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Heat flux exceeds 

the blackbody limit by 

orders of magnitude 

due to tunneling of 

evanescent waves.

The Stefan-Boltzmann law 

(1885), the upper limit for 

propagating modes:
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From the point view 

of wavevector space

The inner and outer circle 

denotes propagating and 

evanescent modes, respectively. 

Nanoscale Thermal Radiation Lab



Thermophotovoltaics (TPV)

4
Nanoscale Thermal Radiation Lab



5

Near-Field Thermophotovoltaics (TPV)

Park et al. JQSRT (2008)
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Watjen et al., JHT (2017)
40% enhancement
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LED and Luminescent Refrigeration
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B

B – electroluminescent effect by 

providing an active external bias
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Can near-field enhance the 

performance?
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Electroluminescent Refrigeration 

Liu and Zhang, Nano Energy 26 (2016) 353-359.

Emit more photons than BB radiation !

Emit even more at nanoscale !!
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Planck’s Law (1900)

2

1
, /5

( , )
( 1)

b C T

C
e T

e
 
 

 

Blackbody emissive power:

Wien’s displacement law (1894):
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Characteristic wavelength 

of thermal radiation:

0.5 m (from the sun)

10 m (from human body)
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Photon Chemical Potential Effect
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See for example, P. Wurfel, “The Chemical Potential of Radiation,” 

Journal of Physics C: Solid State Physics 15, 3967 (1982).

Modified Planck’s Law:
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Modified Bose-Einstein 

Distribution:
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Photon Entropy

 
B

B

g( )

BE

g

1
,  for 

e 1
, ,

1
,  for 

e 1

k T

k T

E

f T

E

 





 






 

 
 
 

   B BE BE BE BE, , (1 ) ln(1 ) ln( )s T k f f f f      

  B
0

, ( , , ) ( )s T k s T D d    


 

Non-dimensional entropy content function:

 
BE

( , , )
, ,

( , , )

Ts T
T

f T

  
  

  


Tervo et al., Front. Energy 12 (2018) 5-21.
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https://link.springer.com/article/10.1007/s11708-017-0517-z

https://link.springer.com/article/10.1007/s11708-017-0517-z


Different Modes of Operation
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PV/TPV

TR

LR or LED

NLR
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Band Diagrams

PV

TR

LR

NLR
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The J-V Curves
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Photon Chemical Potential in 

Semiconductor p-n Junctions

The luminescent emission intensity 

is a function of the photon chemical 

potential ().
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Band diagram for an InAs

(Eg = 0.354 eV) cell at 300 K 
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Profile of Photon Chemical Potential
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Local concentration of electrons (n) and holes (p)

and

Photon chemical potential:

It is the difference between quasi-Fermi levels of 

electrons and holes. Need to model charge transport 

as well as generation and recombination processes.
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Predicted Band Diagrams

900 K 300 K

InAs cell is modeled using an iterative 

method that solves the coupled photon and 

charge transport problem. Clearly, the photon 

chemical potential cannot be treated as a 

constant. Even though the variation of the 

photon chemical potential may be small, we 

found that   qV.

d = 10 nm
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Calculated Photon Chemical Potential
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400-nm-thick InAs cell 5-m-thick InAs cell

qV  ( )f z Take away points: (i)               (ii)
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Comparison of the TPV Characteristics

900 K 300 K

Case (i):  = (z) according to the coupled iterative solver considering the photon chemical 

potential profile.

Case (ii):  = qV according to detailed balance analysis considering luminescence effect.

Case (iii):  = 0 according to detailed balance analysis by ignoring the luminescence effect.

Significant errors may arise by using the detailed balance analysis!

Feng et al., J. Appl. Phys. 129 (2021) 213101.
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400 nm cell 400 nm cell



Thermal vs. Nonthermal Radiation
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A thermoradiative Cell (TR) with 

heavily doped InAs cell.

   ib , ,T    

Nonthermal radiation:

     ib ,T        

Thermal radiation:

Below bandgap: Only thermal

Above bandgap: There exist a 

portion of luminescent emission 

and a portion of thermal radiation
Submitted (2022).
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Can Near-Field Radiation Affect the 

Dark Current?

• Curve A is the far-field dark current, Jo is reverse saturation current

• Curve B is the near-field dark current.

• If we simply shift them by adding Jsc (short-circuit current), we will 

end up with different J-V curves!

• This could impact the analysis of near-field radiative energy 

conversion devices
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Near-Field Effect on (Reverse) 

Saturation Current

Feng et al. NMTE (2020)
https://doi.org/10.1080/15567265.2019.1683106
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Summary
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• Near-field operation of thermal radiative energy converters may 

enhance throughput for power generation and refrigeration. 

• The photon chemical potential is an important parameter in 

near-field semiconductor radiative (or photonic) energy 

converters and need to be carefully considered when the 

emitter is at a moderate temperature. 

• The accurate modeling of the spatial profile of photon chemical 

potential provides researchers with a better understanding of 

photon-charge interactions in semiconductor p-n junctions.

• Several groups have already demonstrated near-field TPV and 

LR devices experimentally, though the performance is still 

relatively low as compared to theoretical predictions.
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Future Research Questions

• Can we combine the thermal radiative energy conversion 

devices to design optimized systems for energy 

harvesting? 

• Can we experimentally validate the photon chemical 

potential and the modified Planck’s law?

• Do we really understand the thermodynamics of 

semiconductor devices considering photon chemical 

potential in the near-field regime (e.g., photon entropy 

and local density of states)?

• How to characterize the polarization status of thermal 

emission if there are circularly polarization and with 

nonreciprocal materials?
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