosen [19]. On
the other hand, for equidistant spectra, the coupling between
an infinite number of modes makes the number of particles
to grow quadratically or linearly in time, for short or long
time scales, respectively [5], while the total energy grows
exponentially. We will show that similar situations hold for the
superconducting cavities. Moreover, the numerical approach
will allow us to address cases where the boundary conditions
oscillate with a large amplitude (that are in principle accessible
for experiments) but do not admit an analytical description.

The paper is organized as follows. In Sec. II we describe
the model for a (linearized) superconducting cavity with
time-dependent boundary conditions and show that the system
can be described as a set of coupled harmonic oscillators. In
Sec. III we study analytically the particle creation rate using
multiple scale analysis (MSA), emphasizing the dependence
of the results with the main characteristics of the spectrum.
Section IV contains the numerical results, along with a
brief discussion of the numerical method. We compute the

particle creation rate for spectra of different characteristics and
compare numerical and analytical results. Section V contains a
discussion of the results and the main conclusions of our work.

II. TUNABLE SUPERCONDUCTING CAVITY

We shall consider a superconducting cavity of length d
which is decoupled from the input line at x = 0 and has a
SQUID at x = d. For the theoretical description we follow
closely Ref. [20]. The cavity, which is assumed to have
capacitance C0 and inductance L0 per unit length, is described
by the superconducting phase field φ(x,t) with the Lagrangian

Lcav =
(
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2

∫ d

0
dx(φ̇2 − v2φ′2)

+
[(
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)2 2CJ

2
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d − EJ cos f (t)φ2
d

]
, (2)

where v = 1/
√

L0C0 is the field propagation velocity, φd the
value of the field at the boundary by φ(d,t), and f (t) is the
phase across the SQUID controlled by external magnetic flux.
EJ and CJ denote the Josephson energy and capacitance,
respectively. The Lagrangian in Eq. (2) contains additional
contributions proportional to higher powers of φd that will not
be considered in the rest of this paper.

As anticipated, the description of the cavity involves the
field φ(x,t) for 0 < x < d and the additional degree of
freedom φd . The dynamical equations read

φ̈ − v2φ′′ = 0 (3)

and
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EC

φ̈d + 2EJ cos f (t)φd + EL,cavdφ′
d = 0, (4)

where EC = (2e)2/(2CJ ) and EL,cav = (!/2e)2(1/L0d). The
equation above comes from the variation of the action with
respect to φd and can be considered as a generalized boundary
condition for the field. We could consider general boundary
conditions also at x = 0, but for the sake of simplicity we will
assume that φ′(0,t) = 0. (Physically this corresponds to the
situation where the cavity is decoupled.)

It will be useful to write the Lagrangian in terms of
eigenfunctions of the static cavity. Assuming that

f (t) = f0 + θ (t)θ (tF − t)ε sin $t, (5)

we can expand the field as
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f = f0:

(knd) tan knd = 2EJ cos f0

EL,cav
− 2CJ

C0d
(knd)2. (7)

In terms of the new variables qn(t) the Lagrangian reads

Lcav = 1
2

∑

n

[
Mnq̇

2
n − Mnω

2
nq

2
n

]
+ EJ φ2

d [cos f0 − cos f (t)],

(8)

032501-2

Unusual boundary conditions localized degrees of freedom



PARTICLE CREATION IN A TUNABLE CAVITY

Expansion of the field in terms of
modes of the static cavity

Equations that define the static
spectrum

Lombardo, Mazzitelli, Soba & Villar 2016, 2018

LOMBARDO, MAZZITELLI, SOBA, AND VILLAR PHYSICAL REVIEW A 93, 032501 (2016)

satisfying generalized Robin boundary conditions. The gen-
eralization involves not only time-dependent parameters, but
also the presence of the second time derivative φ̈. This term
indicates that, in fact, there is a degree of freedom localized at
x = d. (The mechanical analog would be a string ended with
a mass, the boundary condition being the equation of motion
of the mass; see, for instance, [14].) If the time dependence of
the boundary conditions starts at t = 0, the constant values of
Ai and Bi for t < 0 determine the spectrum of the static cavity
that can be tuned setting different values for the properties of
the SQUIDs.

We are thus led to the problem of analyzing particle
creation for a scalar field in 1 + 1 dimensions subjected to the
boundary conditions Eq. (1). This problem has been partially
addressed in previous works. Reference [15] considered the
case of a single mirror with time-dependent Robin boundary
conditions, and computed perturbatively the spectrum of
created particles. In Ref. [16] a similar problem was studied
analytically, considering nontrivial boundary conditions at one
or two points, and paying particular attention on whether
the time-dependent Robin parameter reproduces the boundary
condition for a moving mirror or not. The effects produced by
the inclusion of the term proportional to φ̈, not considered in
[16], have been analyzed for waveguides ended by a SQUID
in [17]. Some of us [14] considered the case of a closed cavity
with general boundary conditions, showing that parametric
resonance may induce an exponential growth in the number of
particles inside the cavity.

In the present paper we will present a detailed numerical
analysis of the particle creation rate, along with analytical
calculations that describe the main features of the numerical
results. (For previous numerical approaches in the case of
Dirichlet or Neumann boundary conditions, see [18].) As we
will see, particle creation depends crucially on the properties
of the static spectrum of the cavity, and also on the amplitude
of the time-dependent part of the functions A2(t) and B2(t).
This is to be expected from previous results for the case of
moving mirrors that impose Dirichlet or Neumann boundary
conditions. Indeed, when the spectrum is not equidistant,
parametric resonance involves a finite number of modes, and
the number of particles in these modes grow exponentially
when the external frequency is properly chosen [19]. On
the other hand, for equidistant spectra, the coupling between
an infinite number of modes makes the number of particles
to grow quadratically or linearly in time, for short or long
time scales, respectively [5], while the total energy grows
exponentially. We will show that similar situations hold for the
superconducting cavities. Moreover, the numerical approach
will allow us to address cases where the boundary conditions
oscillate with a large amplitude (that are in principle accessible
for experiments) but do not admit an analytical description.

The paper is organized as follows. In Sec. II we describe
the model for a (linearized) superconducting cavity with
time-dependent boundary conditions and show that the system
can be described as a set of coupled harmonic oscillators. In
Sec. III we study analytically the particle creation rate using
multiple scale analysis (MSA), emphasizing the dependence
of the results with the main characteristics of the spectrum.
Section IV contains the numerical results, along with a
brief discussion of the numerical method. We compute the

particle creation rate for spectra of different characteristics and
compare numerical and analytical results. Section V contains a
discussion of the results and the main conclusions of our work.

II. TUNABLE SUPERCONDUCTING CAVITY

We shall consider a superconducting cavity of length d
which is decoupled from the input line at x = 0 and has a
SQUID at x = d. For the theoretical description we follow
closely Ref. [20]. The cavity, which is assumed to have
capacitance C0 and inductance L0 per unit length, is described
by the superconducting phase field φ(x,t) with the Lagrangian

Lcav =
(

!
2e

)2
C0

2

∫ d

0
dx(φ̇2 − v2φ′2)

+
[(
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φ̇2

d − EJ cos f (t)φ2
d

]
, (2)
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√

L0C0 is the field propagation velocity, φd the
value of the field at the boundary by φ(d,t), and f (t) is the
phase across the SQUID controlled by external magnetic flux.
EJ and CJ denote the Josephson energy and capacitance,
respectively. The Lagrangian in Eq. (2) contains additional
contributions proportional to higher powers of φd that will not
be considered in the rest of this paper.

As anticipated, the description of the cavity involves the
field φ(x,t) for 0 < x < d and the additional degree of
freedom φd . The dynamical equations read

φ̈ − v2φ′′ = 0 (3)

and
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d = 0, (4)

where EC = (2e)2/(2CJ ) and EL,cav = (!/2e)2(1/L0d). The
equation above comes from the variation of the action with
respect to φd and can be considered as a generalized boundary
condition for the field. We could consider general boundary
conditions also at x = 0, but for the sake of simplicity we will
assume that φ′(0,t) = 0. (Physically this corresponds to the
situation where the cavity is decoupled.)

It will be useful to write the Lagrangian in terms of
eigenfunctions of the static cavity. Assuming that

f (t) = f0 + θ (t)θ (tF − t)ε sin $t, (5)

we can expand the field as
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satisfying generalized Robin boundary conditions. The gen-
eralization involves not only time-dependent parameters, but
also the presence of the second time derivative φ̈. This term
indicates that, in fact, there is a degree of freedom localized at
x = d. (The mechanical analog would be a string ended with
a mass, the boundary condition being the equation of motion
of the mass; see, for instance, [14].) If the time dependence of
the boundary conditions starts at t = 0, the constant values of
Ai and Bi for t < 0 determine the spectrum of the static cavity
that can be tuned setting different values for the properties of
the SQUIDs.

We are thus led to the problem of analyzing particle
creation for a scalar field in 1 + 1 dimensions subjected to the
boundary conditions Eq. (1). This problem has been partially
addressed in previous works. Reference [15] considered the
case of a single mirror with time-dependent Robin boundary
conditions, and computed perturbatively the spectrum of
created particles. In Ref. [16] a similar problem was studied
analytically, considering nontrivial boundary conditions at one
or two points, and paying particular attention on whether
the time-dependent Robin parameter reproduces the boundary
condition for a moving mirror or not. The effects produced by
the inclusion of the term proportional to φ̈, not considered in
[16], have been analyzed for waveguides ended by a SQUID
in [17]. Some of us [14] considered the case of a closed cavity
with general boundary conditions, showing that parametric
resonance may induce an exponential growth in the number of
particles inside the cavity.

In the present paper we will present a detailed numerical
analysis of the particle creation rate, along with analytical
calculations that describe the main features of the numerical
results. (For previous numerical approaches in the case of
Dirichlet or Neumann boundary conditions, see [18].) As we
will see, particle creation depends crucially on the properties
of the static spectrum of the cavity, and also on the amplitude
of the time-dependent part of the functions A2(t) and B2(t).
This is to be expected from previous results for the case of
moving mirrors that impose Dirichlet or Neumann boundary
conditions. Indeed, when the spectrum is not equidistant,
parametric resonance involves a finite number of modes, and
the number of particles in these modes grow exponentially
when the external frequency is properly chosen [19]. On
the other hand, for equidistant spectra, the coupling between
an infinite number of modes makes the number of particles
to grow quadratically or linearly in time, for short or long
time scales, respectively [5], while the total energy grows
exponentially. We will show that similar situations hold for the
superconducting cavities. Moreover, the numerical approach
will allow us to address cases where the boundary conditions
oscillate with a large amplitude (that are in principle accessible
for experiments) but do not admit an analytical description.

The paper is organized as follows. In Sec. II we describe
the model for a (linearized) superconducting cavity with
time-dependent boundary conditions and show that the system
can be described as a set of coupled harmonic oscillators. In
Sec. III we study analytically the particle creation rate using
multiple scale analysis (MSA), emphasizing the dependence
of the results with the main characteristics of the spectrum.
Section IV contains the numerical results, along with a
brief discussion of the numerical method. We compute the

particle creation rate for spectra of different characteristics and
compare numerical and analytical results. Section V contains a
discussion of the results and the main conclusions of our work.

II. TUNABLE SUPERCONDUCTING CAVITY

We shall consider a superconducting cavity of length d
which is decoupled from the input line at x = 0 and has a
SQUID at x = d. For the theoretical description we follow
closely Ref. [20]. The cavity, which is assumed to have
capacitance C0 and inductance L0 per unit length, is described
by the superconducting phase field φ(x,t) with the Lagrangian

Lcav =
(
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∫ d
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dx(φ̇2 − v2φ′2)

+
[(
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2
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d − EJ cos f (t)φ2
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]
, (2)

where v = 1/
√

L0C0 is the field propagation velocity, φd the
value of the field at the boundary by φ(d,t), and f (t) is the
phase across the SQUID controlled by external magnetic flux.
EJ and CJ denote the Josephson energy and capacitance,
respectively. The Lagrangian in Eq. (2) contains additional
contributions proportional to higher powers of φd that will not
be considered in the rest of this paper.

As anticipated, the description of the cavity involves the
field φ(x,t) for 0 < x < d and the additional degree of
freedom φd . The dynamical equations read

φ̈ − v2φ′′ = 0 (3)

and

!2

EC

φ̈d + 2EJ cos f (t)φd + EL,cavdφ′
d = 0, (4)

where EC = (2e)2/(2CJ ) and EL,cav = (!/2e)2(1/L0d). The
equation above comes from the variation of the action with
respect to φd and can be considered as a generalized boundary
condition for the field. We could consider general boundary
conditions also at x = 0, but for the sake of simplicity we will
assume that φ′(0,t) = 0. (Physically this corresponds to the
situation where the cavity is decoupled.)

It will be useful to write the Lagrangian in terms of
eigenfunctions of the static cavity. Assuming that

f (t) = f0 + θ (t)θ (tF − t)ε sin $t, (5)

we can expand the field as

φ(x,t) = 2e

!

√
2

C0d

∑

n

qn(t) cos knx, (6)

where the eigenfrequencies kn satisfy Eq. (4) in the static case
f = f0:

(knd) tan knd = 2EJ cos f0
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In terms of the new variables qn(t) the Lagrangian reads
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where ωn = vkn and

Mn = 1 + sin 2knd

2knd
+ 4CJ

dC0
cos2 knd. (9)

The dynamical equation for mode n is therefore

q̈n + v2k2
nqn = 4EJ

EL,cavMn

v2

d2
ε θ (t)θ (tF − t) sin(f0)

× sin $t cos knd
∑

m

qm(t) cos kmd, (10)

where we assumed that ε # 1.
The classical description of the theory consists of a set

of coupled harmonic oscillators with time-dependent frequen-
cies. The quantization of the system is straightforward. In
the Heisenberg representation, the variables qn(t) become
quantum operators

q̂n(t) = un(t)ân + u∗
n(t)â†

n, (11)

where ân and â
†
n are the annihilation and creation operators.

The functions un(t) are properly normalized solutions of
Eq. (10). In the static regions t < 0 and t > tF they are linear
combinations of e±ivknt . We define the in-basis as the solutions
of Eq. (10) that satisfy

uin
n (t) = 1√

2vkn

e−ivknt for t < 0. (12)

The associated annihilation operators ain
n define the in-vacuum

|0in〉. The out-basis uout
n is introduced in a similar way, defining

the behavior for t > tF . The in- and out-basis are connected
by a Bogoliubov transformation,

uin
n (t) = αnu

out
n (t) + βnu

out ∗
n (t), (13)

and the number of created particles in the mode n for t > tF
is given by

Nn = 〈0in|aout †
n aout

n |0in〉 = |βn|2. (14)

In the present paper, we shall numerically solve the
dynamical equation (10) and evaluate the number of created
particles using (11)–(14).

III. SOME ANALYTIC RESULTS: MULTIPLE
SCALE ANALYSIS

In order to study analytically Eqs. (10), we write them in
the form

q̈n + ω2
n(t)qn =

∑

m(=n

Snm(t)qm, (15)

where we made the redefinition qn →
√

Mnqn and

ωn(t) = kn

(
1 − α

k2
1

k2
n

cos2 knd

Mn

sin $t

)

Smn(t) = αk2
1

cos knd cos kmd√
MnMm

sin $t

α = 4EJ

EL,cavk
2
1d

2
ε sin(f0). (16)

Here k1 denotes the lowest eigenfrequency [21]. We will
assume that the amplitude of the time dependence is small,

that is, α # 1. We have set v = 1 and shall use this in what
follows.

It is known that, due to parametric resonance, a naive
perturbative solution of Eq. (15) in powers of α breaks down
after a short amount of time. In order to find a solution valid for
longer times we use the MSA technique [19,22]. We introduce
a second time scale τ = αt , and write

qn(t,τ ) = An(τ )
e−iknt

√
2kn

+ Bn(τ )
eiknt

√
2kn

. (17)

The functions An and Bn are slowly varying and contain the
cumulative resonant effects. To obtain differential equations
for them, we insert this ansatz into Eq. (15) and neglect second
derivatives of An and Bn. After multiplying the equation by
exp ±iknt and averaging over the fast oscillations we obtain

dAn

dτ
= −k2

1

kn

cos2 knd

2Mn

Bnδ($ − 2kn)

+ k2
1

4

∑

m(=n

cos knd cos kmd√
knkmMnMm

× {Am[δ(kn − km + $) − δ(kn − km − $)]

−Bmδ(kn + km − $)},
dBn

dτ
= −k2

1

kn

cos2 knd

2Mn

Anδ($ − 2kn)

− k2
1

4

∑

m(=n

cos knd cos kmd√
knkmMnMm

× {Bm[δ(km − kn + $) − δ(km − kn − $)]

+Amδ(kn + km − $)}. (18)

We can see that these equations are nontrivial when the external
harmonic driving frequency is just tuned with one eigenvalue
of the static cavity $ = 2kn. Moreover, other modes will be
coupled and will resonate if the condition

$ = |kn ± kj | (19)

is satisfied.

A. A single resonant mode

If we assume that Eq. (19) is not satisfied by any j (= n,
the only resonant mode is the one tuned with the external
frequency. In this case, the long time solution to Eqs. (18) is
trivial and given by

|An|2 * |Bn|2 * eλnt , λn = α
k2

1

kn

cos2 knd

2Mn

, (20)

that is, due to parametric resonance the number of created
particles grows exponentially with the stopping time.

B. Finite number of resonant modes

Let us now consider the case in which Eq. (19) is satisfied
for a finite number of modes. In this case, Eqs. (18) become
nontrivial for those modes, and one expects an enhancement in
the corresponding particle creation rates. Although we could
consider a general situation, for the sake of simplicity we will
illustrate this case with a particular example. We will assume
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∑
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where we assumed that ε # 1.
The classical description of the theory consists of a set

of coupled harmonic oscillators with time-dependent frequen-
cies. The quantization of the system is straightforward. In
the Heisenberg representation, the variables qn(t) become
quantum operators

q̂n(t) = un(t)ân + u∗
n(t)â†

n, (11)

where ân and â
†
n are the annihilation and creation operators.
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that is, α # 1. We have set v = 1 and shall use this in what
follows.

It is known that, due to parametric resonance, a naive
perturbative solution of Eq. (15) in powers of α breaks down
after a short amount of time. In order to find a solution valid for
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The functions An and Bn are slowly varying and contain the
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for them, we insert this ansatz into Eq. (15) and neglect second
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We can see that these equations are nontrivial when the external
harmonic driving frequency is just tuned with one eigenvalue
of the static cavity $ = 2kn. Moreover, other modes will be
coupled and will resonate if the condition

$ = |kn ± kj | (19)

is satisfied.

A. A single resonant mode

If we assume that Eq. (19) is not satisfied by any j (= n,
the only resonant mode is the one tuned with the external
frequency. In this case, the long time solution to Eqs. (18) is
trivial and given by

|An|2 * |Bn|2 * eλnt , λn = α
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that is, due to parametric resonance the number of created
particles grows exponentially with the stopping time.

B. Finite number of resonant modes

Let us now consider the case in which Eq. (19) is satisfied
for a finite number of modes. In this case, Eqs. (18) become
nontrivial for those modes, and one expects an enhancement in
the corresponding particle creation rates. Although we could
consider a general situation, for the sake of simplicity we will
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the Heisenberg representation, the variables qn(t) become
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where ân and â
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that is, α # 1. We have set v = 1 and shall use this in what
follows.
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perturbative solution of Eq. (15) in powers of α breaks down
after a short amount of time. In order to find a solution valid for
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+ k2
1

4

∑

m(=n

cos knd cos kmd√
knkmMnMm

× {Am[δ(kn − km + $) − δ(kn − km − $)]

−Bmδ(kn + km − $)},
dBn

dτ
= −k2

1

kn

cos2 knd

2Mn

Anδ($ − 2kn)

− k2
1

4

∑

m(=n

cos knd cos kmd√
knkmMnMm

× {Bm[δ(km − kn + $) − δ(km − kn − $)]

+Amδ(kn + km − $)}. (18)

We can see that these equations are nontrivial when the external
harmonic driving frequency is just tuned with one eigenvalue
of the static cavity $ = 2kn. Moreover, other modes will be
coupled and will resonate if the condition

$ = |kn ± kj | (19)

is satisfied.

A. A single resonant mode

If we assume that Eq. (19) is not satisfied by any j (= n,
the only resonant mode is the one tuned with the external
frequency. In this case, the long time solution to Eqs. (18) is
trivial and given by

|An|2 * |Bn|2 * eλnt , λn = α
k2

1

kn

cos2 knd

2Mn

, (20)

that is, due to parametric resonance the number of created
particles grows exponentially with the stopping time.

B. Finite number of resonant modes

Let us now consider the case in which Eq. (19) is satisfied
for a finite number of modes. In this case, Eqs. (18) become
nontrivial for those modes, and one expects an enhancement in
the corresponding particle creation rates. Although we could
consider a general situation, for the sake of simplicity we will
illustrate this case with a particular example. We will assume
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where ωn = vkn and

Mn = 1 + sin 2knd

2knd
+ 4CJ

dC0
cos2 knd. (9)

The dynamical equation for mode n is therefore

q̈n + v2k2
nqn = 4EJ

EL,cavMn

v2

d2
ε θ (t)θ (tF − t) sin(f0)

× sin $t cos knd
∑

m

qm(t) cos kmd, (10)

where we assumed that ε # 1.
The classical description of the theory consists of a set

of coupled harmonic oscillators with time-dependent frequen-
cies. The quantization of the system is straightforward. In
the Heisenberg representation, the variables qn(t) become
quantum operators

q̂n(t) = un(t)ân + u∗
n(t)â†

n, (11)

where ân and â
†
n are the annihilation and creation operators.

The functions un(t) are properly normalized solutions of
Eq. (10). In the static regions t < 0 and t > tF they are linear
combinations of e±ivknt . We define the in-basis as the solutions
of Eq. (10) that satisfy

uin
n (t) = 1√

2vkn

e−ivknt for t < 0. (12)

The associated annihilation operators ain
n define the in-vacuum

|0in〉. The out-basis uout
n is introduced in a similar way, defining

the behavior for t > tF . The in- and out-basis are connected
by a Bogoliubov transformation,

uin
n (t) = αnu

out
n (t) + βnu

out ∗
n (t), (13)

and the number of created particles in the mode n for t > tF
is given by

Nn = 〈0in|aout †
n aout

n |0in〉 = |βn|2. (14)

In the present paper, we shall numerically solve the
dynamical equation (10) and evaluate the number of created
particles using (11)–(14).

III. SOME ANALYTIC RESULTS: MULTIPLE
SCALE ANALYSIS

In order to study analytically Eqs. (10), we write them in
the form

q̈n + ω2
n(t)qn =

∑

m(=n

Snm(t)qm, (15)

where we made the redefinition qn →
√

Mnqn and

ωn(t) = kn

(
1 − α

k2
1

k2
n

cos2 knd

Mn

sin $t

)

Smn(t) = αk2
1

cos knd cos kmd√
MnMm

sin $t

α = 4EJ

EL,cavk
2
1d

2
ε sin(f0). (16)

Here k1 denotes the lowest eigenfrequency [21]. We will
assume that the amplitude of the time dependence is small,

that is, α # 1. We have set v = 1 and shall use this in what
follows.

It is known that, due to parametric resonance, a naive
perturbative solution of Eq. (15) in powers of α breaks down
after a short amount of time. In order to find a solution valid for
longer times we use the MSA technique [19,22]. We introduce
a second time scale τ = αt , and write

qn(t,τ ) = An(τ )
e−iknt

√
2kn

+ Bn(τ )
eiknt

√
2kn

. (17)

The functions An and Bn are slowly varying and contain the
cumulative resonant effects. To obtain differential equations
for them, we insert this ansatz into Eq. (15) and neglect second
derivatives of An and Bn. After multiplying the equation by
exp ±iknt and averaging over the fast oscillations we obtain

dAn

dτ
= −k2

1

kn

cos2 knd

2Mn

Bnδ($ − 2kn)

+ k2
1

4

∑

m(=n

cos knd cos kmd√
knkmMnMm

× {Am[δ(kn − km + $) − δ(kn − km − $)]

−Bmδ(kn + km − $)},
dBn

dτ
= −k2

1

kn

cos2 knd

2Mn

Anδ($ − 2kn)

− k2
1

4

∑

m(=n

cos knd cos kmd√
knkmMnMm

× {Bm[δ(km − kn + $) − δ(km − kn − $)]

+Amδ(kn + km − $)}. (18)

We can see that these equations are nontrivial when the external
harmonic driving frequency is just tuned with one eigenvalue
of the static cavity $ = 2kn. Moreover, other modes will be
coupled and will resonate if the condition

$ = |kn ± kj | (19)

is satisfied.

A. A single resonant mode

If we assume that Eq. (19) is not satisfied by any j (= n,
the only resonant mode is the one tuned with the external
frequency. In this case, the long time solution to Eqs. (18) is
trivial and given by

|An|2 * |Bn|2 * eλnt , λn = α
k2

1

kn

cos2 knd

2Mn

, (20)

that is, due to parametric resonance the number of created
particles grows exponentially with the stopping time.

B. Finite number of resonant modes

Let us now consider the case in which Eq. (19) is satisfied
for a finite number of modes. In this case, Eqs. (18) become
nontrivial for those modes, and one expects an enhancement in
the corresponding particle creation rates. Although we could
consider a general situation, for the sake of simplicity we will
illustrate this case with a particular example. We will assume
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where ωn = vkn and

Mn = 1 + sin 2knd

2knd
+ 4CJ

dC0
cos2 knd. (9)

The dynamical equation for mode n is therefore

q̈n + v2k2
nqn = 4EJ

EL,cavMn

v2

d2
ε θ (t)θ (tF − t) sin(f0)

× sin $t cos knd
∑

m

qm(t) cos kmd, (10)

where we assumed that ε # 1.
The classical description of the theory consists of a set

of coupled harmonic oscillators with time-dependent frequen-
cies. The quantization of the system is straightforward. In
the Heisenberg representation, the variables qn(t) become
quantum operators

q̂n(t) = un(t)ân + u∗
n(t)â†

n, (11)

where ân and â
†
n are the annihilation and creation operators.

The functions un(t) are properly normalized solutions of
Eq. (10). In the static regions t < 0 and t > tF they are linear
combinations of e±ivknt . We define the in-basis as the solutions
of Eq. (10) that satisfy

uin
n (t) = 1√

2vkn

e−ivknt for t < 0. (12)

The associated annihilation operators ain
n define the in-vacuum

|0in〉. The out-basis uout
n is introduced in a similar way, defining

the behavior for t > tF . The in- and out-basis are connected
by a Bogoliubov transformation,

uin
n (t) = αnu

out
n (t) + βnu

out ∗
n (t), (13)

and the number of created particles in the mode n for t > tF
is given by

Nn = 〈0in|aout †
n aout

n |0in〉 = |βn|2. (14)

In the present paper, we shall numerically solve the
dynamical equation (10) and evaluate the number of created
particles using (11)–(14).

III. SOME ANALYTIC RESULTS: MULTIPLE
SCALE ANALYSIS

In order to study analytically Eqs. (10), we write them in
the form

q̈n + ω2
n(t)qn =

∑

m(=n

Snm(t)qm, (15)

where we made the redefinition qn →
√

Mnqn and

ωn(t) = kn

(
1 − α

k2
1

k2
n

cos2 knd

Mn

sin $t

)

Smn(t) = αk2
1

cos knd cos kmd√
MnMm

sin $t

α = 4EJ

EL,cavk
2
1d

2
ε sin(f0). (16)

Here k1 denotes the lowest eigenfrequency [21]. We will
assume that the amplitude of the time dependence is small,

that is, α # 1. We have set v = 1 and shall use this in what
follows.

It is known that, due to parametric resonance, a naive
perturbative solution of Eq. (15) in powers of α breaks down
after a short amount of time. In order to find a solution valid for
longer times we use the MSA technique [19,22]. We introduce
a second time scale τ = αt , and write

qn(t,τ ) = An(τ )
e−iknt

√
2kn

+ Bn(τ )
eiknt

√
2kn

. (17)

The functions An and Bn are slowly varying and contain the
cumulative resonant effects. To obtain differential equations
for them, we insert this ansatz into Eq. (15) and neglect second
derivatives of An and Bn. After multiplying the equation by
exp ±iknt and averaging over the fast oscillations we obtain

dAn

dτ
= −k2

1

kn

cos2 knd

2Mn

Bnδ($ − 2kn)

+ k2
1

4

∑

m(=n

cos knd cos kmd√
knkmMnMm

× {Am[δ(kn − km + $) − δ(kn − km − $)]

−Bmδ(kn + km − $)},
dBn

dτ
= −k2

1

kn

cos2 knd

2Mn

Anδ($ − 2kn)

− k2
1

4

∑

m(=n

cos knd cos kmd√
knkmMnMm

× {Bm[δ(km − kn + $) − δ(km − kn − $)]

+Amδ(kn + km − $)}. (18)

We can see that these equations are nontrivial when the external
harmonic driving frequency is just tuned with one eigenvalue
of the static cavity $ = 2kn. Moreover, other modes will be
coupled and will resonate if the condition

$ = |kn ± kj | (19)

is satisfied.

A. A single resonant mode

If we assume that Eq. (19) is not satisfied by any j (= n,
the only resonant mode is the one tuned with the external
frequency. In this case, the long time solution to Eqs. (18) is
trivial and given by

|An|2 * |Bn|2 * eλnt , λn = α
k2

1

kn

cos2 knd

2Mn

, (20)

that is, due to parametric resonance the number of created
particles grows exponentially with the stopping time.

B. Finite number of resonant modes

Let us now consider the case in which Eq. (19) is satisfied
for a finite number of modes. In this case, Eqs. (18) become
nontrivial for those modes, and one expects an enhancement in
the corresponding particle creation rates. Although we could
consider a general situation, for the sake of simplicity we will
illustrate this case with a particular example. We will assume
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that the system is excited with a frequency ! = 2kj , and that
there exists another eigenfrequency of the static cavity such
that kl = 3kj . Thus, Eqs. (18) become

dAj

dτ
= −#jBj + #j lAl

dBj

dτ
= −#jAj + #j lBl

dAl

dτ
= −#j lAj

dBl

dτ
= −#j lBi, (21)

where

#j = k2
1

kj

cos2 kjd

2Mj

#j l = k2
1√

kjkl

cos kjd cos kld

4
√

MjMl

. (22)

The solutions of these equations are linear combinations of
exponentials eα#t with four possible values for #:

# = 1
2

(
±#j ±

√
#2

j − 4#2
j l

)
. (23)

The biggest real part of these four values determines the rate
of particle creation in both modes kl and kj .

C. Equidistant spectrum

Another important situation is when Eq. (19) is satisfied by
an infinite number of modes. This is the case, for example,
for a scalar field in 1 + 1 dimensions, satisfying Dirichlet
or Neumann boundary conditions, or, more generally, when
the spectrum is equidistant. The analysis of the solutions of
Eqs. (18) in such cases is more involved. It has been described
in detail for Dirichlet boundary conditions in [5,23], using
different approaches. The main results are that the coupling
between an infinite number of modes makes the number of
particles to grow quadratically or linearly in time, for short
or long time scales, respectively, while the total energy grows
exponentially. This has been shown in the case in which the
amplitude of the time dependence in the right-hand side of the
modes equations is small.

D. Beyond MSA: Very long times

The MSA improves the perturbative solutions, but it is not
valid for extremely long times. For example, in the case in
which there is a single resonant mode, the long time growth of
the mode should induce an exponential behavior in all other
modes. Indeed, going back to Eq. (15), and assuming that the
first mode is the resonant one, we have for n "= 1:

q̈n + k2
nqn # Sn1(t)q1 # αĀne

λ1t/2 sin 2k1t cos k1t, (24)

where Ān is a constant of order 1. From this equation one can
show that the number of particles in all modes will grow at
very long times with a rate λ1, showing oscillations around the
exponential with frequency k1.

IV. THE NUMERICAL METHOD AND RESULTS

In order to solve numerically the equation of motion of the
n modes Eq. (10), we firstly determine the eigenfrequencies
of the cavity from Eq. (7) by using a single Newton-Raphson
method with a stopping error of 10−6. From Eqs. (15) and
(16), we can perform a change of variables q̇n = Un in order
to obtain a new system of equations:

q̇n = Un, U̇n = −ω2
n(t)qn −

∑

m

Snm(t)qm, (25)

where Snm(t) is defined in Eq. (16).
The system is integrated using a fourth-order Runge-Kutta

numerical scheme between t = 0 and tmax. The perturbation is
turned on for times 0 < t < tF , with tF < tmax. As we know
that the unperturbed solution has the form of Eq. (17), we can
multiply both terms of the equation by exp(−iknt) and take
the mean value in tF < t < tmax. In this way, we are able to
numerically evaluate |Bn|2 and, also the particle number in
mode n as a function of time as Nn(t) = |Bn(t)|2.

A. Frequency spectrum of tunable cavity

Given the strong dependence of the particle creation rate
with the spectrum of the static cavity, as can be seen in
Eq. (20) for the one-resonant-mode example, it is important to
analyze the spectra that result from the generalized boundary
conditions in the tunable superconducting cavity [Eq. (7)].
Firstly, we redefine variables V0 = (2EJ )/(EL,cav) and χ0 =
(2CJ )/(C0d), for which the equation reads

knd tan(knd) + χ0(knd)2 = V0 cos f0. (26)

In what follows we set d = 1. In these units the spectral
modes kn are given in units of 1/d (knd is dimensionless) and,
since we have already set v = 1, time is also measured in units
of d. All figures are referred to dimensionless quantities.

There are three free parameters that determine the solutions
of Eq. (26): χ0, V0, and f0. In the first place, we shall study the
difference between consecutive eigenfrequencies as a function
of the dimensionless quantity b0 = V0 cos f0 for a typical
experimental value [20], say χ0 = 0.05. We can see in Fig. 1
that the bigger the value of b0, the more equidistant is the
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FIG. 1. Difference of consecutive eigenfrequencies as a function
of dimensionless b0 = V0 cos f0, for a fixed value of χ0 = 0.05.
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that the system is excited with a frequency ! = 2kj , and that
there exists another eigenfrequency of the static cavity such
that kl = 3kj . Thus, Eqs. (18) become

dAj

dτ
= −#jBj + #j lAl

dBj

dτ
= −#jAj + #j lBl

dAl

dτ
= −#j lAj

dBl

dτ
= −#j lBi, (21)

where

#j = k2
1

kj

cos2 kjd

2Mj

#j l = k2
1√

kjkl

cos kjd cos kld

4
√

MjMl

. (22)

The solutions of these equations are linear combinations of
exponentials eα#t with four possible values for #:

# = 1
2

(
±#j ±

√
#2

j − 4#2
j l

)
. (23)

The biggest real part of these four values determines the rate
of particle creation in both modes kl and kj .

C. Equidistant spectrum

Another important situation is when Eq. (19) is satisfied by
an infinite number of modes. This is the case, for example,
for a scalar field in 1 + 1 dimensions, satisfying Dirichlet
or Neumann boundary conditions, or, more generally, when
the spectrum is equidistant. The analysis of the solutions of
Eqs. (18) in such cases is more involved. It has been described
in detail for Dirichlet boundary conditions in [5,23], using
different approaches. The main results are that the coupling
between an infinite number of modes makes the number of
particles to grow quadratically or linearly in time, for short
or long time scales, respectively, while the total energy grows
exponentially. This has been shown in the case in which the
amplitude of the time dependence in the right-hand side of the
modes equations is small.

D. Beyond MSA: Very long times

The MSA improves the perturbative solutions, but it is not
valid for extremely long times. For example, in the case in
which there is a single resonant mode, the long time growth of
the mode should induce an exponential behavior in all other
modes. Indeed, going back to Eq. (15), and assuming that the
first mode is the resonant one, we have for n "= 1:

q̈n + k2
nqn # Sn1(t)q1 # αĀne

λ1t/2 sin 2k1t cos k1t, (24)

where Ān is a constant of order 1. From this equation one can
show that the number of particles in all modes will grow at
very long times with a rate λ1, showing oscillations around the
exponential with frequency k1.

IV. THE NUMERICAL METHOD AND RESULTS

In order to solve numerically the equation of motion of the
n modes Eq. (10), we firstly determine the eigenfrequencies
of the cavity from Eq. (7) by using a single Newton-Raphson
method with a stopping error of 10−6. From Eqs. (15) and
(16), we can perform a change of variables q̇n = Un in order
to obtain a new system of equations:

q̇n = Un, U̇n = −ω2
n(t)qn −

∑

m

Snm(t)qm, (25)

where Snm(t) is defined in Eq. (16).
The system is integrated using a fourth-order Runge-Kutta

numerical scheme between t = 0 and tmax. The perturbation is
turned on for times 0 < t < tF , with tF < tmax. As we know
that the unperturbed solution has the form of Eq. (17), we can
multiply both terms of the equation by exp(−iknt) and take
the mean value in tF < t < tmax. In this way, we are able to
numerically evaluate |Bn|2 and, also the particle number in
mode n as a function of time as Nn(t) = |Bn(t)|2.

A. Frequency spectrum of tunable cavity

Given the strong dependence of the particle creation rate
with the spectrum of the static cavity, as can be seen in
Eq. (20) for the one-resonant-mode example, it is important to
analyze the spectra that result from the generalized boundary
conditions in the tunable superconducting cavity [Eq. (7)].
Firstly, we redefine variables V0 = (2EJ )/(EL,cav) and χ0 =
(2CJ )/(C0d), for which the equation reads

knd tan(knd) + χ0(knd)2 = V0 cos f0. (26)

In what follows we set d = 1. In these units the spectral
modes kn are given in units of 1/d (knd is dimensionless) and,
since we have already set v = 1, time is also measured in units
of d. All figures are referred to dimensionless quantities.

There are three free parameters that determine the solutions
of Eq. (26): χ0, V0, and f0. In the first place, we shall study the
difference between consecutive eigenfrequencies as a function
of the dimensionless quantity b0 = V0 cos f0 for a typical
experimental value [20], say χ0 = 0.05. We can see in Fig. 1
that the bigger the value of b0, the more equidistant is the
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that the system is excited with a frequency ! = 2kj , and that
there exists another eigenfrequency of the static cavity such
that kl = 3kj . Thus, Eqs. (18) become

dAj

dτ
= −#jBj + #j lAl

dBj

dτ
= −#jAj + #j lBl

dAl

dτ
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where
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. (22)

The solutions of these equations are linear combinations of
exponentials eα#t with four possible values for #:

# = 1
2

(
±#j ±

√
#2

j − 4#2
j l

)
. (23)

The biggest real part of these four values determines the rate
of particle creation in both modes kl and kj .

C. Equidistant spectrum

Another important situation is when Eq. (19) is satisfied by
an infinite number of modes. This is the case, for example,
for a scalar field in 1 + 1 dimensions, satisfying Dirichlet
or Neumann boundary conditions, or, more generally, when
the spectrum is equidistant. The analysis of the solutions of
Eqs. (18) in such cases is more involved. It has been described
in detail for Dirichlet boundary conditions in [5,23], using
different approaches. The main results are that the coupling
between an infinite number of modes makes the number of
particles to grow quadratically or linearly in time, for short
or long time scales, respectively, while the total energy grows
exponentially. This has been shown in the case in which the
amplitude of the time dependence in the right-hand side of the
modes equations is small.

D. Beyond MSA: Very long times

The MSA improves the perturbative solutions, but it is not
valid for extremely long times. For example, in the case in
which there is a single resonant mode, the long time growth of
the mode should induce an exponential behavior in all other
modes. Indeed, going back to Eq. (15), and assuming that the
first mode is the resonant one, we have for n "= 1:

q̈n + k2
nqn # Sn1(t)q1 # αĀne

λ1t/2 sin 2k1t cos k1t, (24)

where Ān is a constant of order 1. From this equation one can
show that the number of particles in all modes will grow at
very long times with a rate λ1, showing oscillations around the
exponential with frequency k1.

IV. THE NUMERICAL METHOD AND RESULTS

In order to solve numerically the equation of motion of the
n modes Eq. (10), we firstly determine the eigenfrequencies
of the cavity from Eq. (7) by using a single Newton-Raphson
method with a stopping error of 10−6. From Eqs. (15) and
(16), we can perform a change of variables q̇n = Un in order
to obtain a new system of equations:

q̇n = Un, U̇n = −ω2
n(t)qn −

∑

m

Snm(t)qm, (25)

where Snm(t) is defined in Eq. (16).
The system is integrated using a fourth-order Runge-Kutta

numerical scheme between t = 0 and tmax. The perturbation is
turned on for times 0 < t < tF , with tF < tmax. As we know
that the unperturbed solution has the form of Eq. (17), we can
multiply both terms of the equation by exp(−iknt) and take
the mean value in tF < t < tmax. In this way, we are able to
numerically evaluate |Bn|2 and, also the particle number in
mode n as a function of time as Nn(t) = |Bn(t)|2.

A. Frequency spectrum of tunable cavity

Given the strong dependence of the particle creation rate
with the spectrum of the static cavity, as can be seen in
Eq. (20) for the one-resonant-mode example, it is important to
analyze the spectra that result from the generalized boundary
conditions in the tunable superconducting cavity [Eq. (7)].
Firstly, we redefine variables V0 = (2EJ )/(EL,cav) and χ0 =
(2CJ )/(C0d), for which the equation reads

knd tan(knd) + χ0(knd)2 = V0 cos f0. (26)

In what follows we set d = 1. In these units the spectral
modes kn are given in units of 1/d (knd is dimensionless) and,
since we have already set v = 1, time is also measured in units
of d. All figures are referred to dimensionless quantities.

There are three free parameters that determine the solutions
of Eq. (26): χ0, V0, and f0. In the first place, we shall study the
difference between consecutive eigenfrequencies as a function
of the dimensionless quantity b0 = V0 cos f0 for a typical
experimental value [20], say χ0 = 0.05. We can see in Fig. 1
that the bigger the value of b0, the more equidistant is the
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SPECTRUM: SUMMARY

• The spectrum is determined by the static parameters 
of the SQUID

• Parameters can be adjusted to have equidistant or
non-equidistant spectra

• The space of parameters is richer and easier to adjust
compared with the case of mirrors (would involve a 
manipulation of their electromagnetic properties)
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where ωn = vkn and

Mn = 1 + sin 2knd

2knd
+ 4CJ

dC0
cos2 knd. (9)

The dynamical equation for mode n is therefore

q̈n + v2k2
nqn = 4EJ

EL,cavMn

v2

d2
ε θ (t)θ (tF − t) sin(f0)

× sin $t cos knd
∑

m

qm(t) cos kmd, (10)

where we assumed that ε # 1.
The classical description of the theory consists of a set

of coupled harmonic oscillators with time-dependent frequen-
cies. The quantization of the system is straightforward. In
the Heisenberg representation, the variables qn(t) become
quantum operators

q̂n(t) = un(t)ân + u∗
n(t)â†

n, (11)

where ân and â
†
n are the annihilation and creation operators.

The functions un(t) are properly normalized solutions of
Eq. (10). In the static regions t < 0 and t > tF they are linear
combinations of e±ivknt . We define the in-basis as the solutions
of Eq. (10) that satisfy

uin
n (t) = 1√

2vkn

e−ivknt for t < 0. (12)

The associated annihilation operators ain
n define the in-vacuum

|0in〉. The out-basis uout
n is introduced in a similar way, defining

the behavior for t > tF . The in- and out-basis are connected
by a Bogoliubov transformation,

uin
n (t) = αnu

out
n (t) + βnu

out ∗
n (t), (13)

and the number of created particles in the mode n for t > tF
is given by

Nn = 〈0in|aout †
n aout

n |0in〉 = |βn|2. (14)

In the present paper, we shall numerically solve the
dynamical equation (10) and evaluate the number of created
particles using (11)–(14).

III. SOME ANALYTIC RESULTS: MULTIPLE
SCALE ANALYSIS

In order to study analytically Eqs. (10), we write them in
the form

q̈n + ω2
n(t)qn =

∑

m(=n

Snm(t)qm, (15)

where we made the redefinition qn →
√

Mnqn and

ωn(t) = kn

(
1 − α

k2
1

k2
n

cos2 knd

Mn

sin $t

)

Smn(t) = αk2
1

cos knd cos kmd√
MnMm

sin $t

α = 4EJ

EL,cavk
2
1d

2
ε sin(f0). (16)

Here k1 denotes the lowest eigenfrequency [21]. We will
assume that the amplitude of the time dependence is small,

that is, α # 1. We have set v = 1 and shall use this in what
follows.

It is known that, due to parametric resonance, a naive
perturbative solution of Eq. (15) in powers of α breaks down
after a short amount of time. In order to find a solution valid for
longer times we use the MSA technique [19,22]. We introduce
a second time scale τ = αt , and write

qn(t,τ ) = An(τ )
e−iknt

√
2kn

+ Bn(τ )
eiknt

√
2kn

. (17)

The functions An and Bn are slowly varying and contain the
cumulative resonant effects. To obtain differential equations
for them, we insert this ansatz into Eq. (15) and neglect second
derivatives of An and Bn. After multiplying the equation by
exp ±iknt and averaging over the fast oscillations we obtain

dAn

dτ
= −k2

1

kn

cos2 knd

2Mn

Bnδ($ − 2kn)

+ k2
1

4

∑
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+Amδ(kn + km − $)}. (18)

We can see that these equations are nontrivial when the external
harmonic driving frequency is just tuned with one eigenvalue
of the static cavity $ = 2kn. Moreover, other modes will be
coupled and will resonate if the condition

$ = |kn ± kj | (19)

is satisfied.

A. A single resonant mode

If we assume that Eq. (19) is not satisfied by any j (= n,
the only resonant mode is the one tuned with the external
frequency. In this case, the long time solution to Eqs. (18) is
trivial and given by

|An|2 * |Bn|2 * eλnt , λn = α
k2

1

kn

cos2 knd

2Mn

, (20)

that is, due to parametric resonance the number of created
particles grows exponentially with the stopping time.

B. Finite number of resonant modes

Let us now consider the case in which Eq. (19) is satisfied
for a finite number of modes. In this case, Eqs. (18) become
nontrivial for those modes, and one expects an enhancement in
the corresponding particle creation rates. Although we could
consider a general situation, for the sake of simplicity we will
illustrate this case with a particular example. We will assume
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where we assumed that ε # 1.
The classical description of the theory consists of a set

of coupled harmonic oscillators with time-dependent frequen-
cies. The quantization of the system is straightforward. In
the Heisenberg representation, the variables qn(t) become
quantum operators

q̂n(t) = un(t)ân + u∗
n(t)â†

n, (11)

where ân and â
†
n are the annihilation and creation operators.

The functions un(t) are properly normalized solutions of
Eq. (10). In the static regions t < 0 and t > tF they are linear
combinations of e±ivknt . We define the in-basis as the solutions
of Eq. (10) that satisfy
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e−ivknt for t < 0. (12)

The associated annihilation operators ain
n define the in-vacuum

|0in〉. The out-basis uout
n is introduced in a similar way, defining

the behavior for t > tF . The in- and out-basis are connected
by a Bogoliubov transformation,
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and the number of created particles in the mode n for t > tF
is given by

Nn = 〈0in|aout †
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n |0in〉 = |βn|2. (14)

In the present paper, we shall numerically solve the
dynamical equation (10) and evaluate the number of created
particles using (11)–(14).

III. SOME ANALYTIC RESULTS: MULTIPLE
SCALE ANALYSIS

In order to study analytically Eqs. (10), we write them in
the form
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Here k1 denotes the lowest eigenfrequency [21]. We will
assume that the amplitude of the time dependence is small,

that is, α # 1. We have set v = 1 and shall use this in what
follows.

It is known that, due to parametric resonance, a naive
perturbative solution of Eq. (15) in powers of α breaks down
after a short amount of time. In order to find a solution valid for
longer times we use the MSA technique [19,22]. We introduce
a second time scale τ = αt , and write

qn(t,τ ) = An(τ )
e−iknt

√
2kn

+ Bn(τ )
eiknt

√
2kn

. (17)

The functions An and Bn are slowly varying and contain the
cumulative resonant effects. To obtain differential equations
for them, we insert this ansatz into Eq. (15) and neglect second
derivatives of An and Bn. After multiplying the equation by
exp ±iknt and averaging over the fast oscillations we obtain
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We can see that these equations are nontrivial when the external
harmonic driving frequency is just tuned with one eigenvalue
of the static cavity $ = 2kn. Moreover, other modes will be
coupled and will resonate if the condition

$ = |kn ± kj | (19)

is satisfied.

A. A single resonant mode

If we assume that Eq. (19) is not satisfied by any j (= n,
the only resonant mode is the one tuned with the external
frequency. In this case, the long time solution to Eqs. (18) is
trivial and given by

|An|2 * |Bn|2 * eλnt , λn = α
k2

1

kn

cos2 knd

2Mn

, (20)

that is, due to parametric resonance the number of created
particles grows exponentially with the stopping time.

B. Finite number of resonant modes

Let us now consider the case in which Eq. (19) is satisfied
for a finite number of modes. In this case, Eqs. (18) become
nontrivial for those modes, and one expects an enhancement in
the corresponding particle creation rates. Although we could
consider a general situation, for the sake of simplicity we will
illustrate this case with a particular example. We will assume
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where ωn = vkn and
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The dynamical equation for mode n is therefore

q̈n + v2k2
nqn = 4EJ
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d2
ε θ (t)θ (tF − t) sin(f0)

× sin $t cos knd
∑

m

qm(t) cos kmd, (10)

where we assumed that ε # 1.
The classical description of the theory consists of a set

of coupled harmonic oscillators with time-dependent frequen-
cies. The quantization of the system is straightforward. In
the Heisenberg representation, the variables qn(t) become
quantum operators

q̂n(t) = un(t)ân + u∗
n(t)â†

n, (11)

where ân and â
†
n are the annihilation and creation operators.

The functions un(t) are properly normalized solutions of
Eq. (10). In the static regions t < 0 and t > tF they are linear
combinations of e±ivknt . We define the in-basis as the solutions
of Eq. (10) that satisfy

uin
n (t) = 1√

2vkn

e−ivknt for t < 0. (12)

The associated annihilation operators ain
n define the in-vacuum

|0in〉. The out-basis uout
n is introduced in a similar way, defining

the behavior for t > tF . The in- and out-basis are connected
by a Bogoliubov transformation,

uin
n (t) = αnu

out
n (t) + βnu

out ∗
n (t), (13)

and the number of created particles in the mode n for t > tF
is given by

Nn = 〈0in|aout †
n aout

n |0in〉 = |βn|2. (14)

In the present paper, we shall numerically solve the
dynamical equation (10) and evaluate the number of created
particles using (11)–(14).

III. SOME ANALYTIC RESULTS: MULTIPLE
SCALE ANALYSIS

In order to study analytically Eqs. (10), we write them in
the form

q̈n + ω2
n(t)qn =

∑

m(=n

Snm(t)qm, (15)

where we made the redefinition qn →
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Here k1 denotes the lowest eigenfrequency [21]. We will
assume that the amplitude of the time dependence is small,

that is, α # 1. We have set v = 1 and shall use this in what
follows.

It is known that, due to parametric resonance, a naive
perturbative solution of Eq. (15) in powers of α breaks down
after a short amount of time. In order to find a solution valid for
longer times we use the MSA technique [19,22]. We introduce
a second time scale τ = αt , and write

qn(t,τ ) = An(τ )
e−iknt

√
2kn

+ Bn(τ )
eiknt

√
2kn

. (17)

The functions An and Bn are slowly varying and contain the
cumulative resonant effects. To obtain differential equations
for them, we insert this ansatz into Eq. (15) and neglect second
derivatives of An and Bn. After multiplying the equation by
exp ±iknt and averaging over the fast oscillations we obtain

dAn
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= −k2
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We can see that these equations are nontrivial when the external
harmonic driving frequency is just tuned with one eigenvalue
of the static cavity $ = 2kn. Moreover, other modes will be
coupled and will resonate if the condition

$ = |kn ± kj | (19)

is satisfied.

A. A single resonant mode

If we assume that Eq. (19) is not satisfied by any j (= n,
the only resonant mode is the one tuned with the external
frequency. In this case, the long time solution to Eqs. (18) is
trivial and given by

|An|2 * |Bn|2 * eλnt , λn = α
k2

1

kn

cos2 knd

2Mn

, (20)

that is, due to parametric resonance the number of created
particles grows exponentially with the stopping time.

B. Finite number of resonant modes

Let us now consider the case in which Eq. (19) is satisfied
for a finite number of modes. In this case, Eqs. (18) become
nontrivial for those modes, and one expects an enhancement in
the corresponding particle creation rates. Although we could
consider a general situation, for the sake of simplicity we will
illustrate this case with a particular example. We will assume
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The dynamical equation for mode n is therefore
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× sin $t cos knd
∑
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qm(t) cos kmd, (10)

where we assumed that ε # 1.
The classical description of the theory consists of a set

of coupled harmonic oscillators with time-dependent frequen-
cies. The quantization of the system is straightforward. In
the Heisenberg representation, the variables qn(t) become
quantum operators

q̂n(t) = un(t)ân + u∗
n(t)â†

n, (11)

where ân and â
†
n are the annihilation and creation operators.

The functions un(t) are properly normalized solutions of
Eq. (10). In the static regions t < 0 and t > tF they are linear
combinations of e±ivknt . We define the in-basis as the solutions
of Eq. (10) that satisfy

uin
n (t) = 1√
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e−ivknt for t < 0. (12)

The associated annihilation operators ain
n define the in-vacuum

|0in〉. The out-basis uout
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by a Bogoliubov transformation,
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and the number of created particles in the mode n for t > tF
is given by

Nn = 〈0in|aout †
n aout

n |0in〉 = |βn|2. (14)

In the present paper, we shall numerically solve the
dynamical equation (10) and evaluate the number of created
particles using (11)–(14).

III. SOME ANALYTIC RESULTS: MULTIPLE
SCALE ANALYSIS

In order to study analytically Eqs. (10), we write them in
the form

q̈n + ω2
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Here k1 denotes the lowest eigenfrequency [21]. We will
assume that the amplitude of the time dependence is small,

that is, α # 1. We have set v = 1 and shall use this in what
follows.

It is known that, due to parametric resonance, a naive
perturbative solution of Eq. (15) in powers of α breaks down
after a short amount of time. In order to find a solution valid for
longer times we use the MSA technique [19,22]. We introduce
a second time scale τ = αt , and write

qn(t,τ ) = An(τ )
e−iknt

√
2kn

+ Bn(τ )
eiknt

√
2kn

. (17)

The functions An and Bn are slowly varying and contain the
cumulative resonant effects. To obtain differential equations
for them, we insert this ansatz into Eq. (15) and neglect second
derivatives of An and Bn. After multiplying the equation by
exp ±iknt and averaging over the fast oscillations we obtain
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We can see that these equations are nontrivial when the external
harmonic driving frequency is just tuned with one eigenvalue
of the static cavity $ = 2kn. Moreover, other modes will be
coupled and will resonate if the condition

$ = |kn ± kj | (19)

is satisfied.

A. A single resonant mode

If we assume that Eq. (19) is not satisfied by any j (= n,
the only resonant mode is the one tuned with the external
frequency. In this case, the long time solution to Eqs. (18) is
trivial and given by

|An|2 * |Bn|2 * eλnt , λn = α
k2

1

kn

cos2 knd

2Mn

, (20)

that is, due to parametric resonance the number of created
particles grows exponentially with the stopping time.

B. Finite number of resonant modes

Let us now consider the case in which Eq. (19) is satisfied
for a finite number of modes. In this case, Eqs. (18) become
nontrivial for those modes, and one expects an enhancement in
the corresponding particle creation rates. Although we could
consider a general situation, for the sake of simplicity we will
illustrate this case with a particular example. We will assume
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FIG. 2. First eigenfrequencies as a function of b0 for different
values of χ0. Red solid line is for χ0 = 0.05, blue dashed line is for
χ0 = 1.0, dotted gray line is for χ0 = 10.0, and the asterisk black line
for χ0 = 50.

spectrum. The difference between any consecutive eigenvalues
of the cavity goes to a constant value of the order of π .

One can also study the spectrum for different values of
χ0. In Fig. 2 we show the first four eigenfrequencies of the
cavity for several values of χ0. The value of χ0 determines the
asymptotic value of the eigenfrequency as a function of b0.

By examining the spectrum of the cavity, we can determine
different cases to be analyzed carefully. Hence, we shall
consider firstly, the case in which the eigenfrequencies are
not spaced equidistantly, for instance, the case of having
one resonant mode under parametric amplification. In the
end, we shall also study the case of equidistantly spanned
eigenfrequencies for low or large amplitude of the driven
perturbation.

B. The nonequidistant spectrum and parametric amplification

We shall consider values of parameters for which the
spectrum is nonequidistant. We will drive the system cavity
with an external frequency # = 2k1, where k1 is the first
eigenfrequency of the static tunable cavity and # in the driven
external frequency appearing in Eq. (5). In this situation, we
set b0 = V0 cos f0 = 1.0, χ0 = 0.05, and ε = 0.001 and we
present the results for the first three modes in Fig. 3. It is
important to note that # != |ki ± kj |, and therefore there is only
a single mode under parametric resonance. As one expects, if
the only resonant mode is the one tuned with the external
frequency # = 2k1, the number of created particles in this
mode grows exponentially in time. The other modes, such as
k2, k3, are not exponentially excited for relatively short times.
If we perform a linear fit for the log plot of the particle number,
we obtain a value of m1 = 0.031 5 for the slope of the straight
line of mode 1, in excellent agreement with the analytical
prediction of Eq. (20).

In Fig. 4 we show the number of created particles as a
function of dimensionless time for each mode of the field as in
the previous figure, but for a longer temporal scale. We see that
at long times all modes grow exponentially with approximately
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FIG. 3. Log plot for |Bn|2 as a function of dimensionless time
τ (time measured in units of d) for each mode of the field for a
short temporal scale. Herein, we consider ten modes and excite the
system by # = 2k1. The three first eigenfrequencies are k1 = 0.849
(blue dot-dashed line), k2 = 3.281 9 (red solid line), and k3 = 6.140 3
(green dashed line).

the same rate. This numerical result goes beyond MSA and can
be analytically understood as described in Sec. III D.

We can also evaluate the evolution of the system by
changing the value of the parameter χ0 = 1.0 in Fig. 5. This
leads to a different set of eigenfrequencies but a similar
behavior of the modes. A linear fit of the field mode 1
(k1 = 0.679 9) this time yields m′

1 = 0.028 9, which means
a smaller slope for bigger values of χ0. Once again, the
exponential growth of the resonant mode is well described
by Eq. (20), which yields an analytical value of m′

1 = 0.030.
In Fig. 6 we plot the number of created particles for the case

in which the excitation frequency is now # = 2k2. In this case,
one can numerically evaluate the slope of the log-plot line,
obtaining m2 = 0.026 5 when driving mode 2. The analytical
result of Eq. (20) for this case is m2 = 0.026 1.
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FIG. 4. Log plot for |Bi |2 as a function of dimensionless time
τ for each mode of the field for a longer temporal scale. As in the
previous figure, we consider ten modes and the system is perturbed
by # = 2k1. The three first eigenfrequencies are again: k1 = 0.849 5
(blue dot-dashed line), k2 = 3.281 9 (red solid line), and k3 = 6.140 3
(green dashed line).
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τ

FIG. 9. Evolution of field mode 1 (|B1|2) for short dimensionless
time scale under external driving ! = 2k1. We can fit this behavior
with a quadratic function.

D. Equidistantly spanned spectrum. Low-amplitude
perturbation

In this case, we set b0 = 14.14 and ε = 0.005, which
corresponds to modes in the equidistant part of the cavity
spectrum. For equidistant spectra, the coupling between an
infinite number of modes generates a quadratic or linear growth
of the number of particles, for short or long time scales,
respectively. In this case, it has already been shown that the
total energy grows exponentially [5]. With this choice, the
amplitude of the perturbation in the mode equation is given
by b0ε ∼ 0.02, for which the MSA still applies. We see this in
Figs. 9 and 10, respectively.

E. Equidistant spectrum. Large-amplitude perturbation

Now we look at the case of an equidistant frequency
spectrum with b0 = 350, χ0 = 0.05, and ε = 0.5. In this case,
the amplitude of the perturbation in the mode equation is given
by b0ε ∼ 1.54. Such a driving is beyond the MSA treatment.
As expected, we find a different behavior of modes with
respect to the previous example, even in the equidistantly

τ

FIG. 10. Evolution of field mode 1 (|B1|2) for longer dimen-
sionless time scale under external driving ! = 2k1. We can fit this
behavior with a linear function for large times, as can be seen in the
blue solid line.
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FIG. 11. Evolution of field modes (|Bi |2) under external pertur-
bation !d = (ki − kj )d = 3.13. We can fit this behavior with a linear
function, which indicates exponential growing of particle numbers.

spanned part of the spectrum. In this case, we report an
exponentially growing number of created particles when
driving with external frequency !d = (ki − kj )d ≈ π , as can
be seen in Fig. 11.

V. CONCLUSIONS

In this paper we have presented a detailed numerical
analysis of the particle creation for a quantum field in the
presence of boundary conditions that involve a time-dependent
linear combination of the field and its spatial and time
derivatives. We have evaluated numerically the Bogoliubov
transformation between in- and out-states and found that
the rate of particle production strongly depends on whether
the spectrum of the unperturbed cavity is equidistant or not,
and also on the amplitude of the temporal oscillations of
the boundary conditions. We have provided some analytical
justifications, based on MSA, for the different regimes found
numerically and emphasized the dependence of the results with
the main characteristics of the spectrum.

First, we have considered a parameter set such that the
spectrum of the cavity is nonequidistant. In this case, we have
numerically solved the problem driving the system with an
external frequency given by twice the first eigenvalue of the
unperturbed cavity. As expected from MSA results, if the only
resonant mode is the one tuned with the external frequency, the
number of created particles in this mode grows exponentially
with time. Other modes, for relatively short times, are not
exponentially excited. However, at longer times, all modes
grow exponentially with the same rate, a result that goes
beyond MSA. In addition, we have also considered a situation
in which parametric resonance involved two modes. We have
shown that both modes grow exponentially with a common
rate that takes into account the intermode coupling. As in the
previous case, all modes are exponentially amplified at longer
times.

For equidistant spectra, we have shown that the coupling
between an infinite number of modes makes the number of
particles grow quadratically in time at short time scales, and
linearly in the long time limit. However, when the amplitude
of the perturbations in the mode equation is large enough, the
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FIG. 5. Log plot for |B1|2, |B2|2, and |B3|2 as a function of
dimensionless time τ . Comparison between the situations where
χ0 = 0.05 (solid) and χ0 = 1 (dashed).

We performed the same simulations but for a bigger
quantity of field modes. We have checked that the results are
similar to the ones in Figs. 3 and 4. For example, we consider
a cutoff of 25 field modes, in which the linear fit yields fitting
a slope of m1 = 0.031 5 when driving with # = 2k1, similar
to the one found in Fig. 4.

Finally, we also compute the number of particles N as
a function of the external frequency # in Fig. 7. The set
of lower eigenfrequencies is: k1d = 0.849 5, k2d = 3.281 9,
k3d = 6.140 3, k4d = 9.093 0. Therein, we can observe that
the highest peak corresponds to an external drive of # = 2k1,
while the following peak refers to # = 2k2. We can also
note less important peaks corresponding to # = k1 + k2 and
# = k1 + k3.

C. Nonequidistant spectrum with several parametrically
resonant modes

Herein, we consider the situation in which kl = 3kj . If
we set the parameter values as b0 = 4.96, χ0 = 0.01, and
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FIG. 6. Log plot for |Bi |2 as a function of time for each mode of
the field for a longer temporal scale. Herein, we consider ten modes
and drive the system by # = 2k2. The red line corresponds to |B2|2,
the blue solid line to |B1|2, and green dashed line to |B3|2. Mode 2
(red dot-dashed line) is the more excited.
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FIG. 7. Number of particles created as a function of the external
dimensionless frequency #d . The eigenfrequencies (in units of 1/d)
are k1d = 0.849 5, k2d = 3.281 9, k3d = 6.140 3, and k4d = 9.093 0.
We can see that the higher peak corresponds to # = 2k1 and the
following to # = 2k2. Less important are # = k1 + k2 and # =
k1 + k3.

ε = 0.001, we obtain the following dimensionless eigenfre-
quencies: k1d = 1.311, k2d = 4.015, k3d = 6.862, and k4d =
9.810, for example. In this case, we see that k2 ! 3k1, so if we
excite the system with # = k2 − k1 = 2k1, we expect to see
exponential behavior in both field modes 1 and 2. Hence, these
modes are parametrically excited but with a rate that takes into
account the coupling between the modes.

The numerical results are shown in Fig. 8. Therein, we
observe the exponential growth of modes 1 and 2, as predicted
by MSA. A linear fit yields a value of m1 ! m2 = 0.012 8 for
the slope. Likewise, an analytical prediction can be obtained
by the real part of 2% in Eq. (23), which gives m1 = m2 =
0.013. The imaginary part in % explains the oscillating
behavior of the solutions, which is more pronounced for mode
2. As in the previous case, the rest of the modes start growing
with the same rate at longer times.
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FIG. 8. Log plot for |Bn|2 as a function of time for each mode
of the field. Herein, we consider ten modes and excite the system by
# = 2k1. The blue dot-dashed line corresponds to the field mode 1:
|B1|2, the red solid line to field mode 2: |B2|2, and the green dashed
one to |B3|2 for the field mode 3.
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exponential behavior in both field modes 1 and 2. Hence, these
modes are parametrically excited but with a rate that takes into
account the coupling between the modes.

The numerical results are shown in Fig. 8. Therein, we
observe the exponential growth of modes 1 and 2, as predicted
by MSA. A linear fit yields a value of m1 ! m2 = 0.012 8 for
the slope. Likewise, an analytical prediction can be obtained
by the real part of 2% in Eq. (23), which gives m1 = m2 =
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CONCLUSIONS: DCE

• Numerical and analytical results for particle creation in a single or 
doubly tunable superconducting cavity (even an array)

• The description of the system involves generalized boundary conditions  
or degrees of freedom concentrated on the boundaries

• Parameters can be tunned to change the characteristics of the spectrum

• Rate of particle creation strongly depends on the eigenvalues and 
phases of the static eigenfunctions

• Interference effects by dephasing the external magnetic fields on both 
SQUIDs

• Analytical results based on Multiple Scale Analysis

• Numerical results confirm and extend analytical analysis
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Quantum Otto cycle in a superconducting cavity in the nonadiabatic regime
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We analyze the efficiency of the quantum Otto cycle applied to a superconducting cavity. We consider its
description in terms of a full quantum scalar field in a one-dimensional cavity with a time-dependent boundary
condition that can be externally controlled to perform and extract work unitarily from the system. We study
the performance of this machine when acting as a heat engine as well as a refrigerator. It is shown that, in a
nonadiabatic regime, the efficiency of the quantum cycle is affected by the dynamical Casimir effect that induces
a sort of quantum friction that diminishes the efficiency. We also find regions of parameters where the effect is so
strong that the machine can no longer function as an engine since the work that would be produced is completely
consumed by the quantum friction. However, this effect can be avoided for some particular temporal evolutions
of the boundary conditions that do not change the occupation number of the modes in the cavity, leading to a
highly improved efficiency.

DOI: 10.1103/PhysRevA.105.022202

I. INTRODUCTION

As a consequence of the unceasing miniaturization of tech-
nological devices [1–3], there has been a growing interest
in quantum thermodynamics in the past decade. This field
captivates two different but complementary features. On the
one hand, it aims to obtain a rigorous derivation of the laws of
thermodynamics from microscopic interactions at a quantum
level. On the other hand, in a more applied aspect, it seeks to
improve thermodynamic processes, such as the conversion of
heat into mechanical work, using quantum phenomena with-
out a classical analog, such as coherence [4,5] or entanglement
[6,7]. The concept of information and its intimate relationship
with entropy and thermodynamics plays a very important role
in both aspects [8] mentioned above.

Likewise, the advent of new technologies pursuing im-
provement in the experiments has attained the observation
of phenomena in the laboratory that would have been un-
thinkable until recently. Conjectures and thermodynamic
relationships can now be studied in multiple experimental im-
plementations: from ion traps, through cold atoms in optical
networks, to superconducting qubits and atom chips [9–11].
All these features are taken into consideration in a context
of miniaturization of technology on the nanoscale. Hence,
the question that naturally arises is to what extent the laws
of thermodynamics and its phenomena are respected in the
microscopic world.

A fundamental role in the progress of quantum thermo-
dynamics is played by small autonomous quantum thermal
machines. These machines represent an ideal testing bench
for studying quantum thermodynamics as their sizes require
a quantum description for its evolution, and they can provide
work using thermal interactions with heat baths at different

temperatures. In particular, it is very interesting to study
how entanglement and coherence can enhance performance
of these machines, for instance, by achieving better cooling
or extracting more work from given resources. Moreover, the
investigation about the feasibility of experimental realizations
of autonomous quantum thermal machines in mesoscopic
systems, such as superconducting qubits and semiconductor
quantum dots; or quantum simulations using standard circuit
quantum electrodynamics architectures, has become relevant
these days. Most of the research in this area has been con-
ducted on qubits [10] or harmonic oscillators [12] subjected
to different thermodynamic cycles. Whereas in certain cases a
quantum field in a cavity can be studied as a few modes that
behave as harmonic oscillators, there are important circum-
stances under which this approximation fails. However, only
a handful of papers have studied the effects arising from a full
quantum field [13–16] and most of them as a bath and not a
working medium.

In this paper, we will study a thermal machine im-
plemented with a superconducting circuit, consisting of a
transmission line terminated by a superconducting quantum
interference device (SQUID), which is subjected to a quantum
Otto cycle. The machine is driven by an external magnetic
field applied to the SQUID. For certain choices of the param-
eters of the circuit, the behavior of the machine is equivalent
to that of a cavity with variable length in which the quantum
scalar field is the working medium. This provides an interest-
ing connection with the systems usually considered to analyze
the so-called dynamical Casimir effect (DCE), that will play
an important role in what follows.

Broadly, the quantum Otto cycle involves a system or
working medium ruled by a Hamiltonian H0 to which four
basic operations or strokes are applied in a cyclic fashion.
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FIG. 4. Friction energy as a function of β h̄ω1 for different values
of τ . Photon production increases as the time period τ decreases,
and, therefore, the friction energy becomes more important. The
compression ratio used is ε = 0.01.

We further study the power P produced by this engine. In
the adiabatic case, when τω1 ! 1, the work is independent
of the timescale τ and, thus, the power increases as the time
decreases since P ∼ 1/τ . In the (non-adiabatic) opposite limit
τω1 # 1, the power turns out to be proportional to 1/τ 4. Then
the power will have two contributions with different signs that
scale with different powers of τ . As a consequence, we expect
a peak around the time the friction energy becomes relevant
τω1 ∼ 1. This is illustrated in Fig. 6.

Finally, in Fig. 7 we represent the extracted work. Therein,
we can note that W > 0 for large ratios of the bath temper-
atures (βC/βA) and longer times τ . Otherwise, if τ → 0 and
βC/βA → 1, we note that the work vanishes.

FIG. 5. Efficiency of the engine for different relations among the
temperature of the baths (βC/βA) as a function of τω1. The quantum
engine operated in the nonadiabatic regime has a smaller efficiency
compared to the adiabatic case, indicated as ηOtto in the plot. The
compression ratio used is ε = 0.01.

FIG. 6. Power produced by the engine for different temperature
ratios as a function of time. For each ratio it has a peak at approx-
imately τω1 ∼ 1 indicating an optimal timescale of operation. The
compression ratio used was ε = 0.01.

V. SUPERCONDUCTING CIRCUIT REFRIGERATOR

It is also possible to implement a quantum field refrigerator
using this system, that is, a quantum system that cools a cold
bath and heats a hot bath whereas consuming work. In this
section, we will compute the coefficient of performance of the
Otto refrigerator and the effect of quantum friction on it.

A. Adiabatic evolutions

In the adiabatic case the heat taken from the cold reservoir
is given by

QOtto = EA − ED

=
∑

k

h̄ωk
{
NβA

k (ωk ) − NβC
k [ωk (L1)]

}
, (44)

FIG. 7. Work extracted from the engine. We can identify regions
where no work can be extracted from the Otto cycle. The compres-
sion ratio used is ε = 0.01.
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while for an adiabatic evolution the energy is obtained using
the approximation R′(t ) " 1/L(t ) and neglecting derivatives
of L(t ):

Ead(L, T ) = − π

24L
+ F (T L0)

L
. (11)

The above results suggest a simple way to introduce STA
in our conformal field theory, using an “inverse engineering”
approach: any Moore function R that satisfies at the same time
the two conditions R → t/L0 as t → −∞ and R → t/L1 as
t → +∞ will produce an evolution in which the Bogoliubov
transformation between the IN and OUT bases is the iden-
tity [32]. Therefore, there will be no particle creation, and the
occupation numbers will be the same in the initial and final
states. The associated trajectory is defined implicitly by the
Moore equation (5). If R is defined as a piecewise function, it
should be smooth enough in order to avoid divergences in the
mean value of the stress tensor.

In order to make contact with previous approaches for STA
in other contexts, it is useful to discuss the adiabatic (or WKB)
solutions for the field modes. For an adiabatic trajectory L(t ),
the Moore function is approximately given by [28]

RWKB[L] =
∫ t dt ′

L(t ′)
. (12)

Let us consider a (nonadiabatic) reference trajectory Lref (t )
that starts at L0 and ends at L1. We would like to find an
effective trajectory, Leff (t ), such that the time evolution of
the modes is the WKB-like solution evaluated on Lref (t ). If
we insert RWKB[Lref ] in the field modes, Eq. (6), the modes
will satisfy exactly the wave equation, but will not satisfy
the Dirichlet boundary conditions on x = Lref (t ). Instead, the
modes will vanish on an effective trajectory that satisfies

∫ t+Leff (t )

0

1
Lref (t ′)

dt ′ −
∫ t−Leff (t )

0

1
Lref (t ′)

dt ′ = 2. (13)

We stress that this equation defines the effective trajectory
Leff (t ). Therefore, implementing the effective trajectory, the
field modes will be described by the WKB modes of the
reference trajectory Lref . Moreover, the initial and final lengths
of the cavity will be the same for both trajectories, and the
population of the modes will also be the same at the initial
and final times: Leff (t ) is the adiabatic shortcut associated
with reference trajectory Lref , just as ωeff is the STA for the
quantum harmonic oscillator with frequency ωref .

It is simple to see that, if t + Leff (t ) < 0, then Leff (t ) =
Lref (0) = L0, for t < −Lref (0). Analogously, if t − Leff (t ) >
τ , then Leff (t ) = Lref (τ ) = L1, for t > τ + Lref (τ ). This tells
us that this effective trajectory is static before t = −L0 and
after t = τ + L1. Moreover, it coincides with the reference
trajectory Lref before and after. A relevant question is whether
this is in fact a real trajectory meaning that its speed is always
below c = 1. We can answer this question taking the time
derivative of the defining equation and solving for the speed
of the wall

d
dt

Leff (t ) = L[t + Leff (t )] − L[t − Leff (t )]
L[t − Leff (t )] + L[t + Leff (t )]

! 1, (14)

from which we see that its speed is indeed bounded by the
speed of light.

FIG. 1. A reference trajectory (blue solid line) given by Eq. (15)
with ε = 0.3 and τ/L0 = 1. The corresponding effective trajectory
(orange dashed line) calculated from Eq. (13) gives the shortcut to
adiabaticity.

A simple smooth trajectory that interpolates between L0
and L1 is given by

Lref (t ) =






L0,

L0 [1 − εδ(t )],

L1,

t < 0

0 < t < τ,

τ < t,

(15)

where ε is a positive constant less than 1, the final distance is
given by L1 = L0(1 − ε), and the evolution function is

δ(t ) = 10(t/τ )3 − 15(t/τ )4 + 6(t/τ )5. (16)

In Fig. 1 we show the effective trajectory Leff associated to
this Lref . The energy density inside the cavity evolves from
the static Casimir thermal energy corresponding to a cavity
of length L0 to that corresponding to L1. The evolution is
nonadiabatic at intermediate times, as depicted in Fig. 2 for
the particular case T = 0: indeed, for an adiabatic evolution

FIG. 2. Energy density for an adiabatic shortcut corresponding
to the polynomial trajectory with length L1/L0 = 0.7 and τ/L0 = 1
from t = −L0 to t = L1 + τ and the field initially in the vacuum
state. The energy density is a negative constant before and after the
compression and it is smaller at the end.
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nonadiabatic at intermediate times, as depicted in Fig. 2 for
the particular case T = 0: indeed, for an adiabatic evolution

FIG. 2. Energy density for an adiabatic shortcut corresponding
to the polynomial trajectory with length L1/L0 = 0.7 and τ/L0 = 1
from t = −L0 to t = L1 + τ and the field initially in the vacuum
state. The energy density is a negative constant before and after the
compression and it is smaller at the end.
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FIG. 3. Adiabaticity parameter as a function of time for the
reference (solid line) and effective trajectory (dashed line) at three
different temperatures. An inset plot has been added to better visu-
alize the curves for T L0 = 0 and T L0 = 5. The parameters used for
the reference trajectory were ε = 0.3 and τ/L0 = 1.

the energy density would be constant inside the cavity at
each time, and equal to the static Casimir energy density
corresponding to the instantaneous size of the cavity. Note
also that, for an arbitrary trajectory (not a shortcut), the final
energy density would also contain the contribution of the
created particles. In Fig. 3, we plot the adiabaticity parame-
ter Q∗(t ) = E (t )/Ead(t ) for the cavity as a function of time,
during the shortcut, at different temperatures for the reference
trajectory as well as for the corresponding STA. This param-
eter effectively measures the distance between the adiabatic
energy for an infinitely slow motion and the actual energy
in the cavity for the STA found, being of course equal to 1
when these two coincide. We can see that although both of
them depart from the adiabatic result at intermediate times,
the STA returns to 1 at the end of the motion confirming the
implementation of an adiabatic shortcut and its deviation from
adiabaticity at intermediate times is relatively small. Although
there are certain times at which the reference trajectories cross
Q∗ = 1, this does not constitute a STA, since a sudden stop of
the moving wall at those times would generate DCE photons
by itself, that would make Q∗ "= 1 afterwards. This is why
it is crucial that the trajectories considered have a null final
velocity.

To summarize, solving the equation for Leff (t ) we get a
trajectory that, when implemented, generates an evolution of
the state of the quantum field that in the end coincides with
that of an exact adiabatic evolution along Lref (t ). That is, we
have found a shortcut to adiabaticity for a scalar quantum field
in a cavity with a moving wall. The results can be generalized
to other two-dimensional conformal fields confined in a cavity
of variable length, as a massless Dirac field satisfying bag
boundary conditions on the boundaries [33].

III. IMPLICATIONS ON THE QUANTUM OTTO CYCLE

In order to discuss some fundamental limits for the power
and efficiency of a quantum Otto cycle, we will consider
the following limiting trajectory Lref (t ) = L0θ (−t ) + L1θ (t ),

FIG. 4. Power for an Otto cycle as a function of the timescale,
τ , implementing the reference (solid line) or effective STA trajectory
(dashed line) for the expansion and compression strokes. The param-
eter used for the trajectory was ε = 0.3, while the thermal baths used
for the cycle had temperatures T0L0 = 1 and T1L0 = 5.

which corresponds to a very small displacement time, τ $
L0, L1.

In this case we can replace Eq. (13) to find that the effective
trajectory is given by

Leff (t ) =






L0,

2L0L1−t (L0−L1 )
L0+L1

,

L1,

t < −L0

−L0 < t < L1

L1 < t .

(17)

This means in the limit case where we want to implement an
instantaneous length change without spurious photon genera-
tion, we need at least L0 + L1 units of real time to implement
it and it consists of a linear motion. This is consistent with
previous results for this particular case [29,32].

We have previously mentioned that finite time driving is
necessary to improve the power delivered but usually results
in additional friction energy on the working medium that
diminishes the efficiency of the engine. In the case of a scalar
quantum field with a moving boundary we have found a
STA, which maximizes the work delivered, that turns out to
be 〈wad〉, and the efficiency, η = ηad. Moreover, the power
produced is bounded by the minimum time that it takes to
implement the STA (twice for compression and expansion and
under the assumption that the thermalization times are much
shorter than the compression and expansion ones),

P = Wad

2(L0 + L1 + τ )
! Wad

2(L0 + L1)
. (18)

In Fig. 4 we compare the power given by an engine un-
der a quantum Otto cycle whose expansion and compression
strokes are given either by the reference or the effective STA
trajectory. We can see that for slow motions (i.e., large τ ) they
converge to the same value, since τ ' L0 and W ≈ Wad, but
for extremely fast motion the power of the reference trajectory
decreases rapidly and becomes negative while the STA, which
always has a superior efficiency, also provides a higher power.
Perturbative calculations to second order in ε also show that
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known solution to the problem that exploits the conformal symmetry, and the shortcuts take place whenever
there is no dynamical Casimir effect. We obtain a fundamental limit for the efficiency of an Otto cycle with
the quantum field as a working system, that depends on the maximum velocity that the mirror can attain. We
describe possible experimental realizations of the shortcuts using superconducting circuits.
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I. INTRODUCTION

In recent times, as new technologies allow us to manipulate
smaller and smaller systems, such as trapped ions, nanores-
onators, and electronic circuits [1–3], a natural question has
emerged about whether it is possible to use them to produce
machines and what their properties would be. The novelty
comes from the fact that these small systems can exhibit
quantum properties that could potentially be exploited to get
an advantage over classical machines or present new obstacles
to the operation. These questions constitute the backbone of
a new area of physics that has come to be called quantum
thermodynamics. In some cases of discrete stroke quantum
machines, such as a quantum harmonic oscillator or a quan-
tum field undergoing an Otto cycle, it has been shown that
the efficiency of the resulting machine is maximum for an
adiabatic (i.e., infinitely slow) driving [4,5]. The problem is
that under these conditions the power of the machine vanishes
and so it becomes necessary to understand how to operate
these machines in a finite time. However, this leads to a
friction work on each stroke 〈wfric〉 = 〈w〉 − 〈wad〉, defined as
the difference between the actual work and the adiabatic work,
that is always non-negative [6]. This has the effect of reducing
the efficiency of a heat engine. For example, for a quantum
Otto cycle comprised of four strokes (A, cooling at constant
volume; B, adiabatic expansion; C, heating at constant vol-
ume; D, adiabatic compression) the efficiency in finite time is
given by

η = W
Q

= Wad − 〈wfric〉AB − 〈wfric〉CD

Qad − 〈wfric〉AB
! Wad

Qad
= ηad, (1)

where Wad = 〈wad〉AB + 〈wad〉CD, and is always lower or equal
to the adiabatic efficiency. Therefore, it is paramount to un-
derstand if it is possible to implement an adiabatic evolution
in finite time.

Although in most cases the finite time operation causes
the emergence of coherences in the state of the system that
result in an efficiency loss, in many cases it is possible to
implement protocols, named shortcuts to adiabaticity (STA),
that evolve the initial state into the final state that would
have been obtained with an adiabatic evolution, but in a finite
time [7–10]. These protocols typically require a full control of
the quantum system and end up being extremely challenging
from an experimental standpoint.

In previous works, STA have been considered from a the-
oretical and/or an experimental point of view for different
physical systems: trapped ions [11], cold atoms [12], ultra-
cold Fermi gases [13], Bose-Einstein condensates in atom
chips [14], spin systems [15], etc. STA have been also pro-
posed to relieve the trade-off of efficiency and power [16–18],
both in single-particle quantum heat engines (QHEs) [19], and
in many-particle QHEs [20]. There was even an experiment
with a unitary Fermi gas that implemented last systems [21].
On the other hand, the authors in Ref. [22] have consid-
ered many particle theories for QHE in the adiabatic case.
STAs have also been obtained for relativistic quantum systems
evolving under Dirac dynamics [23,24].

In this paper we explore the possibility of applying STA in
quantum field theory. In particular, we will consider a scalar
quantum field in a one-dimensional cavity with a moving
wall, whose state undergoes a unitary evolution. We will show
that given a wall trajectory Lref (t ) we can find a shortcut
to adiabaticity given by an effective trajectory Leff(t ) that,
when implemented in finite time, results in the same state
as if the original had been performed adiabatically. The STA
occurs whenever there is no dynamical Casimir effect (DCE).
As we will see, this protocol has the advantage that it can
be easily implemented experimentally using superconducting
circuits, since it does not require additional exotic potentials.
Moreover, the effective trajectory can be computed from the
original quite simply, paving the way for more efficient quan-
tum field thermal machines.
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Shortcuts to adiabaticity constitute a powerful alternative that
speed up time evolution while mimicking adiabatic dynamics. We
described how to implement shortcuts to adiabaticity for the case 
of the superconducting phase field inside a cavity with a moving
wall, in 1 + 1 dimensions. 

The approach is based on solution to the problem that exploits
the conformal symmetry, and the shortcuts take place whenever
there is no dynamical Casimir effect. We obtain a fundamental 
limit for the efficiency of an Otto cycle with the quantum field as a 
working system, that depends on the maximum velocity that the
mirror can attain. We describe possible experimental realizations
of the shortcuts using superconducting circuits. 


