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contrary to CCL’s prediction, we show that Tc goes con-
tinuously to zero when J2=J1 ! 1=2, and we argue that
this is due to a competition between Néel and collinear
order at finite temperature in this parameter range.

Starting from the original spin variables ŜSi, we con-
struct the Ising-like variable of the dual lattice:

!" ! "ŜSi # ŜSk$ % "ŜSj # ŜSl$
j"ŜSi # ŜSk$ % "ŜSj # ŜSl$j

; (2)

where "i; j; k; l$ are the corners with diagonal "i; k$ and
"j; l$ of the plaquette centered at the site " of the dual
lattice. The two collinear states with Q ! "#; 0$ and Q !
"0;#$ have !" ! &1. It is important to stress that the
normalization term does not affect the critical properties
of the model. It is only introduced to have a normalized
variable. The Ising-like order parameter is defined as
M! ! "1=N$P"!".

We have performed classical Monte Carlo simulations
using both local and global algorithms as well as more
recent broad histogram methods [13] (details will be
given elsewhere [14]) to calculate the temperature and
size dependence of several quantities including the Binder
cumulant, the susceptibility, and the correlation length
associated to M!, as well as the specific heat, for sizes up
to 200' 200 and for several values of J2=J1 between 1=2
and 2. For reasons discussed below, the critical behavior
is easier to detect for small values of J2=J1, and we first
concentrate on J2=J1 ! 0:55.

As a first hint of a phase transition, we report the
temperature dependence of the susceptibility defined by
$ ! "N=T$"hM2

!i# hjM!ji2$ for different sizes [see
Fig. 1(a)]. If there is a phase transition, this susceptibility
is expected to diverge at Tc in the thermodynamic limit,
and, indeed, the development of a peak around T=J1 !
0:2 upon increasing the system size is clearly visible. To
get a precise estimate of Tc, we have calculated Binder’s
fourth cumulant of the order parameter defined by
U4"T$ ! 1# hM4

!i=3hM2
!i2. This cumulant should go to

2=3 below Tc and to zero above Tc when the size increases,
and the finite-size estimates are expected to cross around
Tc. Binder cumulants for different sizes are reported in
Fig. 1(b), and they indeed cross around T=J1 ’ 0:197. In
Fig. 1(c), we report U4"T$ as a function of 1=L for several
temperatures around 0.197. Excluding temperatures for
which U4 clearly increases or decreases with 1=L leads to
the remarkably precise estimate Tc=J1 ! 0:1970"2$.

To identify the universality class of the phase transi-
tion, we have looked at the finite-size scaling of several
quantities. The critical exponents % and & can be ex-
tracted from the dependence of the peak position of the
susceptibility Tc"L$ ! Tc ( aL#1=% and from its value
$"L; Tc$ ) L&=% as a function of L. Using the value of
Tc deduced from Binder’s cumulant, the fits lead to % !
1:0"1$ and &=% ! 1:76"2$. A more precise estimate of the
exponent % can be obtained from the temperature depen-

dence of the second-moment correlation length ' [16],
extracted from the Fourier components of the correlation
functions of the Ising-like variable (2). By considering
only values such that ' & L=6, where the finite-size ef-
fects are found to be negligible, it is possible to have a
very accurate value of the critical exponent from the fact
that, for T * Tc, '#1 ! A"T # Tc$%. In Fig. 2, we report
the behavior of the correlation length ' as a function of
the temperature. By performing a three-parameter fit
(for A, Tc, and %) we obtain Tc=J1 ! 0:1965"5$ and % !
1:00"3$. This value of Tc is compatible with the estimation
given by Binder’s cumulant.

These exponents agree with those of the Ising univer-
sality class in 2D (% ! 1 and & ! 7=4). A cross-check for
this universality class comes from the measure of the
critical exponent ", related to the divergence of the

FIG. 1. (a) Finite-size susceptibility $"L$=L and (b) Binder
cumulant U4 as a function of the temperature for different
sizes; (c) Binder cumulant U4 as a function of 1=L for different
temperatures (0:1965; 0:1966; . . . ; 0:1973, from top to bottom).
The lines are guides to the eye and the horizontal line marks
the value for U4 at the critical point for the Ising universality
class [15]. All data are for J2=J1 ! 0:55.

FIG. 2. Inverse of the correlation length '#1 as a function of
the temperature for different sizes of the lattice and J2=J1 !
0:55. The critical exponent % and Tc can be extracted from the
behavior of '#1 as a function of the temperature. The arrow
marks the resulting Tc.
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struct the Ising-like variable of the dual lattice:
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contrary to CCL’s prediction, we show that Tc goes con-
tinuously to zero when J2=J1 ! 1=2, and we argue that
this is due to a competition between Néel and collinear
order at finite temperature in this parameter range.

Starting from the original spin variables ŜSi, we con-
struct the Ising-like variable of the dual lattice:

!" ! "ŜSi # ŜSk$ % "ŜSj # ŜSl$
j"ŜSi # ŜSk$ % "ŜSj # ŜSl$j

; (2)

where "i; j; k; l$ are the corners with diagonal "i; k$ and
"j; l$ of the plaquette centered at the site " of the dual
lattice. The two collinear states with Q ! "#; 0$ and Q !
"0;#$ have !" ! &1. It is important to stress that the
normalization term does not affect the critical properties
of the model. It is only introduced to have a normalized
variable. The Ising-like order parameter is defined as
M! ! "1=N$P"!".

We have performed classical Monte Carlo simulations
using both local and global algorithms as well as more
recent broad histogram methods [13] (details will be
given elsewhere [14]) to calculate the temperature and
size dependence of several quantities including the Binder
cumulant, the susceptibility, and the correlation length
associated to M!, as well as the specific heat, for sizes up
to 200' 200 and for several values of J2=J1 between 1=2
and 2. For reasons discussed below, the critical behavior
is easier to detect for small values of J2=J1, and we first
concentrate on J2=J1 ! 0:55.

As a first hint of a phase transition, we report the
temperature dependence of the susceptibility defined by
$ ! "N=T$"hM2

!i# hjM!ji2$ for different sizes [see
Fig. 1(a)]. If there is a phase transition, this susceptibility
is expected to diverge at Tc in the thermodynamic limit,
and, indeed, the development of a peak around T=J1 !
0:2 upon increasing the system size is clearly visible. To
get a precise estimate of Tc, we have calculated Binder’s
fourth cumulant of the order parameter defined by
U4"T$ ! 1# hM4

!i=3hM2
!i2. This cumulant should go to

2=3 below Tc and to zero above Tc when the size increases,
and the finite-size estimates are expected to cross around
Tc. Binder cumulants for different sizes are reported in
Fig. 1(b), and they indeed cross around T=J1 ’ 0:197. In
Fig. 1(c), we report U4"T$ as a function of 1=L for several
temperatures around 0.197. Excluding temperatures for
which U4 clearly increases or decreases with 1=L leads to
the remarkably precise estimate Tc=J1 ! 0:1970"2$.

To identify the universality class of the phase transi-
tion, we have looked at the finite-size scaling of several
quantities. The critical exponents % and & can be ex-
tracted from the dependence of the peak position of the
susceptibility Tc"L$ ! Tc ( aL#1=% and from its value
$"L; Tc$ ) L&=% as a function of L. Using the value of
Tc deduced from Binder’s cumulant, the fits lead to % !
1:0"1$ and &=% ! 1:76"2$. A more precise estimate of the
exponent % can be obtained from the temperature depen-

dence of the second-moment correlation length ' [16],
extracted from the Fourier components of the correlation
functions of the Ising-like variable (2). By considering
only values such that ' & L=6, where the finite-size ef-
fects are found to be negligible, it is possible to have a
very accurate value of the critical exponent from the fact
that, for T * Tc, '#1 ! A"T # Tc$%. In Fig. 2, we report
the behavior of the correlation length ' as a function of
the temperature. By performing a three-parameter fit
(for A, Tc, and %) we obtain Tc=J1 ! 0:1965"5$ and % !
1:00"3$. This value of Tc is compatible with the estimation
given by Binder’s cumulant.

These exponents agree with those of the Ising univer-
sality class in 2D (% ! 1 and & ! 7=4). A cross-check for
this universality class comes from the measure of the
critical exponent ", related to the divergence of the

FIG. 1. (a) Finite-size susceptibility $"L$=L and (b) Binder
cumulant U4 as a function of the temperature for different
sizes; (c) Binder cumulant U4 as a function of 1=L for different
temperatures (0:1965; 0:1966; . . . ; 0:1973, from top to bottom).
The lines are guides to the eye and the horizontal line marks
the value for U4 at the critical point for the Ising universality
class [15]. All data are for J2=J1 ! 0:55.

FIG. 2. Inverse of the correlation length '#1 as a function of
the temperature for different sizes of the lattice and J2=J1 !
0:55. The critical exponent % and Tc can be extracted from the
behavior of '#1 as a function of the temperature. The arrow
marks the resulting Tc.
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Can we find a model that has an emergent critical phase
even though its underlying Heisenberg degrees of freedom have 
a finite correlation length?
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Kosterlitz-Thouless Transitionp ≥ 5
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2D Heisenberg AFM Hamiltonian

Classically: two decoupled sublattices.
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2D Heisenberg AFM Hamiltonian

Order from disorder drives coplanarity.

Classically: two decoupled sublattices.

n
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The Coplanarity Cross-over Temperature

ξ = coherence length of coplanar flucs
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The Coplanarity Cross-over Temperature
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Scaling in the Coplanar State
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Order parameter: SO(3) x U(1):  

SO(3) “center of mass” motion of underlying
spin fluid. 
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SO(3) “center of mass” motion of underlying
spin fluid. 
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leads to a power law phase in which the 6-fold anisotropy is irrelevant.
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Here, gO(3)
ij

is the usual metric tensor of the O(3) prob-
lem, which reads explicitly

g
O(3) =




(I1s2ψ + I2c

2
ψ)s

2
θ + I3c

2
θ (I1 − I2)cψsθsψ I3cθ

(I1 − I2)cψsθsψ I1c
2
ψ + I2s

2
ψ 0

I3cθ 0 I3



 ,

(8)

where sωj = sinωj and cωj = cosωj . In our system we
find I1 = K1 +K3, I2 = K1 +K3 +K, I3 = 2K1 +K,
which are set by the stiffnesses of the two sublattices.
The U(1) degree of freedom α exhibits the initial stiff-
ness Iα = 2K1, however, it is still coupled to the non-
abelian O(3) sector. The relative fluctuations of the two
sublattices is in general not a decoupled degree of free-
dom, given the coupling term c = κ

2 (cθ, 0, 1) in the four-
dimensional metric, where κ = 4K1. Finally, the six-fold
potential Sc = λ

2a2

�
d2x cos 6α is a small but relevant

perturbation to the gradient terms gij∂µωi∂µωj . As long
as λ remains small, we can obtain the renormalization
group flow equation of the above action from Friedan’s
geometric formulation of the NLSM [12]. Up to two loop
order it holds

dgij

dl
=

1

2π
Rij −

1

8π2
R

klm

i Rjklm , (9)

where Riklm is the Riemann curvature tensor and Rij =
Rk

ijk
is the Ricci tensor. The Riemann tensor follows as

usual from the Christoffel symbols Γi

jk
= 1

2g
ij(gjk,k +

gkl,j − gjk,l) as Rk

lij
= Γk

lj,i
−Γk

li,j
+Γk

ni
Γn

lj
−Γk

nj
Γn

li
. The

flow equations of our five coupling constants Ij , Iα and
κ follow from Eq. (9).

Low-temperature phase diagram.– Key for an under-
standing of the low energy phase diagram of this problem
is the insight that the coupling term c can formally be
eliminated via the transformation ψ → ψ� = ψ+ rα with
r = κ/2I3. This yields a metric g in Eq. (7) with c = 0,
Iα → I �α = Iα − κ2/4I3 yet with gO(3) that depends on
the U(1) phase α via the above shift of the Euler angle ψ.
This gauge transformation to the appropriate center of
mass coordinates allows for clear criteria when the U(1)
sector of the theory decouples from the O(3) sector: if
either |I1 − I2| �

√
I1I2 or r � 1 it follows that gO(3)

becomes independent of α and the U(1) phase decouples
from the dynamics of the non-collinear magnetic degrees
of freedom. The first criterion follows from the fact that
gO(3) is independent of ψ if I1 = I2, while the second
criterion implies that the shift in ψ is negligible. From
Eq. (9) follows that I1,2,3 flow to an isotropic fixed point,
while the dimensionless variable r follows the flow equa-
tion (for simplicity we only list the one loop result, the
two loop correction does not change our conclusions)

dr

dl
= −r

(I1 − I2)2

4πI1I2I3
. (10)

FIG. 2. (a) Schematic phase diagram.

Thus, if the initial anisotropy |I1 − I2| = K is weak,
which happens for Jhh � Jtt, the coupling r does not
change much. The O(3) sector, however, quickly becomes
isotropic in the 1−2-plane leading to a decoupling of the
U(1) phase. On the other hand, in the limit of strong
anisotropy for Jhh � Jtt, where I1 − I2 is not small, we
find that r vanishes rapidly. In both cases follows that
the phase angle α emerges as an independent degree of
freedom. The β-function for the reduced phase stiffness
I �α = Iα − κ2/4I3 follows from Eq. (9) as

dI �α
dl

=
(I1 − I2)2r2

4πI1I2
, (11)

and does, as expected, approach zero once either of
the two decoupling conditions are fulfilled. Thus, per-
turbatively no renormalization of the stiffness I �α takes
place. The metric becomes completely flat in this sec-
tor. Since in both limits it follows that the decoupling
emerges rapidly, we find that λ, whose flow is governed by
λ̇ = (2−9/πI �α)λ, is still small. The resulting low-energy
theory corresponds to S = SO(3) + SZ6 with

SZ6 =
1

2

�
d
2
x
�
(I �α(∂µα)

2 + λ cos(6α)
�
. (12)

This is the well-known p = 6 state clock model that
exhibits two consecutive BKT transitions [13]: one at
T

>

BKT that separates a high temperature disordered phase
from a low temperature critical phase, where correlations
�exp[i(α(x)−α(x�))]� decay with a power-law in |x−x�|.
Below the lower BKT transition temperature T

<

BKT the
Z6 symmetry is spontaneously broken, and there is true
long-range order with α being equal to one of the six
possible values nπ/3 with n ∈ {0, . . . , 5}. It is crucial
that the above decoupling of the U(1) phase takes place
as otherwise the interaction with the O(3) sector would
have changed the coupling between topological defects –
vortices at T

>

BKT or domain walls at T
<

BKT – that is es-
sential for the occurence of the BKT transitions and the
critical intermediate phase.
Following the RG program of the BKT problem for

Eq. (12) we need to take into account that the size of
the vortex is now given by the coplanar lengthscale aγ �
a0 [14, 15]. We determine the vortex unbinding transition
temperature T

>

BKT implicitly via

I
�
α(T

>

BKT)
−1 =

π

2 + 4πy(T>

BKT)
(13)
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Thus, if the initial anisotropy |I1 − I2| = K is weak,
which happens for Jhh � Jtt, the coupling r does not
change much. The O(3) sector, however, quickly becomes
isotropic in the 1−2-plane leading to a decoupling of the
U(1) phase. On the other hand, in the limit of strong
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the phase angle α emerges as an independent degree of
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BKT the
Z6 symmetry is spontaneously broken, and there is true
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The decoupling of the U(1) degrees of freedom
from the SO(3) degrees of freedom is a kind of
compactification from a four to a one dimensional 
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X(x, y) = (φ, θ,ψ,α)

Covariance of the action under co-ordinate
transformations in target space means that 
the scaling equations must  also be covariant. 
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is the usual metric tensor of the O(3) prob-
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where sωj = sinωj and cωj = cosωj . In our system we
find I1 = K1 +K3, I2 = K1 +K3 +K, I3 = 2K1 +K,
which are set by the stiffnesses of the two sublattices.
The U(1) degree of freedom α exhibits the initial stiff-
ness Iα = 2K1, however, it is still coupled to the non-
abelian O(3) sector. The relative fluctuations of the two
sublattices is in general not a decoupled degree of free-
dom, given the coupling term c = κ

2 (cθ, 0, 1) in the four-
dimensional metric, where κ = 4K1. Finally, the six-fold
potential Sc = λ

2a2

�
d2x cos 6α is a small but relevant

perturbation to the gradient terms gij∂µωi∂µωj . As long
as λ remains small, we can obtain the renormalization
group flow equation of the above action from Friedan’s
geometric formulation of the NLSM [12]. Up to two loop
order it holds
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usual from the Christoffel symbols Γi
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flow equations of our five coupling constants Ij , Iα and
κ follow from Eq. (9).

Low-temperature phase diagram.– Key for an under-
standing of the low energy phase diagram of this problem
is the insight that the coupling term c can formally be
eliminated via the transformation ψ → ψ� = ψ+ rα with
r = κ/2I3. This yields a metric g in Eq. (7) with c = 0,
Iα → I �α = Iα − κ2/4I3 yet with gO(3) that depends on
the U(1) phase α via the above shift of the Euler angle ψ.
This gauge transformation to the appropriate center of
mass coordinates allows for clear criteria when the U(1)
sector of the theory decouples from the O(3) sector: if
either |I1 − I2| �

√
I1I2 or r � 1 it follows that gO(3)

becomes independent of α and the U(1) phase decouples
from the dynamics of the non-collinear magnetic degrees
of freedom. The first criterion follows from the fact that
gO(3) is independent of ψ if I1 = I2, while the second
criterion implies that the shift in ψ is negligible. From
Eq. (9) follows that I1,2,3 flow to an isotropic fixed point,
while the dimensionless variable r follows the flow equa-
tion (for simplicity we only list the one loop result, the
two loop correction does not change our conclusions)

dr

dl
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4πI1I2I3
. (10)

FIG. 2. (a) Schematic phase diagram.

Thus, if the initial anisotropy |I1 − I2| = K is weak,
which happens for Jhh � Jtt, the coupling r does not
change much. The O(3) sector, however, quickly becomes
isotropic in the 1−2-plane leading to a decoupling of the
U(1) phase. On the other hand, in the limit of strong
anisotropy for Jhh � Jtt, where I1 − I2 is not small, we
find that r vanishes rapidly. In both cases follows that
the phase angle α emerges as an independent degree of
freedom. The β-function for the reduced phase stiffness
I �α = Iα − κ2/4I3 follows from Eq. (9) as

dI �α
dl

=
(I1 − I2)2r2

4πI1I2
, (11)

and does, as expected, approach zero once either of
the two decoupling conditions are fulfilled. Thus, per-
turbatively no renormalization of the stiffness I �α takes
place. The metric becomes completely flat in this sec-
tor. Since in both limits it follows that the decoupling
emerges rapidly, we find that λ, whose flow is governed by
λ̇ = (2−9/πI �α)λ, is still small. The resulting low-energy
theory corresponds to S = SO(3) + SZ6 with
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This is the well-known p = 6 state clock model that
exhibits two consecutive BKT transitions [13]: one at
T

>

BKT that separates a high temperature disordered phase
from a low temperature critical phase, where correlations
�exp[i(α(x)−α(x�))]� decay with a power-law in |x−x�|.
Below the lower BKT transition temperature T

<

BKT the
Z6 symmetry is spontaneously broken, and there is true
long-range order with α being equal to one of the six
possible values nπ/3 with n ∈ {0, . . . , 5}. It is crucial
that the above decoupling of the U(1) phase takes place
as otherwise the interaction with the O(3) sector would
have changed the coupling between topological defects –
vortices at T

>

BKT or domain walls at T
<

BKT – that is es-
sential for the occurence of the BKT transitions and the
critical intermediate phase.
Following the RG program of the BKT problem for

Eq. (12) we need to take into account that the size of
the vortex is now given by the coplanar lengthscale aγ �
a0 [14, 15]. We determine the vortex unbinding transition
temperature T

>

BKT implicitly via

I
�
α(T

>

BKT)
−1 =

π

2 + 4πy(T>

BKT)
(13)

3

Here, gO(3)
ij

is the usual metric tensor of the O(3) prob-
lem, which reads explicitly

g
O(3) =




(I1s2ψ + I2c

2
ψ)s

2
θ + I3c

2
θ (I1 − I2)cψsθsψ I3cθ

(I1 − I2)cψsθsψ I1c
2
ψ + I2s

2
ψ 0

I3cθ 0 I3



 ,

(8)

where sωj = sinωj and cωj = cosωj . In our system we
find I1 = K1 +K3, I2 = K1 +K3 +K, I3 = 2K1 +K,
which are set by the stiffnesses of the two sublattices.
The U(1) degree of freedom α exhibits the initial stiff-
ness Iα = 2K1, however, it is still coupled to the non-
abelian O(3) sector. The relative fluctuations of the two
sublattices is in general not a decoupled degree of free-
dom, given the coupling term c = κ

2 (cθ, 0, 1) in the four-
dimensional metric, where κ = 4K1. Finally, the six-fold
potential Sc = λ

2a2

�
d2x cos 6α is a small but relevant

perturbation to the gradient terms gij∂µωi∂µωj . As long
as λ remains small, we can obtain the renormalization
group flow equation of the above action from Friedan’s
geometric formulation of the NLSM [12]. Up to two loop
order it holds

dgij

dl
=

1

2π
Rij −

1

8π2
R

klm

i Rjklm , (9)

where Riklm is the Riemann curvature tensor and Rij =
Rk

ijk
is the Ricci tensor. The Riemann tensor follows as

usual from the Christoffel symbols Γi

jk
= 1

2g
ij(gjk,k +

gkl,j − gjk,l) as Rk

lij
= Γk

lj,i
−Γk

li,j
+Γk

ni
Γn

lj
−Γk

nj
Γn

li
. The

flow equations of our five coupling constants Ij , Iα and
κ follow from Eq. (9).

Low-temperature phase diagram.– Key for an under-
standing of the low energy phase diagram of this problem
is the insight that the coupling term c can formally be
eliminated via the transformation ψ → ψ� = ψ+ rα with
r = κ/2I3. This yields a metric g in Eq. (7) with c = 0,
Iα → I �α = Iα − κ2/4I3 yet with gO(3) that depends on
the U(1) phase α via the above shift of the Euler angle ψ.
This gauge transformation to the appropriate center of
mass coordinates allows for clear criteria when the U(1)
sector of the theory decouples from the O(3) sector: if
either |I1 − I2| �

√
I1I2 or r � 1 it follows that gO(3)

becomes independent of α and the U(1) phase decouples
from the dynamics of the non-collinear magnetic degrees
of freedom. The first criterion follows from the fact that
gO(3) is independent of ψ if I1 = I2, while the second
criterion implies that the shift in ψ is negligible. From
Eq. (9) follows that I1,2,3 flow to an isotropic fixed point,
while the dimensionless variable r follows the flow equa-
tion (for simplicity we only list the one loop result, the
two loop correction does not change our conclusions)

dr

dl
= −r

(I1 − I2)2

4πI1I2I3
. (10)

FIG. 2. (a) Schematic phase diagram.

Thus, if the initial anisotropy |I1 − I2| = K is weak,
which happens for Jhh � Jtt, the coupling r does not
change much. The O(3) sector, however, quickly becomes
isotropic in the 1−2-plane leading to a decoupling of the
U(1) phase. On the other hand, in the limit of strong
anisotropy for Jhh � Jtt, where I1 − I2 is not small, we
find that r vanishes rapidly. In both cases follows that
the phase angle α emerges as an independent degree of
freedom. The β-function for the reduced phase stiffness
I �α = Iα − κ2/4I3 follows from Eq. (9) as

dI �α
dl

=
(I1 − I2)2r2

4πI1I2
, (11)

and does, as expected, approach zero once either of
the two decoupling conditions are fulfilled. Thus, per-
turbatively no renormalization of the stiffness I �α takes
place. The metric becomes completely flat in this sec-
tor. Since in both limits it follows that the decoupling
emerges rapidly, we find that λ, whose flow is governed by
λ̇ = (2−9/πI �α)λ, is still small. The resulting low-energy
theory corresponds to S = SO(3) + SZ6 with

SZ6 =
1

2

�
d
2
x
�
(I �α(∂µα)

2 + λ cos(6α)
�
. (12)

This is the well-known p = 6 state clock model that
exhibits two consecutive BKT transitions [13]: one at
T

>

BKT that separates a high temperature disordered phase
from a low temperature critical phase, where correlations
�exp[i(α(x)−α(x�))]� decay with a power-law in |x−x�|.
Below the lower BKT transition temperature T

<

BKT the
Z6 symmetry is spontaneously broken, and there is true
long-range order with α being equal to one of the six
possible values nπ/3 with n ∈ {0, . . . , 5}. It is crucial
that the above decoupling of the U(1) phase takes place
as otherwise the interaction with the O(3) sector would
have changed the coupling between topological defects –
vortices at T

>

BKT or domain walls at T
<

BKT – that is es-
sential for the occurence of the BKT transitions and the
critical intermediate phase.
Following the RG program of the BKT problem for

Eq. (12) we need to take into account that the size of
the vortex is now given by the coplanar lengthscale aγ �
a0 [14, 15]. We determine the vortex unbinding transition
temperature T

>

BKT implicitly via

I
�
α(T

>

BKT)
−1 =

π

2 + 4πy(T>

BKT)
(13)

S =− 1

2

�
d2x

�
I1Ω

2
µ,1 + I2Ω

2
µ,1 + I3Ω

2
µ,1

�

+
Iα
2

�
d2x(∂µα)

2 +
κ

2

�
d2x∂µαΩµ,3

19Monday, October 8, 2012



Mathematica gives:

dI1
dl

=
(I2 ! I3)

2 ! I21
4!I2I3

!
!
I21 ! I22

"
"2

16!I2I23

#
I! ! "2

4I3

$

dI2
dl

=
(I1 ! I3)

2 ! I22
4!I1I3

+

!
I21 ! I22

"
"2

16!I1I23

#
I! ! "2

4I3

$

dI3
dl

=
(I1 ! I2)

2 ! I23
4!I1I2

dI!
dl

= !
"2

16!I1I2
d"

dl
= !I3

"

4!I1I2
.

This fully agrees with Peter’s flow equations.

3

3

Here, gO(3)
ij

is the usual metric tensor of the O(3) prob-
lem, which reads explicitly

g
O(3) =




(I1s2ψ + I2c

2
ψ)s

2
θ + I3c

2
θ (I1 − I2)cψsθsψ I3cθ

(I1 − I2)cψsθsψ I1c
2
ψ + I2s

2
ψ 0

I3cθ 0 I3



 ,

(8)

where sωj = sinωj and cωj = cosωj . In our system we
find I1 = K1 +K3, I2 = K1 +K3 +K, I3 = 2K1 +K,
which are set by the stiffnesses of the two sublattices.
The U(1) degree of freedom α exhibits the initial stiff-
ness Iα = 2K1, however, it is still coupled to the non-
abelian O(3) sector. The relative fluctuations of the two
sublattices is in general not a decoupled degree of free-
dom, given the coupling term c = κ

2 (cθ, 0, 1) in the four-
dimensional metric, where κ = 4K1. Finally, the six-fold
potential Sc = λ

2a2

�
d2x cos 6α is a small but relevant

perturbation to the gradient terms gij∂µωi∂µωj . As long
as λ remains small, we can obtain the renormalization
group flow equation of the above action from Friedan’s
geometric formulation of the NLSM [12]. Up to two loop
order it holds

dgij

dl
=

1

2π
Rij −

1

8π2
R

klm

i Rjklm , (9)

where Riklm is the Riemann curvature tensor and Rij =
Rk

ijk
is the Ricci tensor. The Riemann tensor follows as

usual from the Christoffel symbols Γi

jk
= 1

2g
ij(gjk,k +

gkl,j − gjk,l) as Rk

lij
= Γk

lj,i
−Γk

li,j
+Γk

ni
Γn

lj
−Γk

nj
Γn

li
. The

flow equations of our five coupling constants Ij , Iα and
κ follow from Eq. (9).

Low-temperature phase diagram.– Key for an under-
standing of the low energy phase diagram of this problem
is the insight that the coupling term c can formally be
eliminated via the transformation ψ → ψ� = ψ+ rα with
r = κ/2I3. This yields a metric g in Eq. (7) with c = 0,
Iα → I �α = Iα − κ2/4I3 yet with gO(3) that depends on
the U(1) phase α via the above shift of the Euler angle ψ.
This gauge transformation to the appropriate center of
mass coordinates allows for clear criteria when the U(1)
sector of the theory decouples from the O(3) sector: if
either |I1 − I2| �

√
I1I2 or r � 1 it follows that gO(3)

becomes independent of α and the U(1) phase decouples
from the dynamics of the non-collinear magnetic degrees
of freedom. The first criterion follows from the fact that
gO(3) is independent of ψ if I1 = I2, while the second
criterion implies that the shift in ψ is negligible. From
Eq. (9) follows that I1,2,3 flow to an isotropic fixed point,
while the dimensionless variable r follows the flow equa-
tion (for simplicity we only list the one loop result, the
two loop correction does not change our conclusions)

dr

dl
= −r

(I1 − I2)2

4πI1I2I3
. (10)

FIG. 2. (a) Schematic phase diagram.

Thus, if the initial anisotropy |I1 − I2| = K is weak,
which happens for Jhh � Jtt, the coupling r does not
change much. The O(3) sector, however, quickly becomes
isotropic in the 1−2-plane leading to a decoupling of the
U(1) phase. On the other hand, in the limit of strong
anisotropy for Jhh � Jtt, where I1 − I2 is not small, we
find that r vanishes rapidly. In both cases follows that
the phase angle α emerges as an independent degree of
freedom. The β-function for the reduced phase stiffness
I �α = Iα − κ2/4I3 follows from Eq. (9) as

dI �α
dl

=
(I1 − I2)2r2

4πI1I2
, (11)

and does, as expected, approach zero once either of
the two decoupling conditions are fulfilled. Thus, per-
turbatively no renormalization of the stiffness I �α takes
place. The metric becomes completely flat in this sec-
tor. Since in both limits it follows that the decoupling
emerges rapidly, we find that λ, whose flow is governed by
λ̇ = (2−9/πI �α)λ, is still small. The resulting low-energy
theory corresponds to S = SO(3) + SZ6 with

SZ6 =
1

2

�
d
2
x
�
(I �α(∂µα)

2 + λ cos(6α)
�
. (12)

This is the well-known p = 6 state clock model that
exhibits two consecutive BKT transitions [13]: one at
T

>

BKT that separates a high temperature disordered phase
from a low temperature critical phase, where correlations
�exp[i(α(x)−α(x�))]� decay with a power-law in |x−x�|.
Below the lower BKT transition temperature T

<

BKT the
Z6 symmetry is spontaneously broken, and there is true
long-range order with α being equal to one of the six
possible values nπ/3 with n ∈ {0, . . . , 5}. It is crucial
that the above decoupling of the U(1) phase takes place
as otherwise the interaction with the O(3) sector would
have changed the coupling between topological defects –
vortices at T

>

BKT or domain walls at T
<

BKT – that is es-
sential for the occurence of the BKT transitions and the
critical intermediate phase.
Following the RG program of the BKT problem for

Eq. (12) we need to take into account that the size of
the vortex is now given by the coplanar lengthscale aγ �
a0 [14, 15]. We determine the vortex unbinding transition
temperature T

>

BKT implicitly via

I
�
α(T

>

BKT)
−1 =

π

2 + 4πy(T>

BKT)
(13)

3

Here, gO(3)
ij

is the usual metric tensor of the O(3) prob-
lem, which reads explicitly

g
O(3) =




(I1s2ψ + I2c

2
ψ)s

2
θ + I3c

2
θ (I1 − I2)cψsθsψ I3cθ

(I1 − I2)cψsθsψ I1c
2
ψ + I2s

2
ψ 0

I3cθ 0 I3



 ,

(8)

where sωj = sinωj and cωj = cosωj . In our system we
find I1 = K1 +K3, I2 = K1 +K3 +K, I3 = 2K1 +K,
which are set by the stiffnesses of the two sublattices.
The U(1) degree of freedom α exhibits the initial stiff-
ness Iα = 2K1, however, it is still coupled to the non-
abelian O(3) sector. The relative fluctuations of the two
sublattices is in general not a decoupled degree of free-
dom, given the coupling term c = κ

2 (cθ, 0, 1) in the four-
dimensional metric, where κ = 4K1. Finally, the six-fold
potential Sc = λ

2a2

�
d2x cos 6α is a small but relevant

perturbation to the gradient terms gij∂µωi∂µωj . As long
as λ remains small, we can obtain the renormalization
group flow equation of the above action from Friedan’s
geometric formulation of the NLSM [12]. Up to two loop
order it holds

dgij

dl
=

1

2π
Rij −

1

8π2
R

klm

i Rjklm , (9)

where Riklm is the Riemann curvature tensor and Rij =
Rk

ijk
is the Ricci tensor. The Riemann tensor follows as

usual from the Christoffel symbols Γi

jk
= 1

2g
ij(gjk,k +

gkl,j − gjk,l) as Rk

lij
= Γk

lj,i
−Γk

li,j
+Γk

ni
Γn

lj
−Γk

nj
Γn

li
. The

flow equations of our five coupling constants Ij , Iα and
κ follow from Eq. (9).

Low-temperature phase diagram.– Key for an under-
standing of the low energy phase diagram of this problem
is the insight that the coupling term c can formally be
eliminated via the transformation ψ → ψ� = ψ+ rα with
r = κ/2I3. This yields a metric g in Eq. (7) with c = 0,
Iα → I �α = Iα − κ2/4I3 yet with gO(3) that depends on
the U(1) phase α via the above shift of the Euler angle ψ.
This gauge transformation to the appropriate center of
mass coordinates allows for clear criteria when the U(1)
sector of the theory decouples from the O(3) sector: if
either |I1 − I2| �

√
I1I2 or r � 1 it follows that gO(3)

becomes independent of α and the U(1) phase decouples
from the dynamics of the non-collinear magnetic degrees
of freedom. The first criterion follows from the fact that
gO(3) is independent of ψ if I1 = I2, while the second
criterion implies that the shift in ψ is negligible. From
Eq. (9) follows that I1,2,3 flow to an isotropic fixed point,
while the dimensionless variable r follows the flow equa-
tion (for simplicity we only list the one loop result, the
two loop correction does not change our conclusions)

dr

dl
= −r

(I1 − I2)2

4πI1I2I3
. (10)

FIG. 2. (a) Schematic phase diagram.

Thus, if the initial anisotropy |I1 − I2| = K is weak,
which happens for Jhh � Jtt, the coupling r does not
change much. The O(3) sector, however, quickly becomes
isotropic in the 1−2-plane leading to a decoupling of the
U(1) phase. On the other hand, in the limit of strong
anisotropy for Jhh � Jtt, where I1 − I2 is not small, we
find that r vanishes rapidly. In both cases follows that
the phase angle α emerges as an independent degree of
freedom. The β-function for the reduced phase stiffness
I �α = Iα − κ2/4I3 follows from Eq. (9) as

dI �α
dl

=
(I1 − I2)2r2

4πI1I2
, (11)

and does, as expected, approach zero once either of
the two decoupling conditions are fulfilled. Thus, per-
turbatively no renormalization of the stiffness I �α takes
place. The metric becomes completely flat in this sec-
tor. Since in both limits it follows that the decoupling
emerges rapidly, we find that λ, whose flow is governed by
λ̇ = (2−9/πI �α)λ, is still small. The resulting low-energy
theory corresponds to S = SO(3) + SZ6 with

SZ6 =
1

2

�
d
2
x
�
(I �α(∂µα)

2 + λ cos(6α)
�
. (12)

This is the well-known p = 6 state clock model that
exhibits two consecutive BKT transitions [13]: one at
T

>

BKT that separates a high temperature disordered phase
from a low temperature critical phase, where correlations
�exp[i(α(x)−α(x�))]� decay with a power-law in |x−x�|.
Below the lower BKT transition temperature T

<

BKT the
Z6 symmetry is spontaneously broken, and there is true
long-range order with α being equal to one of the six
possible values nπ/3 with n ∈ {0, . . . , 5}. It is crucial
that the above decoupling of the U(1) phase takes place
as otherwise the interaction with the O(3) sector would
have changed the coupling between topological defects –
vortices at T

>

BKT or domain walls at T
<

BKT – that is es-
sential for the occurence of the BKT transitions and the
critical intermediate phase.
Following the RG program of the BKT problem for

Eq. (12) we need to take into account that the size of
the vortex is now given by the coplanar lengthscale aγ �
a0 [14, 15]. We determine the vortex unbinding transition
temperature T

>

BKT implicitly via

I
�
α(T

>

BKT)
−1 =

π

2 + 4πy(T>

BKT)
(13)

3

Here, gO(3)
ij

is the usual metric tensor of the O(3) prob-
lem, which reads explicitly

g
O(3) =




(I1s2ψ + I2c

2
ψ)s

2
θ + I3c

2
θ (I1 − I2)cψsθsψ I3cθ

(I1 − I2)cψsθsψ I1c
2
ψ + I2s

2
ψ 0

I3cθ 0 I3



 ,

(8)

where sωj = sinωj and cωj = cosωj . In our system we
find I1 = K1 +K3, I2 = K1 +K3 +K, I3 = 2K1 +K,
which are set by the stiffnesses of the two sublattices.
The U(1) degree of freedom α exhibits the initial stiff-
ness Iα = 2K1, however, it is still coupled to the non-
abelian O(3) sector. The relative fluctuations of the two
sublattices is in general not a decoupled degree of free-
dom, given the coupling term c = κ

2 (cθ, 0, 1) in the four-
dimensional metric, where κ = 4K1. Finally, the six-fold
potential Sc = λ

2a2

�
d2x cos 6α is a small but relevant

perturbation to the gradient terms gij∂µωi∂µωj . As long
as λ remains small, we can obtain the renormalization
group flow equation of the above action from Friedan’s
geometric formulation of the NLSM [12]. Up to two loop
order it holds

dgij

dl
=

1

2π
Rij −

1

8π2
R

klm

i Rjklm , (9)

where Riklm is the Riemann curvature tensor and Rij =
Rk

ijk
is the Ricci tensor. The Riemann tensor follows as

usual from the Christoffel symbols Γi

jk
= 1

2g
ij(gjk,k +

gkl,j − gjk,l) as Rk

lij
= Γk

lj,i
−Γk

li,j
+Γk

ni
Γn

lj
−Γk

nj
Γn

li
. The

flow equations of our five coupling constants Ij , Iα and
κ follow from Eq. (9).

Low-temperature phase diagram.– Key for an under-
standing of the low energy phase diagram of this problem
is the insight that the coupling term c can formally be
eliminated via the transformation ψ → ψ� = ψ+ rα with
r = κ/2I3. This yields a metric g in Eq. (7) with c = 0,
Iα → I �α = Iα − κ2/4I3 yet with gO(3) that depends on
the U(1) phase α via the above shift of the Euler angle ψ.
This gauge transformation to the appropriate center of
mass coordinates allows for clear criteria when the U(1)
sector of the theory decouples from the O(3) sector: if
either |I1 − I2| �

√
I1I2 or r � 1 it follows that gO(3)

becomes independent of α and the U(1) phase decouples
from the dynamics of the non-collinear magnetic degrees
of freedom. The first criterion follows from the fact that
gO(3) is independent of ψ if I1 = I2, while the second
criterion implies that the shift in ψ is negligible. From
Eq. (9) follows that I1,2,3 flow to an isotropic fixed point,
while the dimensionless variable r follows the flow equa-
tion (for simplicity we only list the one loop result, the
two loop correction does not change our conclusions)

dr

dl
= −r

(I1 − I2)2

4πI1I2I3
. (10)

FIG. 2. (a) Schematic phase diagram.

Thus, if the initial anisotropy |I1 − I2| = K is weak,
which happens for Jhh � Jtt, the coupling r does not
change much. The O(3) sector, however, quickly becomes
isotropic in the 1−2-plane leading to a decoupling of the
U(1) phase. On the other hand, in the limit of strong
anisotropy for Jhh � Jtt, where I1 − I2 is not small, we
find that r vanishes rapidly. In both cases follows that
the phase angle α emerges as an independent degree of
freedom. The β-function for the reduced phase stiffness
I �α = Iα − κ2/4I3 follows from Eq. (9) as

dI �α
dl

=
(I1 − I2)2r2

4πI1I2
, (11)

and does, as expected, approach zero once either of
the two decoupling conditions are fulfilled. Thus, per-
turbatively no renormalization of the stiffness I �α takes
place. The metric becomes completely flat in this sec-
tor. Since in both limits it follows that the decoupling
emerges rapidly, we find that λ, whose flow is governed by
λ̇ = (2−9/πI �α)λ, is still small. The resulting low-energy
theory corresponds to S = SO(3) + SZ6 with

SZ6 =
1

2

�
d
2
x
�
(I �α(∂µα)

2 + λ cos(6α)
�
. (12)

This is the well-known p = 6 state clock model that
exhibits two consecutive BKT transitions [13]: one at
T

>

BKT that separates a high temperature disordered phase
from a low temperature critical phase, where correlations
�exp[i(α(x)−α(x�))]� decay with a power-law in |x−x�|.
Below the lower BKT transition temperature T

<

BKT the
Z6 symmetry is spontaneously broken, and there is true
long-range order with α being equal to one of the six
possible values nπ/3 with n ∈ {0, . . . , 5}. It is crucial
that the above decoupling of the U(1) phase takes place
as otherwise the interaction with the O(3) sector would
have changed the coupling between topological defects –
vortices at T

>

BKT or domain walls at T
<

BKT – that is es-
sential for the occurence of the BKT transitions and the
critical intermediate phase.
Following the RG program of the BKT problem for

Eq. (12) we need to take into account that the size of
the vortex is now given by the coplanar lengthscale aγ �
a0 [14, 15]. We determine the vortex unbinding transition
temperature T

>

BKT implicitly via

I
�
α(T

>

BKT)
−1 =

π

2 + 4πy(T>

BKT)
(13)

S =− 1

2

�
d2x

�
I1Ω

2
µ,1 + I2Ω

2
µ,1 + I3Ω

2
µ,1

�

+
Iα
2

�
d2x(∂µα)

2 +
κ

2

�
d2x∂µαΩµ,3

’

19Monday, October 8, 2012



Mathematica gives:

dI1
dl

=
(I2 ! I3)

2 ! I21
4!I2I3

!
!
I21 ! I22

"
"2

16!I2I23

#
I! ! "2

4I3

$

dI2
dl

=
(I1 ! I3)

2 ! I22
4!I1I3

+

!
I21 ! I22

"
"2

16!I1I23

#
I! ! "2

4I3

$

dI3
dl

=
(I1 ! I2)

2 ! I23
4!I1I2

dI!
dl

= !
"2

16!I1I2
d"

dl
= !I3

"

4!I1I2
.

This fully agrees with Peter’s flow equations.
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isotropic in the 1−2-plane leading to a decoupling of the
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This fully agrees with Peter’s flow equations.
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criterion implies that the shift in ψ is negligible. From
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place. The metric becomes completely flat in this sec-
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the two decoupling conditions are fulfilled. Thus, per-
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place. The metric becomes completely flat in this sec-
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ness Iα = 2K1, however, it is still coupled to the non-
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1). From Eq. (12) we predict that T>
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the BKT transition is only numerically smaller than the
coplanar crossover temperature. The system enters the
critical phase soon after it becomes coplanar. Similarly,
it follows from Ref. [7] that T<

BKT and T>
BKT are of the

same order of magnitude.
In summary we have presented a 2D Heisenberg model

on a decorated triangular lattice where short wavelength
thermal fluctuations select long-range Z6 order, pre-
ceeded in temperature by an emergent critical phase that
is framed by two BKT transitions. We have written the
action of this model as a classical 4D string theory where
the spin stiffness is determined by the metric tensor of
the manifold; the scaling equations are then extracted as
components of the resulting Ricci flow. We note that the
decoupling of the U(1) degree of freedom corresponds to a

dimensional reduction of the analogous string theory and
thus to a toy model of compactification. Finally we note
that the emergence of massless modes in collective mode
massive theories could have interesting implications for
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0 [19, 20]. We determine the vortex unbinding transition
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From

Eq. (12) we predict that T >
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T
cp , i.e.,

the BKT
transition is only numerically smaller than the

coplanar crossover temperature. The system
enters the

critical phase soon after it becomes coplanar. Similarly,

it follows from
Ref. [7] that T <

BKT and T >
BKT are of the

same order of magnitude.

In summary we have presented a 2D
Heisenberg model

on a decorated triangular lattice where short wavelength

thermal fluctuations select long-range Z
6 order, pre-

ceeded in temperature by an emergent critical phase that

is framed by two BKT
transitions. We have written the

action of this model as a classical 4D
string theory where

the spin stiffness is determined by the metric tensor of

the manifold; the scaling equations are then extracted as

components of the resulting Ricci flow. We note that the

decoupling of the U(1) degree of freedom
corresponds to a

dimensional reduction of the analogous string theory and

thus to a toy model of compactification. Finally we note

that the emergence of massless modes in collective mode

massive theories could have interesting implications for

two-dimensional field theories.
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FIG. 2. (a) Schematic phase diagram. (b) Coplanar RG flow

of the variables I �α (blue), Ī = (I1I2I3)
1/3

(greed dashed),

(I2− I1)/Ī (red), and r (pink dotted). Curves are normalized

to initial values at lγ . Upper panel is for Jtt � Jhh with

Jhh = 1, Jtt = 5, Jth = 0.4, T = 0.6, and initial values

Ī = 5.3, (I2 − I1)/Ī = 0.27, r = 0.82, I �α = 1.2. Decoupling

is due to (I1 − I2)/Ī → 0. Lower panel is for Jhh � Jtt

with Jhh = 5, Jtt = 1, Jth = 0.4, T = 0.5, and initial values

Ī = 4.5, (I2 − I1)/Ī = 2.1, r = 0.11, I �α = 1.1. Decoupling is

due to r → 0.

T<
BKT that are responsible for the BKT transitions and

the intermediate critical phase.
Following the RG program of the BKT problem for

Eq. (11) we need to take into account that the size of
the vortex is now given by the coplanar lengthscale aγ �
a0 [19, 20]. We determine the vortex unbinding transition
temperature T>

BKT implicitly via

I �α(T
>
BKT)

−1 =
π

2 + 4πy(T>
BKT)

(12)

with fugacity y = e−Sca2γ/a
2
0 and core action Sc � π(K+

1). From Eq. (12) we predict that T>
BKT � Tcp, i.e.,

the BKT transition is only numerically smaller than the
coplanar crossover temperature. The system enters the
critical phase soon after it becomes coplanar. Similarly,
it follows from Ref. [7] that T<

BKT and T>
BKT are of the

same order of magnitude.
In summary we have presented a 2D Heisenberg model

on a decorated triangular lattice where short wavelength
thermal fluctuations select long-range Z6 order, pre-
ceeded in temperature by an emergent critical phase that
is framed by two BKT transitions. We have written the
action of this model as a classical 4D string theory where
the spin stiffness is determined by the metric tensor of
the manifold; the scaling equations are then extracted as
components of the resulting Ricci flow. We note that the
decoupling of the U(1) degree of freedom corresponds to a

dimensional reduction of the analogous string theory and
thus to a toy model of compactification. Finally we note
that the emergence of massless modes in collective mode
massive theories could have interesting implications for
two-dimensional field theories.
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Note added.– After obtaining these results we learned

of two recent studies: one on a Kitaev-Heisenberg model,
where an emergent Z6-symmetry results from a concep-
tually different mechanism [21], a second on itinerant sys-
tems where an emergent Z4 Potts model appears [22].
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Here, gO(3)
ij

is the usual metric tensor of the O(3) prob-
lem, which reads explicitly

g
O(3) =




(I1s2ψ + I2c

2
ψ)s

2
θ + I3c

2
θ (I1 − I2)cψsθsψ I3cθ

(I1 − I2)cψsθsψ I1c
2
ψ + I2s

2
ψ 0

I3cθ 0 I3



 ,

(8)

where sωj = sinωj and cωj = cosωj . In our system we
find I1 = K1 +K3, I2 = K1 +K3 +K, I3 = 2K1 +K,
which are set by the stiffnesses of the two sublattices.
The U(1) degree of freedom α exhibits the initial stiff-
ness Iα = 2K1, however, it is still coupled to the non-
abelian O(3) sector. The relative fluctuations of the two
sublattices is in general not a decoupled degree of free-
dom, given the coupling term c = κ

2 (cθ, 0, 1) in the four-
dimensional metric, where κ = 4K1. Finally, the six-fold
potential Sc = λ

2a2

�
d2x cos 6α is a small but relevant

perturbation to the gradient terms gij∂µωi∂µωj . As long
as λ remains small, we can obtain the renormalization
group flow equation of the above action from Friedan’s
geometric formulation of the NLSM [12]. Up to two loop
order it holds

dgij

dl
=

1

2π
Rij −

1

8π2
R

klm

i Rjklm , (9)

where Riklm is the Riemann curvature tensor and Rij =
Rk

ijk
is the Ricci tensor. The Riemann tensor follows as

usual from the Christoffel symbols Γi

jk
= 1

2g
ij(gjk,k +

gkl,j − gjk,l) as Rk

lij
= Γk

lj,i
−Γk

li,j
+Γk

ni
Γn

lj
−Γk

nj
Γn

li
. The

flow equations of our five coupling constants Ij , Iα and
κ follow from Eq. (9).

Low-temperature phase diagram.– Key for an under-
standing of the low energy phase diagram of this problem
is the insight that the coupling term c can formally be
eliminated via the transformation ψ → ψ� = ψ+ rα with
r = κ/2I3. This yields a metric g in Eq. (7) with c = 0,
Iα → I �α = Iα − κ2/4I3 yet with gO(3) that depends on
the U(1) phase α via the above shift of the Euler angle ψ.
This gauge transformation to the appropriate center of
mass coordinates allows for clear criteria when the U(1)
sector of the theory decouples from the O(3) sector: if
either |I1 − I2| �

√
I1I2 or r � 1 it follows that gO(3)

becomes independent of α and the U(1) phase decouples
from the dynamics of the non-collinear magnetic degrees
of freedom. The first criterion follows from the fact that
gO(3) is independent of ψ if I1 = I2, while the second
criterion implies that the shift in ψ is negligible. From
Eq. (9) follows that I1,2,3 flow to an isotropic fixed point,
while the dimensionless variable r follows the flow equa-
tion (for simplicity we only list the one loop result, the
two loop correction does not change our conclusions)

dr

dl
= −r

(I1 − I2)2

4πI1I2I3
. (10)

FIG. 2. (a) Schematic phase diagram.

Thus, if the initial anisotropy |I1 − I2| = K is weak,
which happens for Jhh � Jtt, the coupling r does not
change much. The O(3) sector, however, quickly becomes
isotropic in the 1−2-plane leading to a decoupling of the
U(1) phase. On the other hand, in the limit of strong
anisotropy for Jhh � Jtt, where I1 − I2 is not small, we
find that r vanishes rapidly. In both cases follows that
the phase angle α emerges as an independent degree of
freedom. The β-function for the reduced phase stiffness
I �α = Iα − κ2/4I3 follows from Eq. (9) as

dI �α
dl

=
(I1 − I2)2r2

4πI1I2
, (11)

and does, as expected, approach zero once either of
the two decoupling conditions are fulfilled. Thus, per-
turbatively no renormalization of the stiffness I �α takes
place. The metric becomes completely flat in this sec-
tor. Since in both limits it follows that the decoupling
emerges rapidly, we find that λ, whose flow is governed by
λ̇ = (2−9/πI �α)λ, is still small. The resulting low-energy
theory corresponds to S = SO(3) + SZ6 with

SZ6 =
1

2

�
d
2
x
�
(I �α(∂µα)

2 + λ cos(6α)
�
. (12)

This is the well-known p = 6 state clock model that
exhibits two consecutive BKT transitions [13]: one at
T

>

BKT that separates a high temperature disordered phase
from a low temperature critical phase, where correlations
�exp[i(α(x)−α(x�))]� decay with a power-law in |x−x�|.
Below the lower BKT transition temperature T

<

BKT the
Z6 symmetry is spontaneously broken, and there is true
long-range order with α being equal to one of the six
possible values nπ/3 with n ∈ {0, . . . , 5}. It is crucial
that the above decoupling of the U(1) phase takes place
as otherwise the interaction with the O(3) sector would
have changed the coupling between topological defects –
vortices at T

>

BKT or domain walls at T
<

BKT – that is es-
sential for the occurence of the BKT transitions and the
critical intermediate phase.
Following the RG program of the BKT problem for

Eq. (12) we need to take into account that the size of
the vortex is now given by the coplanar lengthscale aγ �
a0 [14, 15]. We determine the vortex unbinding transition
temperature T

>

BKT implicitly via

I
�
α(T

>

BKT)
−1 =

π

2 + 4πy(T>

BKT)
(13)

As isotropy develops, r stops renormalizing, U(1) phase decouples with 
finite stiffness

3
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Thus, if the initial anisotropy |I1 − I2| = K is weak,
which happens for Jhh � Jtt, the coupling r does not
change much. The O(3) sector, however, quickly becomes
isotropic in the 1−2-plane leading to a decoupling of the
U(1) phase. On the other hand, in the limit of strong
anisotropy for Jhh � Jtt, where I1 − I2 is not small, we
find that r vanishes rapidly. In both cases follows that
the phase angle α emerges as an independent degree of
freedom. The β-function for the reduced phase stiffness
I �α = Iα − κ2/4I3 follows from Eq. (9) as

dI �α
dl

=
(I1 − I2)2r2

4πI1I2
, (11)

and does, as expected, approach zero once either of
the two decoupling conditions are fulfilled. Thus, per-
turbatively no renormalization of the stiffness I �α takes
place. The metric becomes completely flat in this sec-
tor. Since in both limits it follows that the decoupling
emerges rapidly, we find that λ, whose flow is governed by
λ̇ = (2−9/πI �α)λ, is still small. The resulting low-energy
theory corresponds to S = SO(3) + SZ6 with
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This is the well-known p = 6 state clock model that
exhibits two consecutive BKT transitions [13]: one at
T

>

BKT that separates a high temperature disordered phase
from a low temperature critical phase, where correlations
�exp[i(α(x)−α(x�))]� decay with a power-law in |x−x�|.
Below the lower BKT transition temperature T

<

BKT the
Z6 symmetry is spontaneously broken, and there is true
long-range order with α being equal to one of the six
possible values nπ/3 with n ∈ {0, . . . , 5}. It is crucial
that the above decoupling of the U(1) phase takes place
as otherwise the interaction with the O(3) sector would
have changed the coupling between topological defects –
vortices at T

>

BKT or domain walls at T
<

BKT – that is es-
sential for the occurence of the BKT transitions and the
critical intermediate phase.
Following the RG program of the BKT problem for

Eq. (12) we need to take into account that the size of
the vortex is now given by the coplanar lengthscale aγ �
a0 [14, 15]. We determine the vortex unbinding transition
temperature T

>

BKT implicitly via
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of the variables I �α (blue), Ī = (I1I2I3)
1/3

(greed dashed),

(I2− I1)/Ī (red), and r (pink dotted). Curves are normalized

to initial values at lγ . Upper panel is for Jtt � Jhh with

Jhh = 1, Jtt = 5, Jth = 0.4, T = 0.6, and initial values

Ī = 5.3, (I2 − I1)/Ī = 0.27, r = 0.82, I �α = 1.2. Decoupling

is due to (I1 − I2)/Ī → 0. Lower panel is for Jhh � Jtt

with Jhh = 5, Jtt = 1, Jth = 0.4, T = 0.5, and initial values

Ī = 4.5, (I2 − I1)/Ī = 2.1, r = 0.11, I �α = 1.1. Decoupling is

due to r → 0.

T<
BKT that are responsible for the BKT transitions and

the intermediate critical phase.
Following the RG program of the BKT problem for

Eq. (11) we need to take into account that the size of
the vortex is now given by the coplanar lengthscale aγ �
a0 [19, 20]. We determine the vortex unbinding transition
temperature T>

BKT implicitly via

I �α(T
>
BKT)

−1 =
π

2 + 4πy(T>
BKT)

(12)

with fugacity y = e−Sca2γ/a
2
0 and core action Sc � π(K+

1). From Eq. (12) we predict that T>
BKT � Tcp, i.e.,

the BKT transition is only numerically smaller than the
coplanar crossover temperature. The system enters the
critical phase soon after it becomes coplanar. Similarly,
it follows from Ref. [7] that T<

BKT and T>
BKT are of the

same order of magnitude.
In summary we have presented a 2D Heisenberg model

on a decorated triangular lattice where short wavelength
thermal fluctuations select long-range Z6 order, pre-
ceeded in temperature by an emergent critical phase that
is framed by two BKT transitions. We have written the
action of this model as a classical 4D string theory where
the spin stiffness is determined by the metric tensor of
the manifold; the scaling equations are then extracted as
components of the resulting Ricci flow. We note that the
decoupling of the U(1) degree of freedom corresponds to a

dimensional reduction of the analogous string theory and
thus to a toy model of compactification. Finally we note
that the emergence of massless modes in collective mode
massive theories could have interesting implications for
two-dimensional field theories.
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Note added.– After obtaining these results we learned

of two recent studies: one on a Kitaev-Heisenberg model,
where an emergent Z6-symmetry results from a concep-
tually different mechanism [21], a second on itinerant sys-
tems where an emergent Z4 Potts model appears [22].
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where sωj = sinωj and cωj = cosωj . In our system we
find I1 = K1 +K3, I2 = K1 +K3 +K, I3 = 2K1 +K,
which are set by the stiffnesses of the two sublattices.
The U(1) degree of freedom α exhibits the initial stiff-
ness Iα = 2K1, however, it is still coupled to the non-
abelian O(3) sector. The relative fluctuations of the two
sublattices is in general not a decoupled degree of free-
dom, given the coupling term c = κ

2 (cθ, 0, 1) in the four-
dimensional metric, where κ = 4K1. Finally, the six-fold
potential Sc = λ

2a2

�
d2x cos 6α is a small but relevant

perturbation to the gradient terms gij∂µωi∂µωj . As long
as λ remains small, we can obtain the renormalization
group flow equation of the above action from Friedan’s
geometric formulation of the NLSM [12]. Up to two loop
order it holds
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where Riklm is the Riemann curvature tensor and Rij =
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is the Ricci tensor. The Riemann tensor follows as

usual from the Christoffel symbols Γi
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. The

flow equations of our five coupling constants Ij , Iα and
κ follow from Eq. (9).

Low-temperature phase diagram.– Key for an under-
standing of the low energy phase diagram of this problem
is the insight that the coupling term c can formally be
eliminated via the transformation ψ → ψ� = ψ+ rα with
r = κ/2I3. This yields a metric g in Eq. (7) with c = 0,
Iα → I �α = Iα − κ2/4I3 yet with gO(3) that depends on
the U(1) phase α via the above shift of the Euler angle ψ.
This gauge transformation to the appropriate center of
mass coordinates allows for clear criteria when the U(1)
sector of the theory decouples from the O(3) sector: if
either |I1 − I2| �

√
I1I2 or r � 1 it follows that gO(3)

becomes independent of α and the U(1) phase decouples
from the dynamics of the non-collinear magnetic degrees
of freedom. The first criterion follows from the fact that
gO(3) is independent of ψ if I1 = I2, while the second
criterion implies that the shift in ψ is negligible. From
Eq. (9) follows that I1,2,3 flow to an isotropic fixed point,
while the dimensionless variable r follows the flow equa-
tion (for simplicity we only list the one loop result, the
two loop correction does not change our conclusions)

dr

dl
= −r

(I1 − I2)2

4πI1I2I3
. (10)

FIG. 2. (a) Schematic phase diagram.

Thus, if the initial anisotropy |I1 − I2| = K is weak,
which happens for Jhh � Jtt, the coupling r does not
change much. The O(3) sector, however, quickly becomes
isotropic in the 1−2-plane leading to a decoupling of the
U(1) phase. On the other hand, in the limit of strong
anisotropy for Jhh � Jtt, where I1 − I2 is not small, we
find that r vanishes rapidly. In both cases follows that
the phase angle α emerges as an independent degree of
freedom. The β-function for the reduced phase stiffness
I �α = Iα − κ2/4I3 follows from Eq. (9) as

dI �α
dl

=
(I1 − I2)2r2

4πI1I2
, (11)

and does, as expected, approach zero once either of
the two decoupling conditions are fulfilled. Thus, per-
turbatively no renormalization of the stiffness I �α takes
place. The metric becomes completely flat in this sec-
tor. Since in both limits it follows that the decoupling
emerges rapidly, we find that λ, whose flow is governed by
λ̇ = (2−9/πI �α)λ, is still small. The resulting low-energy
theory corresponds to S = SO(3) + SZ6 with

SZ6 =
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. (12)

This is the well-known p = 6 state clock model that
exhibits two consecutive BKT transitions [13]: one at
T

>

BKT that separates a high temperature disordered phase
from a low temperature critical phase, where correlations
�exp[i(α(x)−α(x�))]� decay with a power-law in |x−x�|.
Below the lower BKT transition temperature T

<

BKT the
Z6 symmetry is spontaneously broken, and there is true
long-range order with α being equal to one of the six
possible values nπ/3 with n ∈ {0, . . . , 5}. It is crucial
that the above decoupling of the U(1) phase takes place
as otherwise the interaction with the O(3) sector would
have changed the coupling between topological defects –
vortices at T

>

BKT or domain walls at T
<

BKT – that is es-
sential for the occurence of the BKT transitions and the
critical intermediate phase.
Following the RG program of the BKT problem for

Eq. (12) we need to take into account that the size of
the vortex is now given by the coplanar lengthscale aγ �
a0 [14, 15]. We determine the vortex unbinding transition
temperature T

>

BKT implicitly via

I
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α(T
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−1 =

π

2 + 4πy(T>
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Decoupling becomes complete as 
I1->I2
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with fugacity y = e−Sca2γ/a
2
0 and core action Sc � π(K+

1). From Eq. (12) we predict that T>
BKT � Tcp, i.e.,

the BKT transition is only numerically smaller than the
coplanar crossover temperature. The system enters the
critical phase soon after it becomes coplanar. Similarly,
it follows from Ref. [7] that T<

BKT and T>
BKT are of the

same order of magnitude.
In summary we have presented a 2D Heisenberg model

on a decorated triangular lattice where short wavelength
thermal fluctuations select long-range Z6 order, pre-
ceeded in temperature by an emergent critical phase that
is framed by two BKT transitions. We have written the
action of this model as a classical 4D string theory where
the spin stiffness is determined by the metric tensor of
the manifold; the scaling equations are then extracted as
components of the resulting Ricci flow. We note that the
decoupling of the U(1) degree of freedom corresponds to a

dimensional reduction of the analogous string theory and
thus to a toy model of compactification. Finally we note
that the emergence of massless modes in collective mode
massive theories could have interesting implications for
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where an emergent Z6-symmetry results from a concep-
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tems where an emergent Z4 Potts model appears [22].
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is due to (I1 − I2)/Ī → 0. Lower panel is for Jhh � Jtt

with Jhh = 5, Jtt = 1, Jth = 0.4, T = 0.5, and initial values
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=
2.1, r

=
0.11, I �

α =
1.1.

D
ecoupling

is

due
to r →

0.T <
BKT that are responsible for the BKT

transitions and

the intermediate critical phase.

Following the RG
program

of the BKT
problem

for

Eq. (11) we need to take into account that the size of

the vortex is now given by the coplanar lengthscale a
γ �

a
0 [19, 20]. We determine the vortex unbinding transition

temperature T >
BKT implicitly via

I �
α (T >

BKT ) −1
=

π2 + 4πy(T >
BKT )

(12)

with fugacity y =
e −S

ca 2
γ /a 2

0 and core action S
c �

π(K+

1).
From

Eq. (12) we predict that T >
BKT �

T
cp , i.e.,

the BKT
transition is only numerically smaller than the

coplanar crossover temperature. The system
enters the

critical phase soon after it becomes coplanar. Similarly,

it follows from
Ref. [7] that T <

BKT and T >
BKT are of the

same order of magnitude.

In summary we have presented a 2D
Heisenberg model

on a decorated triangular lattice where short wavelength
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is framed by two BKT
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components of the resulting Ricci flow. We note that the

decoupling of the U(1) degree of freedom
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FIG. 2. (a) Schematic phase diagram. (b) Coplanar RG flow

of the variables I �α (blue), Ī = (I1I2I3)
1/3

(greed dashed),

(I2− I1)/Ī (red), and r (pink dotted). Curves are normalized

to initial values at lγ . Upper panel is for Jtt � Jhh with

Jhh = 1, Jtt = 5, Jth = 0.4, T = 0.6, and initial values

Ī = 5.3, (I2 − I1)/Ī = 0.27, r = 0.82, I �α = 1.2. Decoupling

is due to (I1 − I2)/Ī → 0. Lower panel is for Jhh � Jtt

with Jhh = 5, Jtt = 1, Jth = 0.4, T = 0.5, and initial values

Ī = 4.5, (I2 − I1)/Ī = 2.1, r = 0.11, I �α = 1.1. Decoupling is

due to r → 0.

T<
BKT that are responsible for the BKT transitions and

the intermediate critical phase.
Following the RG program of the BKT problem for

Eq. (11) we need to take into account that the size of
the vortex is now given by the coplanar lengthscale aγ �
a0 [19, 20]. We determine the vortex unbinding transition
temperature T>

BKT implicitly via

I �α(T
>
BKT)

−1 =
π

2 + 4πy(T>
BKT)

(12)

with fugacity y = e−Sca2γ/a
2
0 and core action Sc � π(K+

1). From Eq. (12) we predict that T>
BKT � Tcp, i.e.,

the BKT transition is only numerically smaller than the
coplanar crossover temperature. The system enters the
critical phase soon after it becomes coplanar. Similarly,
it follows from Ref. [7] that T<

BKT and T>
BKT are of the

same order of magnitude.
In summary we have presented a 2D Heisenberg model

on a decorated triangular lattice where short wavelength
thermal fluctuations select long-range Z6 order, pre-
ceeded in temperature by an emergent critical phase that
is framed by two BKT transitions. We have written the
action of this model as a classical 4D string theory where
the spin stiffness is determined by the metric tensor of
the manifold; the scaling equations are then extracted as
components of the resulting Ricci flow. We note that the
decoupling of the U(1) degree of freedom corresponds to a

dimensional reduction of the analogous string theory and
thus to a toy model of compactification. Finally we note
that the emergence of massless modes in collective mode
massive theories could have interesting implications for
two-dimensional field theories.
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Note added.– After obtaining these results we learned

of two recent studies: one on a Kitaev-Heisenberg model,
where an emergent Z6-symmetry results from a concep-
tually different mechanism [21], a second on itinerant sys-
tems where an emergent Z4 Potts model appears [22].
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is due to (I1 − I2)/Ī → 0. Lower panel is for Jhh � Jtt

with Jhh = 5, Jtt = 1, Jth = 0.4, T = 0.5, and initial values
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=
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(greed

dashed),

(I2 − I1 )/Ī
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dotted).
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urves
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and
initial
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=
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(I2 −
I1 )/Ī

=
0.27, r

=
0.82, I �

α =
1.2.

D
ecoupling
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due

to
(I1 −
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0.
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panel
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J
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1, J
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=
0.5, and
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=
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=
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α =
1.1.

D
ecoupling

is

due
to r →

0.T <
BKT that are responsible for the BKT

transitions and

the intermediate critical phase.

Following the RG
program

of the BKT
problem

for

Eq. (11) we need to take into account that the size of

the vortex is now given by the coplanar lengthscale a
γ �

a
0 [19, 20]. We determine the vortex unbinding transition

temperature T >
BKT implicitly via

I �
α (T >

BKT ) −1
=

π2 + 4πy(T >
BKT )

(12)

with fugacity y =
e −S

ca 2
γ /a 2

0 and core action S
c �

π(K+

1).
From

Eq. (12) we predict that T >
BKT �

T
cp , i.e.,

the BKT
transition is only numerically smaller than the

coplanar crossover temperature. The system
enters the

critical phase soon after it becomes coplanar. Similarly,

it follows from
Ref. [7] that T <

BKT and T >
BKT are of the

same order of magnitude.

In summary we have presented a 2D
Heisenberg model

on a decorated triangular lattice where short wavelength

thermal fluctuations select long-range Z
6 order, pre-

ceeded in temperature by an emergent critical phase that

is framed by two BKT
transitions. We have written the

action of this model as a classical 4D
string theory where

the spin stiffness is determined by the metric tensor of

the manifold; the scaling equations are then extracted as

components of the resulting Ricci flow. We note that the

decoupling of the U(1) degree of freedom
corresponds to a

dimensional reduction of the analogous string theory and

thus to a toy model of compactification. Finally we note

that the emergence of massless modes in collective mode

massive theories could have interesting implications for

two-dimensional field theories.
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=
(I1I2I3 ) 1/3

(greed
dashed),

(I2 − I1 )/Ī
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FIG. 2. (a) Schematic phase diagram. (b) Coplanar RG flow

of the variables I �α (blue), Ī = (I1I2I3)
1/3

(greed dashed),

(I2− I1)/Ī (red), and r (pink dotted). Curves are normalized

to initial values at lγ . Upper panel is for Jtt � Jhh with

Jhh = 1, Jtt = 5, Jth = 0.4, T = 0.6, and initial values

Ī = 5.3, (I2 − I1)/Ī = 0.27, r = 0.82, I �α = 1.2. Decoupling

is due to (I1 − I2)/Ī → 0. Lower panel is for Jhh � Jtt

with Jhh = 5, Jtt = 1, Jth = 0.4, T = 0.5, and initial values

Ī = 4.5, (I2 − I1)/Ī = 2.1, r = 0.11, I �α = 1.1. Decoupling is

due to r → 0.

T<
BKT that are responsible for the BKT transitions and

the intermediate critical phase.
Following the RG program of the BKT problem for

Eq. (11) we need to take into account that the size of
the vortex is now given by the coplanar lengthscale aγ �
a0 [19, 20]. We determine the vortex unbinding transition
temperature T>

BKT implicitly via

I �α(T
>
BKT)

−1 =
π

2 + 4πy(T>
BKT)

(12)

with fugacity y = e−Sca2γ/a
2
0 and core action Sc � π(K+

1). From Eq. (12) we predict that T>
BKT � Tcp, i.e.,

the BKT transition is only numerically smaller than the
coplanar crossover temperature. The system enters the
critical phase soon after it becomes coplanar. Similarly,
it follows from Ref. [7] that T<

BKT and T>
BKT are of the

same order of magnitude.
In summary we have presented a 2D Heisenberg model

on a decorated triangular lattice where short wavelength
thermal fluctuations select long-range Z6 order, pre-
ceeded in temperature by an emergent critical phase that
is framed by two BKT transitions. We have written the
action of this model as a classical 4D string theory where
the spin stiffness is determined by the metric tensor of
the manifold; the scaling equations are then extracted as
components of the resulting Ricci flow. We note that the
decoupling of the U(1) degree of freedom corresponds to a

dimensional reduction of the analogous string theory and
thus to a toy model of compactification. Finally we note
that the emergence of massless modes in collective mode
massive theories could have interesting implications for
two-dimensional field theories.
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Note added.– After obtaining these results we learned

of two recent studies: one on a Kitaev-Heisenberg model,
where an emergent Z6-symmetry results from a concep-
tually different mechanism [21], a second on itinerant sys-
tems where an emergent Z4 Potts model appears [22].
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−1 =
π

2 + 4πy(T>
BKT)

(12)

with fugacity y = e−Sca2γ/a
2
0 and core action Sc � π(K+

1). From Eq. (12) we predict that T>
BKT � Tcp, i.e.,

the BKT transition is only numerically smaller than the
coplanar crossover temperature. The system enters the
critical phase soon after it becomes coplanar. Similarly,
it follows from Ref. [7] that T<

BKT and T>
BKT are of the

same order of magnitude.
In summary we have presented a 2D Heisenberg model

on a decorated triangular lattice where short wavelength
thermal fluctuations select long-range Z6 order, pre-
ceeded in temperature by an emergent critical phase that
is framed by two BKT transitions. We have written the
action of this model as a classical 4D string theory where
the spin stiffness is determined by the metric tensor of
the manifold; the scaling equations are then extracted as
components of the resulting Ricci flow. We note that the
decoupling of the U(1) degree of freedom corresponds to a

dimensional reduction of the analogous string theory and
thus to a toy model of compactification. Finally we note
that the emergence of massless modes in collective mode
massive theories could have interesting implications for
two-dimensional field theories.
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Note added.– After obtaining these results we learned

of two recent studies: one on a Kitaev-Heisenberg model,
where an emergent Z6-symmetry results from a concep-
tually different mechanism [21], a second on itinerant sys-
tems where an emergent Z4 Potts model appears [22].
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Here, gO(3)
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is the usual metric tensor of the O(3) prob-
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where sωj = sinωj and cωj = cosωj . In our system we
find I1 = K1 +K3, I2 = K1 +K3 +K, I3 = 2K1 +K,
which are set by the stiffnesses of the two sublattices.
The U(1) degree of freedom α exhibits the initial stiff-
ness Iα = 2K1, however, it is still coupled to the non-
abelian O(3) sector. The relative fluctuations of the two
sublattices is in general not a decoupled degree of free-
dom, given the coupling term c = κ

2 (cθ, 0, 1) in the four-
dimensional metric, where κ = 4K1. Finally, the six-fold
potential Sc = λ

2a2

�
d2x cos 6α is a small but relevant

perturbation to the gradient terms gij∂µωi∂µωj . As long
as λ remains small, we can obtain the renormalization
group flow equation of the above action from Friedan’s
geometric formulation of the NLSM [12]. Up to two loop
order it holds

dgij

dl
=

1

2π
Rij −

1

8π2
R

klm

i Rjklm , (9)

where Riklm is the Riemann curvature tensor and Rij =
Rk

ijk
is the Ricci tensor. The Riemann tensor follows as

usual from the Christoffel symbols Γi

jk
= 1
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ij(gjk,k +

gkl,j − gjk,l) as Rk

lij
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lj,i
−Γk

li,j
+Γk

ni
Γn

lj
−Γk

nj
Γn

li
. The

flow equations of our five coupling constants Ij , Iα and
κ follow from Eq. (9).

Low-temperature phase diagram.– Key for an under-
standing of the low energy phase diagram of this problem
is the insight that the coupling term c can formally be
eliminated via the transformation ψ → ψ� = ψ+ rα with
r = κ/2I3. This yields a metric g in Eq. (7) with c = 0,
Iα → I �α = Iα − κ2/4I3 yet with gO(3) that depends on
the U(1) phase α via the above shift of the Euler angle ψ.
This gauge transformation to the appropriate center of
mass coordinates allows for clear criteria when the U(1)
sector of the theory decouples from the O(3) sector: if
either |I1 − I2| �

√
I1I2 or r � 1 it follows that gO(3)

becomes independent of α and the U(1) phase decouples
from the dynamics of the non-collinear magnetic degrees
of freedom. The first criterion follows from the fact that
gO(3) is independent of ψ if I1 = I2, while the second
criterion implies that the shift in ψ is negligible. From
Eq. (9) follows that I1,2,3 flow to an isotropic fixed point,
while the dimensionless variable r follows the flow equa-
tion (for simplicity we only list the one loop result, the
two loop correction does not change our conclusions)

dr

dl
= −r

(I1 − I2)2

4πI1I2I3
. (10)
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Thus, if the initial anisotropy |I1 − I2| = K is weak,
which happens for Jhh � Jtt, the coupling r does not
change much. The O(3) sector, however, quickly becomes
isotropic in the 1−2-plane leading to a decoupling of the
U(1) phase. On the other hand, in the limit of strong
anisotropy for Jhh � Jtt, where I1 − I2 is not small, we
find that r vanishes rapidly. In both cases follows that
the phase angle α emerges as an independent degree of
freedom. The β-function for the reduced phase stiffness
I �α = Iα − κ2/4I3 follows from Eq. (9) as

dI �α
dl

=
(I1 − I2)2r2

4πI1I2
, (11)

and does, as expected, approach zero once either of
the two decoupling conditions are fulfilled. Thus, per-
turbatively no renormalization of the stiffness I �α takes
place. The metric becomes completely flat in this sec-
tor. Since in both limits it follows that the decoupling
emerges rapidly, we find that λ, whose flow is governed by
λ̇ = (2−9/πI �α)λ, is still small. The resulting low-energy
theory corresponds to S = SO(3) + SZ6 with

SZ6 =
1

2

�
d
2
x
�
(I �α(∂µα)

2 + λ cos(6α)
�
. (12)

This is the well-known p = 6 state clock model that
exhibits two consecutive BKT transitions [13]: one at
T

>

BKT that separates a high temperature disordered phase
from a low temperature critical phase, where correlations
�exp[i(α(x)−α(x�))]� decay with a power-law in |x−x�|.
Below the lower BKT transition temperature T

<

BKT the
Z6 symmetry is spontaneously broken, and there is true
long-range order with α being equal to one of the six
possible values nπ/3 with n ∈ {0, . . . , 5}. It is crucial
that the above decoupling of the U(1) phase takes place
as otherwise the interaction with the O(3) sector would
have changed the coupling between topological defects –
vortices at T

>

BKT or domain walls at T
<

BKT – that is es-
sential for the occurence of the BKT transitions and the
critical intermediate phase.
Following the RG program of the BKT problem for

Eq. (12) we need to take into account that the size of
the vortex is now given by the coplanar lengthscale aγ �
a0 [14, 15]. We determine the vortex unbinding transition
temperature T

>

BKT implicitly via

I
�
α(T

>

BKT)
−1 =

π

2 + 4πy(T>

BKT)
(13)
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FIG. 2. (a) Schematic phase diagram. (b) Coplanar RG flow

of the variables I �α (blue), Ī = (I1I2I3)
1/3

(greed dashed),

(I2− I1)/Ī (red), and r (pink dotted). Curves are normalized

to initial values at lγ . Upper panel is for Jtt � Jhh with

Jhh = 1, Jtt = 5, Jth = 0.4, T = 0.6, and initial values

Ī = 5.3, (I2 − I1)/Ī = 0.27, r = 0.82, I �α = 1.2. Decoupling

is due to (I1 − I2)/Ī → 0. Lower panel is for Jhh � Jtt

with Jhh = 5, Jtt = 1, Jth = 0.4, T = 0.5, and initial values

Ī = 4.5, (I2 − I1)/Ī = 2.1, r = 0.11, I �α = 1.1. Decoupling is

due to r → 0.

T<
BKT that are responsible for the BKT transitions and

the intermediate critical phase.
Following the RG program of the BKT problem for

Eq. (11) we need to take into account that the size of
the vortex is now given by the coplanar lengthscale aγ �
a0 [19, 20]. We determine the vortex unbinding transition
temperature T>

BKT implicitly via
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>
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(12)

with fugacity y = e−Sca2γ/a
2
0 and core action Sc � π(K+

1). From Eq. (12) we predict that T>
BKT � Tcp, i.e.,

the BKT transition is only numerically smaller than the
coplanar crossover temperature. The system enters the
critical phase soon after it becomes coplanar. Similarly,
it follows from Ref. [7] that T<

BKT and T>
BKT are of the

same order of magnitude.
In summary we have presented a 2D Heisenberg model

on a decorated triangular lattice where short wavelength
thermal fluctuations select long-range Z6 order, pre-
ceeded in temperature by an emergent critical phase that
is framed by two BKT transitions. We have written the
action of this model as a classical 4D string theory where
the spin stiffness is determined by the metric tensor of
the manifold; the scaling equations are then extracted as
components of the resulting Ricci flow. We note that the
decoupling of the U(1) degree of freedom corresponds to a

dimensional reduction of the analogous string theory and
thus to a toy model of compactification. Finally we note
that the emergence of massless modes in collective mode
massive theories could have interesting implications for
two-dimensional field theories.
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Eq. (11) we need to take into account that the size of
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on a decorated triangular lattice where short wavelength
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is framed by two BKT transitions. We have written the
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=
2.1, r

=
0.11, I �

α =
1.1.

D
ecoupling

is

due
to r →

0.T <
BKT that are responsible for the BKT

transitions and

the intermediate critical phase.

Following the RG
program

of the BKT
problem

for

Eq. (11) we need to take into account that the size of

the vortex is now given by the coplanar lengthscale a
γ �

a
0 [19, 20]. We determine the vortex unbinding transition

temperature T >
BKT implicitly via

I �
α (T >

BKT ) −1
=

π2 + 4πy(T >
BKT )

(12)

with fugacity y =
e −S

ca 2
γ /a 2

0 and core action S
c �

π(K+

1).
From

Eq. (12) we predict that T >
BKT �

T
cp , i.e.,

the BKT
transition is only numerically smaller than the

coplanar crossover temperature. The system
enters the

critical phase soon after it becomes coplanar. Similarly,

it follows from
Ref. [7] that T <

BKT and T >
BKT are of the

same order of magnitude.

In summary we have presented a 2D
Heisenberg model

on a decorated triangular lattice where short wavelength

thermal fluctuations select long-range Z
6 order, pre-

ceeded in temperature by an emergent critical phase that

is framed by two BKT
transitions. We have written the

action of this model as a classical 4D
string theory where

the spin stiffness is determined by the metric tensor of

the manifold; the scaling equations are then extracted as

components of the resulting Ricci flow. We note that the

decoupling of the U(1) degree of freedom
corresponds to a

dimensional reduction of the analogous string theory and

thus to a toy model of compactification. Finally we note

that the emergence of massless modes in collective mode

massive theories could have interesting implications for

two-dimensional field theories.

We acknowledge useful discussions with
S. T. Carr,

R. Fernandes, E. J. König, D. Nelson, V. Oganesyan,

P. Ostrovsky, N. Perkins, J. Reuther, S. Sondhi, and

O. Sushkov.
PPO

is supported by a Young Investiga-

tor Group of the KIT. This work was supported by DOE

grant DE-FG02-99ER45790 (P.Coleman) and SEPNET

(PC,PC
and JS). PC, PC

and JS acknowledge the hos-

pitality of Royal Holloway, University of London where

this work was begun.

Note added.– After obtaining these results we learned

of two recent studies: one on a Kitaev-Heisenberg model,

where an emergent Z
6 -symmetry results from

a concep-

tually different mechanism
[21], a second on itinerant sys-

tems where an emergent Z
4 Potts model appears [22].

[1]
P. C

. H
ohenberg, P

hys. R
ev. 158, 383

(1967).

[2]
N
. D

. M
erm

in
and

H
. W

agner, P
hys. R

ev. Lett. 17, 1307

(1966).

[3]
P.

C
handra,

P.
C
olem

an,
and

A
.
I.
Larkin,

P
hys.

R
ev.

Lett. 64, 88
(1990).

[4]
L.

C
apriotti,

A
.
F
ubini,

T
.
R
oscilde,

and
V
.
T
ognetti,

P
hys. R

ev. Lett. 92, 157202
(2004).

[5]
C
. W

eber, L. C
apriotti, G

. M
isguich, F

. B
ecca, M

. E
lha-

jal,
and

F
. M

ila, P
hys. R

ev. Lett. 91, 177202
(2003).

[6]
R
.
M
.
F
ernandes,

L.
H
.
V
anB

ebber,
S.

B
hattacharya,

P.
C
handra,

V
.
K
eppens,

D
.
M
andrus,

M
.
A
.
M
cG

uire,

B
.
C
.
Sales,

A
.
S.

Sefat,
and

J.
Schm

alian,
P
hys.

R
ev.

Lett. 105, 157003
(2010).

[7]
J.

V
.
José,
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(greed dashed),

(I2− I1)/Ī (red), and r (pink dotted). Curves are normalized
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Jhh = 1, Jtt = 5, Jth = 0.4, T = 0.6, and initial values

Ī = 5.3, (I2 − I1)/Ī = 0.27, r = 0.82, I �α = 1.2. Decoupling

is due to (I1 − I2)/Ī → 0. Lower panel is for Jhh � Jtt

with Jhh = 5, Jtt = 1, Jth = 0.4, T = 0.5, and initial values

Ī = 4.5, (I2 − I1)/Ī = 2.1, r = 0.11, I �α = 1.1. Decoupling is

due to r → 0.

T<
BKT that are responsible for the BKT transitions and

the intermediate critical phase.
Following the RG program of the BKT problem for

Eq. (11) we need to take into account that the size of
the vortex is now given by the coplanar lengthscale aγ �
a0 [19, 20]. We determine the vortex unbinding transition
temperature T>

BKT implicitly via

I �α(T
>
BKT)

−1 =
π

2 + 4πy(T>
BKT)

(12)

with fugacity y = e−Sca2γ/a
2
0 and core action Sc � π(K+

1). From Eq. (12) we predict that T>
BKT � Tcp, i.e.,

the BKT transition is only numerically smaller than the
coplanar crossover temperature. The system enters the
critical phase soon after it becomes coplanar. Similarly,
it follows from Ref. [7] that T<

BKT and T>
BKT are of the

same order of magnitude.
In summary we have presented a 2D Heisenberg model

on a decorated triangular lattice where short wavelength
thermal fluctuations select long-range Z6 order, pre-
ceeded in temperature by an emergent critical phase that
is framed by two BKT transitions. We have written the
action of this model as a classical 4D string theory where
the spin stiffness is determined by the metric tensor of
the manifold; the scaling equations are then extracted as
components of the resulting Ricci flow. We note that the
decoupling of the U(1) degree of freedom corresponds to a

dimensional reduction of the analogous string theory and
thus to a toy model of compactification. Finally we note
that the emergence of massless modes in collective mode
massive theories could have interesting implications for
two-dimensional field theories.
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Following the RG
program

of the BKT
problem

for

Eq. (11) we need to take into account that the size of

the vortex is now given by the coplanar lengthscale a
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0 [19, 20]. We determine the vortex unbinding transition

temperature T >
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From

Eq. (12) we predict that T >
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cp , i.e.,

the BKT
transition is only numerically smaller than the

coplanar crossover temperature. The system
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critical phase soon after it becomes coplanar. Similarly,

it follows from
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BKT and T >
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In summary we have presented a 2D
Heisenberg model
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6 order, pre-

ceeded in temperature by an emergent critical phase that
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components of the resulting Ricci flow. We note that the
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D
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due
to r →

0.T <
BKT that are responsible for the BKT

transitions and

the intermediate critical phase.

Following the RG
program

of the BKT
problem

for

Eq. (11) we need
to take into account that the size of

the vortex is now
given by the coplanar lengthscale a

γ �

a
0 [19, 20]. We determine the vortex unbinding transition

temperature T >
BKT implicitly via

I �
α (T >

BKT ) −1
=

π2 +
4πy(T >

BKT )

(12)

with fugacity y =
e −S

ca 2
γ /a 2

0 and core action S
c �

π(K
+

1).
From

Eq. (12) we predict that T >
BKT �

T
cp , i.e.,

the BKT
transition is only numerically smaller than the

coplanar crossover temperature. The system
enters the

critical phase soon after it becomes coplanar. Similarly,

it follows from
Ref. [7] that T <

BKT and T >
BKT are of the

same order of magnitude.

In summary we have presented a 2D
Heisenberg model

on a decorated triangular lattice where short wavelength

thermal fluctuations
select

long-range Z
6 order, pre-

ceeded in temperature by an emergent critical phase that

is framed by two BKT
transitions. We have written the

action of this model as a classical 4D
string theory where

the spin stiffness is determined by the metric tensor of

the manifold; the scaling equations are then extracted as

components of the resulting Ricci flow. We note that the

decoupling of the U(1) degree of freedom
corresponds to a

dimensional reduction of the analogous string theory and

thus to a toy model of compactification. Finally we note

that the emergence of massless modes in collective mode

massive theories could have interesting implications for

two-dimensional field theories.
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FIG. 2. (a) Schematic phase diagram. (b) Coplanar RG flow

of the variables I �α (blue), Ī = (I1I2I3)
1/3

(greed dashed),

(I2− I1)/Ī (red), and r (pink dotted). Curves are normalized

to initial values at lγ . Upper panel is for Jtt � Jhh with

Jhh = 1, Jtt = 5, Jth = 0.4, T = 0.6, and initial values

Ī = 5.3, (I2 − I1)/Ī = 0.27, r = 0.82, I �α = 1.2. Decoupling

is due to (I1 − I2)/Ī → 0. Lower panel is for Jhh � Jtt

with Jhh = 5, Jtt = 1, Jth = 0.4, T = 0.5, and initial values

Ī = 4.5, (I2 − I1)/Ī = 2.1, r = 0.11, I �α = 1.1. Decoupling is

due to r → 0.

T<
BKT that are responsible for the BKT transitions and

the intermediate critical phase.
Following the RG program of the BKT problem for

Eq. (11) we need to take into account that the size of
the vortex is now given by the coplanar lengthscale aγ �
a0 [19, 20]. We determine the vortex unbinding transition
temperature T>

BKT implicitly via

I �α(T
>
BKT)

−1 =
π

2 + 4πy(T>
BKT)

(12)

with fugacity y = e−Sca2γ/a
2
0 and core action Sc � π(K+

1). From Eq. (12) we predict that T>
BKT � Tcp, i.e.,

the BKT transition is only numerically smaller than the
coplanar crossover temperature. The system enters the
critical phase soon after it becomes coplanar. Similarly,
it follows from Ref. [7] that T<

BKT and T>
BKT are of the

same order of magnitude.
In summary we have presented a 2D Heisenberg model

on a decorated triangular lattice where short wavelength
thermal fluctuations select long-range Z6 order, pre-
ceeded in temperature by an emergent critical phase that
is framed by two BKT transitions. We have written the
action of this model as a classical 4D string theory where
the spin stiffness is determined by the metric tensor of
the manifold; the scaling equations are then extracted as
components of the resulting Ricci flow. We note that the
decoupling of the U(1) degree of freedom corresponds to a

dimensional reduction of the analogous string theory and
thus to a toy model of compactification. Finally we note
that the emergence of massless modes in collective mode
massive theories could have interesting implications for
two-dimensional field theories.
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Note added.– After obtaining these results we learned

of two recent studies: one on a Kitaev-Heisenberg model,
where an emergent Z6-symmetry results from a concep-
tually different mechanism [21], a second on itinerant sys-
tems where an emergent Z4 Potts model appears [22].
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Following the RG program of the BKT problem for

Eq. (11) we need to take into account that the size of
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it follows from Ref. [7] that T<
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BKT are of the

same order of magnitude.
In summary we have presented a 2D Heisenberg model

on a decorated triangular lattice where short wavelength
thermal fluctuations select long-range Z6 order, pre-
ceeded in temperature by an emergent critical phase that
is framed by two BKT transitions. We have written the
action of this model as a classical 4D string theory where
the spin stiffness is determined by the metric tensor of
the manifold; the scaling equations are then extracted as
components of the resulting Ricci flow. We note that the
decoupling of the U(1) degree of freedom corresponds to a

dimensional reduction of the analogous string theory and
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[7] J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R.

Nelson, Phys. Rev. B 16, 1217 (1977).

[8] J. Villain, J. Phys (Paris) 38 (1977).

[9] C. L. Henley, Phys. Rev. Lett. 62 (1989).

[10] J. T. Chalker, P. C. W. Holdsworth, and E. F. Shender,

Phys. Rev. Lett. 68, 855 (1992).

[11] D. Friedan, Phys. Rev. Lett. 45, 1057 (1980).

[12] S. Sachdev, Quantum Phase Transitions (Cambridge

University Press, Cambridge, U.K., 1999).

[13] F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).

[14] T. Dombre and N. Read, Phys. Rev. B 39, 6797 (1989).

[15] S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys.

Rev. B 39, 2344 (1989).

[16] P. Azaria, B. Delamotte, and T. Jolicoeur, Phys. Rev.

Lett. 64, 3175 (1990).

[17] We found the one-loop part also using Polyakov scaling.

[18] R. S. Hamilton, J. Differential Geom. 17, 255 (1982).

[19] P. M. Chaikin and T. C. Lubensky, Principles of con-
densed matter physics (Cambridge University Press,

Cambridge, U.K., 1995).

[20] J. M. Fellows, S. T. Carr, C. A. Hooley, and

J. Schmalian, arXiv:1205.1333v1 (2012).

[21] C. Price and N. B. Perkins, arXiv:1205:3967 (2012).

[22] G.-W. Chern, R. M. Fernandes, R. Nandkishore, and

A. V. Chubukov, arXiv:1203.5776 (2012).

20Monday, October 8, 2012



21

3

Here, gO(3)
ij

is the usual metric tensor of the O(3) prob-
lem, which reads explicitly

g
O(3) =




(I1s2ψ + I2c

2
ψ)s

2
θ + I3c

2
θ (I1 − I2)cψsθsψ I3cθ

(I1 − I2)cψsθsψ I1c
2
ψ + I2s

2
ψ 0

I3cθ 0 I3



 ,

(8)

where sωj = sinωj and cωj = cosωj . In our system we
find I1 = K1 +K3, I2 = K1 +K3 +K, I3 = 2K1 +K,
which are set by the stiffnesses of the two sublattices.
The U(1) degree of freedom α exhibits the initial stiff-
ness Iα = 2K1, however, it is still coupled to the non-
abelian O(3) sector. The relative fluctuations of the two
sublattices is in general not a decoupled degree of free-
dom, given the coupling term c = κ

2 (cθ, 0, 1) in the four-
dimensional metric, where κ = 4K1. Finally, the six-fold
potential Sc = λ

2a2

�
d2x cos 6α is a small but relevant

perturbation to the gradient terms gij∂µωi∂µωj . As long
as λ remains small, we can obtain the renormalization
group flow equation of the above action from Friedan’s
geometric formulation of the NLSM [12]. Up to two loop
order it holds

dgij

dl
=

1

2π
Rij −

1

8π2
R

klm

i Rjklm , (9)

where Riklm is the Riemann curvature tensor and Rij =
Rk

ijk
is the Ricci tensor. The Riemann tensor follows as

usual from the Christoffel symbols Γi

jk
= 1

2g
ij(gjk,k +

gkl,j − gjk,l) as Rk

lij
= Γk

lj,i
−Γk

li,j
+Γk

ni
Γn

lj
−Γk

nj
Γn

li
. The

flow equations of our five coupling constants Ij , Iα and
κ follow from Eq. (9).

Low-temperature phase diagram.– Key for an under-
standing of the low energy phase diagram of this problem
is the insight that the coupling term c can formally be
eliminated via the transformation ψ → ψ� = ψ+ rα with
r = κ/2I3. This yields a metric g in Eq. (7) with c = 0,
Iα → I �α = Iα − κ2/4I3 yet with gO(3) that depends on
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turbatively no renormalization of the stiffness I �α takes
place. The metric becomes completely flat in this sec-
tor. Since in both limits it follows that the decoupling
emerges rapidly, we find that λ, whose flow is governed by
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BKT the
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BKT – that is es-
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the two decoupling conditions are fulfilled. Thus, per-
turbatively no renormalization of the stiffness I �α takes
place. The metric becomes completely flat in this sec-
tor. Since in both limits it follows that the decoupling
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Here, gO(3)
ij

is the usual metric tensor of the O(3) prob-
lem, which reads explicitly
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(8)

where sωj = sinωj and cωj = cosωj . In our system we
find I1 = K1 +K3, I2 = K1 +K3 +K, I3 = 2K1 +K,
which are set by the stiffnesses of the two sublattices.
The U(1) degree of freedom α exhibits the initial stiff-
ness Iα = 2K1, however, it is still coupled to the non-
abelian O(3) sector. The relative fluctuations of the two
sublattices is in general not a decoupled degree of free-
dom, given the coupling term c = κ

2 (cθ, 0, 1) in the four-
dimensional metric, where κ = 4K1. Finally, the six-fold
potential Sc = λ

2a2

�
d2x cos 6α is a small but relevant

perturbation to the gradient terms gij∂µωi∂µωj . As long
as λ remains small, we can obtain the renormalization
group flow equation of the above action from Friedan’s
geometric formulation of the NLSM [12]. Up to two loop
order it holds
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=
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2π
Rij −

1

8π2
R

klm

i Rjklm , (9)

where Riklm is the Riemann curvature tensor and Rij =
Rk

ijk
is the Ricci tensor. The Riemann tensor follows as

usual from the Christoffel symbols Γi
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= 1
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= Γk

lj,i
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+Γk

ni
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−Γk

nj
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li
. The

flow equations of our five coupling constants Ij , Iα and
κ follow from Eq. (9).

Low-temperature phase diagram.– Key for an under-
standing of the low energy phase diagram of this problem
is the insight that the coupling term c can formally be
eliminated via the transformation ψ → ψ� = ψ+ rα with
r = κ/2I3. This yields a metric g in Eq. (7) with c = 0,
Iα → I �α = Iα − κ2/4I3 yet with gO(3) that depends on
the U(1) phase α via the above shift of the Euler angle ψ.
This gauge transformation to the appropriate center of
mass coordinates allows for clear criteria when the U(1)
sector of the theory decouples from the O(3) sector: if
either |I1 − I2| �

√
I1I2 or r � 1 it follows that gO(3)

becomes independent of α and the U(1) phase decouples
from the dynamics of the non-collinear magnetic degrees
of freedom. The first criterion follows from the fact that
gO(3) is independent of ψ if I1 = I2, while the second
criterion implies that the shift in ψ is negligible. From
Eq. (9) follows that I1,2,3 flow to an isotropic fixed point,
while the dimensionless variable r follows the flow equa-
tion (for simplicity we only list the one loop result, the
two loop correction does not change our conclusions)

dr

dl
= −r
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. (10)

FIG. 2. (a) Schematic phase diagram.
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where sωj = sinωj and cωj = cosωj . In our system we
find I1 = K1 +K3, I2 = K1 +K3 +K, I3 = 2K1 +K,
which are set by the stiffnesses of the two sublattices.
The U(1) degree of freedom α exhibits the initial stiff-
ness Iα = 2K1, however, it is still coupled to the non-
abelian O(3) sector. The relative fluctuations of the two
sublattices is in general not a decoupled degree of free-
dom, given the coupling term c = κ

2 (cθ, 0, 1) in the four-
dimensional metric, where κ = 4K1. Finally, the six-fold
potential Sc = λ
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is the insight that the coupling term c can formally be
eliminated via the transformation ψ → ψ� = ψ+ rα with
r = κ/2I3. This yields a metric g in Eq. (7) with c = 0,
Iα → I �α = Iα − κ2/4I3 yet with gO(3) that depends on
the U(1) phase α via the above shift of the Euler angle ψ.
This gauge transformation to the appropriate center of
mass coordinates allows for clear criteria when the U(1)
sector of the theory decouples from the O(3) sector: if
either |I1 − I2| �

√
I1I2 or r � 1 it follows that gO(3)

becomes independent of α and the U(1) phase decouples
from the dynamics of the non-collinear magnetic degrees
of freedom. The first criterion follows from the fact that
gO(3) is independent of ψ if I1 = I2, while the second
criterion implies that the shift in ψ is negligible. From
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tion (for simplicity we only list the one loop result, the
two loop correction does not change our conclusions)

dr

dl
= −r

(I1 − I2)2

4πI1I2I3
. (10)

FIG. 2. (a) Schematic phase diagram.
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BKT the
Z6 symmetry is spontaneously broken, and there is true
long-range order with α being equal to one of the six
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Here, gO(3)
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where sωj = sinωj and cωj = cosωj . In our system we
find I1 = K1 +K3, I2 = K1 +K3 +K, I3 = 2K1 +K,
which are set by the stiffnesses of the two sublattices.
The U(1) degree of freedom α exhibits the initial stiff-
ness Iα = 2K1, however, it is still coupled to the non-
abelian O(3) sector. The relative fluctuations of the two
sublattices is in general not a decoupled degree of free-
dom, given the coupling term c = κ

2 (cθ, 0, 1) in the four-
dimensional metric, where κ = 4K1. Finally, the six-fold
potential Sc = λ

2a2
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d2x cos 6α is a small but relevant

perturbation to the gradient terms gij∂µωi∂µωj . As long
as λ remains small, we can obtain the renormalization
group flow equation of the above action from Friedan’s
geometric formulation of the NLSM [12]. Up to two loop
order it holds
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κ follow from Eq. (9).

Low-temperature phase diagram.– Key for an under-
standing of the low energy phase diagram of this problem
is the insight that the coupling term c can formally be
eliminated via the transformation ψ → ψ� = ψ+ rα with
r = κ/2I3. This yields a metric g in Eq. (7) with c = 0,
Iα → I �α = Iα − κ2/4I3 yet with gO(3) that depends on
the U(1) phase α via the above shift of the Euler angle ψ.
This gauge transformation to the appropriate center of
mass coordinates allows for clear criteria when the U(1)
sector of the theory decouples from the O(3) sector: if
either |I1 − I2| �

√
I1I2 or r � 1 it follows that gO(3)

becomes independent of α and the U(1) phase decouples
from the dynamics of the non-collinear magnetic degrees
of freedom. The first criterion follows from the fact that
gO(3) is independent of ψ if I1 = I2, while the second
criterion implies that the shift in ψ is negligible. From
Eq. (9) follows that I1,2,3 flow to an isotropic fixed point,
while the dimensionless variable r follows the flow equa-
tion (for simplicity we only list the one loop result, the
two loop correction does not change our conclusions)
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Thus, if the initial anisotropy |I1 − I2| = K is weak,
which happens for Jhh � Jtt, the coupling r does not
change much. The O(3) sector, however, quickly becomes
isotropic in the 1−2-plane leading to a decoupling of the
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and does, as expected, approach zero once either of
the two decoupling conditions are fulfilled. Thus, per-
turbatively no renormalization of the stiffness I �α takes
place. The metric becomes completely flat in this sec-
tor. Since in both limits it follows that the decoupling
emerges rapidly, we find that λ, whose flow is governed by
λ̇ = (2−9/πI �α)λ, is still small. The resulting low-energy
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where sωj = sinωj and cωj = cosωj . In our system we
find I1 = K1 +K3, I2 = K1 +K3 +K, I3 = 2K1 +K,
which are set by the stiffnesses of the two sublattices.
The U(1) degree of freedom α exhibits the initial stiff-
ness Iα = 2K1, however, it is still coupled to the non-
abelian O(3) sector. The relative fluctuations of the two
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Thus, if the initial anisotropy |I1 − I2| = K is weak,
which happens for Jhh � Jtt, the coupling r does not
change much. The O(3) sector, however, quickly becomes
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ψ)s

2
θ + I3c

2
θ (I1 − I2)cψsθsψ I3cθ

(I1 − I2)cψsθsψ I1c
2
ψ + I2s

2
ψ 0

I3cθ 0 I3



 ,

(8)

where sωj = sinωj and cωj = cosωj . In our system we
find I1 = K1 +K3, I2 = K1 +K3 +K, I3 = 2K1 +K,
which are set by the stiffnesses of the two sublattices.
The U(1) degree of freedom α exhibits the initial stiff-
ness Iα = 2K1, however, it is still coupled to the non-
abelian O(3) sector. The relative fluctuations of the two
sublattices is in general not a decoupled degree of free-
dom, given the coupling term c = κ

2 (cθ, 0, 1) in the four-
dimensional metric, where κ = 4K1. Finally, the six-fold
potential Sc = λ

2a2

�
d2x cos 6α is a small but relevant

perturbation to the gradient terms gij∂µωi∂µωj . As long
as λ remains small, we can obtain the renormalization
group flow equation of the above action from Friedan’s
geometric formulation of the NLSM [12]. Up to two loop
order it holds

dgij

dl
=

1

2π
Rij −

1

8π2
R

klm

i Rjklm , (9)

where Riklm is the Riemann curvature tensor and Rij =
Rk

ijk
is the Ricci tensor. The Riemann tensor follows as

usual from the Christoffel symbols Γi

jk
= 1

2g
ij(gjk,k +

gkl,j − gjk,l) as Rk

lij
= Γk

lj,i
−Γk

li,j
+Γk

ni
Γn

lj
−Γk

nj
Γn

li
. The

flow equations of our five coupling constants Ij , Iα and
κ follow from Eq. (9).

Low-temperature phase diagram.– Key for an under-
standing of the low energy phase diagram of this problem
is the insight that the coupling term c can formally be
eliminated via the transformation ψ → ψ� = ψ+ rα with
r = κ/2I3. This yields a metric g in Eq. (7) with c = 0,
Iα → I �α = Iα − κ2/4I3 yet with gO(3) that depends on
the U(1) phase α via the above shift of the Euler angle ψ.
This gauge transformation to the appropriate center of
mass coordinates allows for clear criteria when the U(1)
sector of the theory decouples from the O(3) sector: if
either |I1 − I2| �

√
I1I2 or r � 1 it follows that gO(3)

becomes independent of α and the U(1) phase decouples
from the dynamics of the non-collinear magnetic degrees
of freedom. The first criterion follows from the fact that
gO(3) is independent of ψ if I1 = I2, while the second
criterion implies that the shift in ψ is negligible. From
Eq. (9) follows that I1,2,3 flow to an isotropic fixed point,
while the dimensionless variable r follows the flow equa-
tion (for simplicity we only list the one loop result, the
two loop correction does not change our conclusions)

dr

dl
= −r

(I1 − I2)2

4πI1I2I3
. (10)

FIG. 2. (a) Schematic phase diagram.

Thus, if the initial anisotropy |I1 − I2| = K is weak,
which happens for Jhh � Jtt, the coupling r does not
change much. The O(3) sector, however, quickly becomes
isotropic in the 1−2-plane leading to a decoupling of the
U(1) phase. On the other hand, in the limit of strong
anisotropy for Jhh � Jtt, where I1 − I2 is not small, we
find that r vanishes rapidly. In both cases follows that
the phase angle α emerges as an independent degree of
freedom. The β-function for the reduced phase stiffness
I �α = Iα − κ2/4I3 follows from Eq. (9) as

dI �α
dl

=
(I1 − I2)2r2

4πI1I2
, (11)

and does, as expected, approach zero once either of
the two decoupling conditions are fulfilled. Thus, per-
turbatively no renormalization of the stiffness I �α takes
place. The metric becomes completely flat in this sec-
tor. Since in both limits it follows that the decoupling
emerges rapidly, we find that λ, whose flow is governed by
λ̇ = (2−9/πI �α)λ, is still small. The resulting low-energy
theory corresponds to S = SO(3) + SZ6 with

SZ6 =
1

2

�
d
2
x
�
(I �α(∂µα)

2 + λ cos(6α)
�
. (12)

This is the well-known p = 6 state clock model that
exhibits two consecutive BKT transitions [13]: one at
T

>

BKT that separates a high temperature disordered phase
from a low temperature critical phase, where correlations
�exp[i(α(x)−α(x�))]� decay with a power-law in |x−x�|.
Below the lower BKT transition temperature T

<

BKT the
Z6 symmetry is spontaneously broken, and there is true
long-range order with α being equal to one of the six
possible values nπ/3 with n ∈ {0, . . . , 5}. It is crucial
that the above decoupling of the U(1) phase takes place
as otherwise the interaction with the O(3) sector would
have changed the coupling between topological defects –
vortices at T

>

BKT or domain walls at T
<

BKT – that is es-
sential for the occurence of the BKT transitions and the
critical intermediate phase.
Following the RG program of the BKT problem for

Eq. (12) we need to take into account that the size of
the vortex is now given by the coplanar lengthscale aγ �
a0 [14, 15]. We determine the vortex unbinding transition
temperature T

>

BKT implicitly via

I
�
α(T

>

BKT)
−1 =

π

2 + 4πy(T>

BKT)
(13)
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Using spin-polarized scanning tunneling microscopy !SP-STM", we observe spin frustration in one mono-
layer Cr on the triangular lattice of the Pd!111" surface. Our STM measurements demonstrate pseudomorphic
growth of the first Cr layer on Pd!111" without intermixing. Using SP-STM in the constant current mode, we
observe three different types of images depending on the tip magnetization indicative of a noncollinear
!#3!#3" magnetic superstructure with an angle of 120° between moments of nearest-neighbor Cr atoms. The
120° Néel ground state of Cr/Pd!111" and the SP-STM images are explained based on our first-principles
calculations.
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The rich magnetic phase space of chromium has fasci-
nated scientists for many years1,2 and continues to challenge
our theoretical understanding of itinerant magnetism. In its
bulk bcc phase, Cr exhibits an intriguing antiferromagnetic
spin-density wave due to Fermi-surface nesting. At the sur-
face, the magnetic moments are enhanced and topological
antiferromagnetism has been proposed for Cr!001",3 i.e., an-
tiferromagnetic coupling of adjacent layers with ferromag-
netic !FM" alignment within each layer and experimentally
confirmed.4,5 Similarly, FM order within a monolayer !ML"
of Cr on W!001" has been predicted6 while recent experi-
ments have reported local-antiferromagnetic order in a Cr
monolayer on W!110" !Ref. 7" showing the crucial impact of
surface orientation. On a triangular lattice or on a ferromag-
netic surface, Cr nanostructures are a classical example of
frustrated antiferromagnets. This triggered many theoretical
studies reporting noncollinear magnetic ground states for
clusters of a few atoms8–10 or for ultrathin films.11–13 While
the absence of the Kondo effect in Cr trimers on Au!111"
!Ref. 14" is consistent with this picture, no direct observation
of spin frustration in such systems has so far been reported.

Here, we apply spin-polarized scanning tunneling micros-
copy !SP-STM" to prove the 120° Néel ground state of a Cr
monolayer on the triangular lattice provided by the Pd!111"
surface. Our STM measurements show pseudomorphic
growth of the first Cr layer without intermixing. By using
SP-STM we find three different types of images depending
on the tip magnetization providing a real space observation
of the noncollinear ground state. We find a reversal of the
magnetic contrast due to switching of the tip’s magnetization
further proving the magnetic origin of the contrast. Our first-
principles calculations confirm the Néel state of the Cr
monolayer on Pd!111" due to a dominating antiferromagnetic
nearest-neighbor exchange interaction. By simulating STM
and SP-STM images we can explain the experimentally ob-
served contrasts and obtain corrugation amplitudes in excel-
lent agreement with the measured values.

In the classical Heisenberg model with only nearest-
neighbor exchange interaction, an antiferromagnet on a tri-
angular lattice exhibits a 120° Néel ground state, cf. Fig.
1!a". However, for itinerant antiferromagnets such as Cr, ex-
change interactions beyond nearest neighbors need to be
considered. Depending on the relative sizes of first, second,
and third nearest-neighbor exchange, the 120° Néel state, a

collinear row-wise antiferromagnetic !RW-AFM" structure or
a spin spiral can be energetically favorable, see Fig. 1!a". The
exchange coupling in a monolayer film depends sensitively
on the in-plane lattice constant as well as on the hybridiza-
tion with the substrate. Therefore, an accurate description of
the electronic structure is essential to determine the magnetic
ground state of a specific system.

In order to gain insight into the magnetic properties of the
Cr monolayer on Pd!111", we have performed first-principles
calculations based on density-functional theory within the
generalized-gradient approximation.18 We applied the full-
potential linearized augmented plane-wave method as imple-
mented in the FLEUR code.19,20 We used the theoretical lattice
constant of Pd !a=3.891 Å" and considered a symmetric
film including 7 ML Pd!111" and a Cr monolayer on each
side to perform structural relaxations. We chose 72 k points
in the irreducible part of the two-dimensional Brillouin zone
!2D-BZ" and about 160 basis functions per atom. We found
the Cr ML to be energetically more favorable in fcc than in
hcp stacking by about 162 meV/Cr atom in the RW-AFM
state. The fcc Cr ML in the RW-AFM state relaxes inward by
1.7% corresponding to an interlayer distance of 2.17 Å. For
the spin-spiral calculations, the system has been modeled by
an asymmetric film consisting of one Cr layer in fcc stacking
on six layers of Pd!111" using the relaxed structure of the
RW-AFM state. We used 1024 k points in the 2D-BZ and
about 110 basis functions per atom.

We calculated the energy dispersion, E!q", of flat spin
spirals given by M!R"=M$cos!qR" , sin!qR" ,0%, where M is
the magnetic moment, R is a lattice vector, and q is the wave
vector of the spin spiral. These structures are the general
solution of the classical Heisenberg model on a periodic lat-
tice allowing to explore a vast part of the magnetic phase
space.15 The energy dispersion for the unsupported ML
!UML" of Cr on the in-plane lattice constant of Pd shown in
Fig. 1!b" displays a global minimum at the K̄ point, corre-
sponding to the Néel state, which is by about 39 meV/Cr
atom lower than the RW-AFM state at M̄. For a Cr ML on
the Pd!111" surface the dispersion curve is slightly modified,
however, the ground state is still the Néel state which is by
about 27 meV/atom lower than the RW-AFM state.21 Due to
hybridization with the substrate the magnetic moment of Cr
decreases from 3.68#B in the Cr UML to 3.21#B on Pd!111".
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The rich magnetic phase space of chromium has fasci-
nated scientists for many years1,2 and continues to challenge
our theoretical understanding of itinerant magnetism. In its
bulk bcc phase, Cr exhibits an intriguing antiferromagnetic
spin-density wave due to Fermi-surface nesting. At the sur-
face, the magnetic moments are enhanced and topological
antiferromagnetism has been proposed for Cr!001",3 i.e., an-
tiferromagnetic coupling of adjacent layers with ferromag-
netic !FM" alignment within each layer and experimentally
confirmed.4,5 Similarly, FM order within a monolayer !ML"
of Cr on W!001" has been predicted6 while recent experi-
ments have reported local-antiferromagnetic order in a Cr
monolayer on W!110" !Ref. 7" showing the crucial impact of
surface orientation. On a triangular lattice or on a ferromag-
netic surface, Cr nanostructures are a classical example of
frustrated antiferromagnets. This triggered many theoretical
studies reporting noncollinear magnetic ground states for
clusters of a few atoms8–10 or for ultrathin films.11–13 While
the absence of the Kondo effect in Cr trimers on Au!111"
!Ref. 14" is consistent with this picture, no direct observation
of spin frustration in such systems has so far been reported.

Here, we apply spin-polarized scanning tunneling micros-
copy !SP-STM" to prove the 120° Néel ground state of a Cr
monolayer on the triangular lattice provided by the Pd!111"
surface. Our STM measurements show pseudomorphic
growth of the first Cr layer without intermixing. By using
SP-STM we find three different types of images depending
on the tip magnetization providing a real space observation
of the noncollinear ground state. We find a reversal of the
magnetic contrast due to switching of the tip’s magnetization
further proving the magnetic origin of the contrast. Our first-
principles calculations confirm the Néel state of the Cr
monolayer on Pd!111" due to a dominating antiferromagnetic
nearest-neighbor exchange interaction. By simulating STM
and SP-STM images we can explain the experimentally ob-
served contrasts and obtain corrugation amplitudes in excel-
lent agreement with the measured values.

In the classical Heisenberg model with only nearest-
neighbor exchange interaction, an antiferromagnet on a tri-
angular lattice exhibits a 120° Néel ground state, cf. Fig.
1!a". However, for itinerant antiferromagnets such as Cr, ex-
change interactions beyond nearest neighbors need to be
considered. Depending on the relative sizes of first, second,
and third nearest-neighbor exchange, the 120° Néel state, a

collinear row-wise antiferromagnetic !RW-AFM" structure or
a spin spiral can be energetically favorable, see Fig. 1!a". The
exchange coupling in a monolayer film depends sensitively
on the in-plane lattice constant as well as on the hybridiza-
tion with the substrate. Therefore, an accurate description of
the electronic structure is essential to determine the magnetic
ground state of a specific system.

In order to gain insight into the magnetic properties of the
Cr monolayer on Pd!111", we have performed first-principles
calculations based on density-functional theory within the
generalized-gradient approximation.18 We applied the full-
potential linearized augmented plane-wave method as imple-
mented in the FLEUR code.19,20 We used the theoretical lattice
constant of Pd !a=3.891 Å" and considered a symmetric
film including 7 ML Pd!111" and a Cr monolayer on each
side to perform structural relaxations. We chose 72 k points
in the irreducible part of the two-dimensional Brillouin zone
!2D-BZ" and about 160 basis functions per atom. We found
the Cr ML to be energetically more favorable in fcc than in
hcp stacking by about 162 meV/Cr atom in the RW-AFM
state. The fcc Cr ML in the RW-AFM state relaxes inward by
1.7% corresponding to an interlayer distance of 2.17 Å. For
the spin-spiral calculations, the system has been modeled by
an asymmetric film consisting of one Cr layer in fcc stacking
on six layers of Pd!111" using the relaxed structure of the
RW-AFM state. We used 1024 k points in the 2D-BZ and
about 110 basis functions per atom.

We calculated the energy dispersion, E!q", of flat spin
spirals given by M!R"=M$cos!qR" , sin!qR" ,0%, where M is
the magnetic moment, R is a lattice vector, and q is the wave
vector of the spin spiral. These structures are the general
solution of the classical Heisenberg model on a periodic lat-
tice allowing to explore a vast part of the magnetic phase
space.15 The energy dispersion for the unsupported ML
!UML" of Cr on the in-plane lattice constant of Pd shown in
Fig. 1!b" displays a global minimum at the K̄ point, corre-
sponding to the Néel state, which is by about 39 meV/Cr
atom lower than the RW-AFM state at M̄. For a Cr ML on
the Pd!111" surface the dispersion curve is slightly modified,
however, the ground state is still the Néel state which is by
about 27 meV/atom lower than the RW-AFM state.21 Due to
hybridization with the substrate the magnetic moment of Cr
decreases from 3.68#B in the Cr UML to 3.21#B on Pd!111".
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our first-principles calculations based on the Tersoff-Hamann
model,24,25 Fig. 3!i", we can assign the observed protrusions
to Cr atoms. Spin-polarized STM images obtained with vari-
ous magnetically coated W tips display three qualitatively
different contrasts seen in Figs. 3!b"–3!d". The images in
Figs. 3!b" and 3!c" exhibit hexagonal patterns contrary to
Fig. 3!d", which shows a threefold symmetry. However,
these images are rotated by 30° with respect to the chemical
unit cell and with a distance between protrusions of 0.46 nm
#see line profiles in Fig. 3!f"$, corresponding to a %3!%3
unit cell with respect to the Pd!111" surface.26 Similar SP-
STM images have been obtained for a Mn ML on Ag!111"
and interpreted as a Néel state.27

In our experiment, the Cr-coated W tips have an in-plane
spin sensitivity but the in-plane direction remains undeter-
mined and can change from one measurement to the other.
An advantage of the variable magnetization direction of the
tip is the possibility to observe different SP-STM contrasts of
a spin structure. The obtained images can be explained based
on the 120° Néel structure for the Cr monolayer, see arrows
in Fig. 3!i". Depending on the magnetization direction of the
tip, eT, and projections of the magnetic moments of the Cr
atoms in the monolayer onto the tip-magnetization direction,
three basic patterns are possible.16,28 A hexagonal pattern as
in Fig. 3!b" occurs if the tip magnetization is parallel to one

of the Cr moments which appears as a protrusion and the
projection onto the other two Cr moments is identical #see
the arrows in Fig. 3!j"$. The observed SP-STM image is in
excellent agreement with the theoretical one, Fig. 3!j", ob-
tained from our first-principles calculations of Cr/Pd!111" us-
ing the spin-polarized Tersoff-Hamann model.16 If the tip
magnetization is antiparallel to one Cr moment, this pattern
is simply inverted as observed experimentally in Fig. 3!c"
and again in perfect agreement with the theoretical expecta-
tion, Fig. 3!k". Finally, if a tip magnetization is neither par-
allel nor antiparallel to one of the Cr moments, it leads to a
pattern with a threefold contrast since the tip projection onto
all Cr moments is different, as seen in Fig. 3!d".

We can even compare our calculations quantitatively with
the experiment, by analyzing the line sections, Figs.
3!f"–3!h". As the tunneling parameters were identical for all
SP-STM images, we expect a constant tip-sample distance. If
we assume, e.g., a distance of 4.2 Å, we need to choose a tip
spin polarization of PT=0.18 to quantitatively reproduce all
three line sections.29 Moreover, the theoretical calculations
allowed us to estimate the angle between the tip magnetiza-
tion and one of the Cr atoms for the case of Fig. 3!d". The
best fitting gives us an angle of 17°, which provides also a
good agreement for the SP-STM images in Figs. 3!d" and
3!l".
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FIG. 3. !Color online" STM images of a Cr ML on Pd!111" obtained with !a" a bare W tip and #!b"–!d"$ magnetic !Cr-coated W" tips with
three different directions of the tip magnetization. The scan size is always about 2.0 nm!1.7 nm and tunneling parameter: U=14.1 mV
and I=6.7 nA. #!e"–!h"$ Display line sections along the lines indicated in !a"–!d" and in comparison with the theoretical line sections
obtained from !i"–!l" assuming a tip spin polarization of PT=0.18 and a tip-sample distance of 4.2 Å !Ref. 24". Theoretical SP-STM images
obtained from first-principles calculations based on the model of Ref. 16 are shown in !i"–!l". The 120° Néel state is indicated in !i" by red
arrows representing the magnetic moments of the Cr atoms. In !j"–!k" the green arrows denote the projections !eTmCr"eT of the Cr moments
!red arrows" mCr onto the tip-magnetization direction !yellow arrows" eT. The chemical and magnetic unit cell is shown as a white and
yellow rhombus, respectively.
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The rich magnetic phase space of chromium has fasci-
nated scientists for many years1,2 and continues to challenge
our theoretical understanding of itinerant magnetism. In its
bulk bcc phase, Cr exhibits an intriguing antiferromagnetic
spin-density wave due to Fermi-surface nesting. At the sur-
face, the magnetic moments are enhanced and topological
antiferromagnetism has been proposed for Cr!001",3 i.e., an-
tiferromagnetic coupling of adjacent layers with ferromag-
netic !FM" alignment within each layer and experimentally
confirmed.4,5 Similarly, FM order within a monolayer !ML"
of Cr on W!001" has been predicted6 while recent experi-
ments have reported local-antiferromagnetic order in a Cr
monolayer on W!110" !Ref. 7" showing the crucial impact of
surface orientation. On a triangular lattice or on a ferromag-
netic surface, Cr nanostructures are a classical example of
frustrated antiferromagnets. This triggered many theoretical
studies reporting noncollinear magnetic ground states for
clusters of a few atoms8–10 or for ultrathin films.11–13 While
the absence of the Kondo effect in Cr trimers on Au!111"
!Ref. 14" is consistent with this picture, no direct observation
of spin frustration in such systems has so far been reported.

Here, we apply spin-polarized scanning tunneling micros-
copy !SP-STM" to prove the 120° Néel ground state of a Cr
monolayer on the triangular lattice provided by the Pd!111"
surface. Our STM measurements show pseudomorphic
growth of the first Cr layer without intermixing. By using
SP-STM we find three different types of images depending
on the tip magnetization providing a real space observation
of the noncollinear ground state. We find a reversal of the
magnetic contrast due to switching of the tip’s magnetization
further proving the magnetic origin of the contrast. Our first-
principles calculations confirm the Néel state of the Cr
monolayer on Pd!111" due to a dominating antiferromagnetic
nearest-neighbor exchange interaction. By simulating STM
and SP-STM images we can explain the experimentally ob-
served contrasts and obtain corrugation amplitudes in excel-
lent agreement with the measured values.

In the classical Heisenberg model with only nearest-
neighbor exchange interaction, an antiferromagnet on a tri-
angular lattice exhibits a 120° Néel ground state, cf. Fig.
1!a". However, for itinerant antiferromagnets such as Cr, ex-
change interactions beyond nearest neighbors need to be
considered. Depending on the relative sizes of first, second,
and third nearest-neighbor exchange, the 120° Néel state, a

collinear row-wise antiferromagnetic !RW-AFM" structure or
a spin spiral can be energetically favorable, see Fig. 1!a". The
exchange coupling in a monolayer film depends sensitively
on the in-plane lattice constant as well as on the hybridiza-
tion with the substrate. Therefore, an accurate description of
the electronic structure is essential to determine the magnetic
ground state of a specific system.

In order to gain insight into the magnetic properties of the
Cr monolayer on Pd!111", we have performed first-principles
calculations based on density-functional theory within the
generalized-gradient approximation.18 We applied the full-
potential linearized augmented plane-wave method as imple-
mented in the FLEUR code.19,20 We used the theoretical lattice
constant of Pd !a=3.891 Å" and considered a symmetric
film including 7 ML Pd!111" and a Cr monolayer on each
side to perform structural relaxations. We chose 72 k points
in the irreducible part of the two-dimensional Brillouin zone
!2D-BZ" and about 160 basis functions per atom. We found
the Cr ML to be energetically more favorable in fcc than in
hcp stacking by about 162 meV/Cr atom in the RW-AFM
state. The fcc Cr ML in the RW-AFM state relaxes inward by
1.7% corresponding to an interlayer distance of 2.17 Å. For
the spin-spiral calculations, the system has been modeled by
an asymmetric film consisting of one Cr layer in fcc stacking
on six layers of Pd!111" using the relaxed structure of the
RW-AFM state. We used 1024 k points in the 2D-BZ and
about 110 basis functions per atom.

We calculated the energy dispersion, E!q", of flat spin
spirals given by M!R"=M$cos!qR" , sin!qR" ,0%, where M is
the magnetic moment, R is a lattice vector, and q is the wave
vector of the spin spiral. These structures are the general
solution of the classical Heisenberg model on a periodic lat-
tice allowing to explore a vast part of the magnetic phase
space.15 The energy dispersion for the unsupported ML
!UML" of Cr on the in-plane lattice constant of Pd shown in
Fig. 1!b" displays a global minimum at the K̄ point, corre-
sponding to the Néel state, which is by about 39 meV/Cr
atom lower than the RW-AFM state at M̄. For a Cr ML on
the Pd!111" surface the dispersion curve is slightly modified,
however, the ground state is still the Néel state which is by
about 27 meV/atom lower than the RW-AFM state.21 Due to
hybridization with the substrate the magnetic moment of Cr
decreases from 3.68#B in the Cr UML to 3.21#B on Pd!111".
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our first-principles calculations based on the Tersoff-Hamann
model,24,25 Fig. 3!i", we can assign the observed protrusions
to Cr atoms. Spin-polarized STM images obtained with vari-
ous magnetically coated W tips display three qualitatively
different contrasts seen in Figs. 3!b"–3!d". The images in
Figs. 3!b" and 3!c" exhibit hexagonal patterns contrary to
Fig. 3!d", which shows a threefold symmetry. However,
these images are rotated by 30° with respect to the chemical
unit cell and with a distance between protrusions of 0.46 nm
#see line profiles in Fig. 3!f"$, corresponding to a %3!%3
unit cell with respect to the Pd!111" surface.26 Similar SP-
STM images have been obtained for a Mn ML on Ag!111"
and interpreted as a Néel state.27

In our experiment, the Cr-coated W tips have an in-plane
spin sensitivity but the in-plane direction remains undeter-
mined and can change from one measurement to the other.
An advantage of the variable magnetization direction of the
tip is the possibility to observe different SP-STM contrasts of
a spin structure. The obtained images can be explained based
on the 120° Néel structure for the Cr monolayer, see arrows
in Fig. 3!i". Depending on the magnetization direction of the
tip, eT, and projections of the magnetic moments of the Cr
atoms in the monolayer onto the tip-magnetization direction,
three basic patterns are possible.16,28 A hexagonal pattern as
in Fig. 3!b" occurs if the tip magnetization is parallel to one

of the Cr moments which appears as a protrusion and the
projection onto the other two Cr moments is identical #see
the arrows in Fig. 3!j"$. The observed SP-STM image is in
excellent agreement with the theoretical one, Fig. 3!j", ob-
tained from our first-principles calculations of Cr/Pd!111" us-
ing the spin-polarized Tersoff-Hamann model.16 If the tip
magnetization is antiparallel to one Cr moment, this pattern
is simply inverted as observed experimentally in Fig. 3!c"
and again in perfect agreement with the theoretical expecta-
tion, Fig. 3!k". Finally, if a tip magnetization is neither par-
allel nor antiparallel to one of the Cr moments, it leads to a
pattern with a threefold contrast since the tip projection onto
all Cr moments is different, as seen in Fig. 3!d".

We can even compare our calculations quantitatively with
the experiment, by analyzing the line sections, Figs.
3!f"–3!h". As the tunneling parameters were identical for all
SP-STM images, we expect a constant tip-sample distance. If
we assume, e.g., a distance of 4.2 Å, we need to choose a tip
spin polarization of PT=0.18 to quantitatively reproduce all
three line sections.29 Moreover, the theoretical calculations
allowed us to estimate the angle between the tip magnetiza-
tion and one of the Cr atoms for the case of Fig. 3!d". The
best fitting gives us an angle of 17°, which provides also a
good agreement for the SP-STM images in Figs. 3!d" and
3!l".
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FIG. 3. !Color online" STM images of a Cr ML on Pd!111" obtained with !a" a bare W tip and #!b"–!d"$ magnetic !Cr-coated W" tips with
three different directions of the tip magnetization. The scan size is always about 2.0 nm!1.7 nm and tunneling parameter: U=14.1 mV
and I=6.7 nA. #!e"–!h"$ Display line sections along the lines indicated in !a"–!d" and in comparison with the theoretical line sections
obtained from !i"–!l" assuming a tip spin polarization of PT=0.18 and a tip-sample distance of 4.2 Å !Ref. 24". Theoretical SP-STM images
obtained from first-principles calculations based on the model of Ref. 16 are shown in !i"–!l". The 120° Néel state is indicated in !i" by red
arrows representing the magnetic moments of the Cr atoms. In !j"–!k" the green arrows denote the projections !eTmCr"eT of the Cr moments
!red arrows" mCr onto the tip-magnetization direction !yellow arrows" eT. The chemical and magnetic unit cell is shown as a white and
yellow rhombus, respectively.
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Real space observation of spin frustration in Cr on a triangular lattice
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Using spin-polarized scanning tunneling microscopy !SP-STM", we observe spin frustration in one mono-
layer Cr on the triangular lattice of the Pd!111" surface. Our STM measurements demonstrate pseudomorphic
growth of the first Cr layer on Pd!111" without intermixing. Using SP-STM in the constant current mode, we
observe three different types of images depending on the tip magnetization indicative of a noncollinear
!#3!#3" magnetic superstructure with an angle of 120° between moments of nearest-neighbor Cr atoms. The
120° Néel ground state of Cr/Pd!111" and the SP-STM images are explained based on our first-principles
calculations.

DOI: 10.1103/PhysRevB.82.012402 PACS number!s": 75.70.Ak, 68.37."d, 68.55."a, 75.25."j

The rich magnetic phase space of chromium has fasci-
nated scientists for many years1,2 and continues to challenge
our theoretical understanding of itinerant magnetism. In its
bulk bcc phase, Cr exhibits an intriguing antiferromagnetic
spin-density wave due to Fermi-surface nesting. At the sur-
face, the magnetic moments are enhanced and topological
antiferromagnetism has been proposed for Cr!001",3 i.e., an-
tiferromagnetic coupling of adjacent layers with ferromag-
netic !FM" alignment within each layer and experimentally
confirmed.4,5 Similarly, FM order within a monolayer !ML"
of Cr on W!001" has been predicted6 while recent experi-
ments have reported local-antiferromagnetic order in a Cr
monolayer on W!110" !Ref. 7" showing the crucial impact of
surface orientation. On a triangular lattice or on a ferromag-
netic surface, Cr nanostructures are a classical example of
frustrated antiferromagnets. This triggered many theoretical
studies reporting noncollinear magnetic ground states for
clusters of a few atoms8–10 or for ultrathin films.11–13 While
the absence of the Kondo effect in Cr trimers on Au!111"
!Ref. 14" is consistent with this picture, no direct observation
of spin frustration in such systems has so far been reported.

Here, we apply spin-polarized scanning tunneling micros-
copy !SP-STM" to prove the 120° Néel ground state of a Cr
monolayer on the triangular lattice provided by the Pd!111"
surface. Our STM measurements show pseudomorphic
growth of the first Cr layer without intermixing. By using
SP-STM we find three different types of images depending
on the tip magnetization providing a real space observation
of the noncollinear ground state. We find a reversal of the
magnetic contrast due to switching of the tip’s magnetization
further proving the magnetic origin of the contrast. Our first-
principles calculations confirm the Néel state of the Cr
monolayer on Pd!111" due to a dominating antiferromagnetic
nearest-neighbor exchange interaction. By simulating STM
and SP-STM images we can explain the experimentally ob-
served contrasts and obtain corrugation amplitudes in excel-
lent agreement with the measured values.

In the classical Heisenberg model with only nearest-
neighbor exchange interaction, an antiferromagnet on a tri-
angular lattice exhibits a 120° Néel ground state, cf. Fig.
1!a". However, for itinerant antiferromagnets such as Cr, ex-
change interactions beyond nearest neighbors need to be
considered. Depending on the relative sizes of first, second,
and third nearest-neighbor exchange, the 120° Néel state, a

collinear row-wise antiferromagnetic !RW-AFM" structure or
a spin spiral can be energetically favorable, see Fig. 1!a". The
exchange coupling in a monolayer film depends sensitively
on the in-plane lattice constant as well as on the hybridiza-
tion with the substrate. Therefore, an accurate description of
the electronic structure is essential to determine the magnetic
ground state of a specific system.

In order to gain insight into the magnetic properties of the
Cr monolayer on Pd!111", we have performed first-principles
calculations based on density-functional theory within the
generalized-gradient approximation.18 We applied the full-
potential linearized augmented plane-wave method as imple-
mented in the FLEUR code.19,20 We used the theoretical lattice
constant of Pd !a=3.891 Å" and considered a symmetric
film including 7 ML Pd!111" and a Cr monolayer on each
side to perform structural relaxations. We chose 72 k points
in the irreducible part of the two-dimensional Brillouin zone
!2D-BZ" and about 160 basis functions per atom. We found
the Cr ML to be energetically more favorable in fcc than in
hcp stacking by about 162 meV/Cr atom in the RW-AFM
state. The fcc Cr ML in the RW-AFM state relaxes inward by
1.7% corresponding to an interlayer distance of 2.17 Å. For
the spin-spiral calculations, the system has been modeled by
an asymmetric film consisting of one Cr layer in fcc stacking
on six layers of Pd!111" using the relaxed structure of the
RW-AFM state. We used 1024 k points in the 2D-BZ and
about 110 basis functions per atom.

We calculated the energy dispersion, E!q", of flat spin
spirals given by M!R"=M$cos!qR" , sin!qR" ,0%, where M is
the magnetic moment, R is a lattice vector, and q is the wave
vector of the spin spiral. These structures are the general
solution of the classical Heisenberg model on a periodic lat-
tice allowing to explore a vast part of the magnetic phase
space.15 The energy dispersion for the unsupported ML
!UML" of Cr on the in-plane lattice constant of Pd shown in
Fig. 1!b" displays a global minimum at the K̄ point, corre-
sponding to the Néel state, which is by about 39 meV/Cr
atom lower than the RW-AFM state at M̄. For a Cr ML on
the Pd!111" surface the dispersion curve is slightly modified,
however, the ground state is still the Néel state which is by
about 27 meV/atom lower than the RW-AFM state.21 Due to
hybridization with the substrate the magnetic moment of Cr
decreases from 3.68#B in the Cr UML to 3.21#B on Pd!111".
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our first-principles calculations based on the Tersoff-Hamann
model,24,25 Fig. 3!i", we can assign the observed protrusions
to Cr atoms. Spin-polarized STM images obtained with vari-
ous magnetically coated W tips display three qualitatively
different contrasts seen in Figs. 3!b"–3!d". The images in
Figs. 3!b" and 3!c" exhibit hexagonal patterns contrary to
Fig. 3!d", which shows a threefold symmetry. However,
these images are rotated by 30° with respect to the chemical
unit cell and with a distance between protrusions of 0.46 nm
#see line profiles in Fig. 3!f"$, corresponding to a %3!%3
unit cell with respect to the Pd!111" surface.26 Similar SP-
STM images have been obtained for a Mn ML on Ag!111"
and interpreted as a Néel state.27

In our experiment, the Cr-coated W tips have an in-plane
spin sensitivity but the in-plane direction remains undeter-
mined and can change from one measurement to the other.
An advantage of the variable magnetization direction of the
tip is the possibility to observe different SP-STM contrasts of
a spin structure. The obtained images can be explained based
on the 120° Néel structure for the Cr monolayer, see arrows
in Fig. 3!i". Depending on the magnetization direction of the
tip, eT, and projections of the magnetic moments of the Cr
atoms in the monolayer onto the tip-magnetization direction,
three basic patterns are possible.16,28 A hexagonal pattern as
in Fig. 3!b" occurs if the tip magnetization is parallel to one

of the Cr moments which appears as a protrusion and the
projection onto the other two Cr moments is identical #see
the arrows in Fig. 3!j"$. The observed SP-STM image is in
excellent agreement with the theoretical one, Fig. 3!j", ob-
tained from our first-principles calculations of Cr/Pd!111" us-
ing the spin-polarized Tersoff-Hamann model.16 If the tip
magnetization is antiparallel to one Cr moment, this pattern
is simply inverted as observed experimentally in Fig. 3!c"
and again in perfect agreement with the theoretical expecta-
tion, Fig. 3!k". Finally, if a tip magnetization is neither par-
allel nor antiparallel to one of the Cr moments, it leads to a
pattern with a threefold contrast since the tip projection onto
all Cr moments is different, as seen in Fig. 3!d".

We can even compare our calculations quantitatively with
the experiment, by analyzing the line sections, Figs.
3!f"–3!h". As the tunneling parameters were identical for all
SP-STM images, we expect a constant tip-sample distance. If
we assume, e.g., a distance of 4.2 Å, we need to choose a tip
spin polarization of PT=0.18 to quantitatively reproduce all
three line sections.29 Moreover, the theoretical calculations
allowed us to estimate the angle between the tip magnetiza-
tion and one of the Cr atoms for the case of Fig. 3!d". The
best fitting gives us an angle of 17°, which provides also a
good agreement for the SP-STM images in Figs. 3!d" and
3!l".
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FIG. 3. !Color online" STM images of a Cr ML on Pd!111" obtained with !a" a bare W tip and #!b"–!d"$ magnetic !Cr-coated W" tips with
three different directions of the tip magnetization. The scan size is always about 2.0 nm!1.7 nm and tunneling parameter: U=14.1 mV
and I=6.7 nA. #!e"–!h"$ Display line sections along the lines indicated in !a"–!d" and in comparison with the theoretical line sections
obtained from !i"–!l" assuming a tip spin polarization of PT=0.18 and a tip-sample distance of 4.2 Å !Ref. 24". Theoretical SP-STM images
obtained from first-principles calculations based on the model of Ref. 16 are shown in !i"–!l". The 120° Néel state is indicated in !i" by red
arrows representing the magnetic moments of the Cr atoms. In !j"–!k" the green arrows denote the projections !eTmCr"eT of the Cr moments
!red arrows" mCr onto the tip-magnetization direction !yellow arrows" eT. The chemical and magnetic unit cell is shown as a white and
yellow rhombus, respectively.
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Bilayer: possible candidate for powerlaw phase? 

Spin Polarized STM (SP-STM)
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• Quantum version? 
Can one suppress TZ6 to zero : power law spin-liquid?
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