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The right tool...
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must be positive. This last condition is required in order that spin
states of high multiplicity, which favor ferromagnetism, have the
lowest energy. It seems certain that for many of the non-ferro-
magnetic substances containing a high concentration of magnetic
atoms the exchange integrals are negative. In such cases the lowest
energy state is the one in which the maximum number of anti-
parallel pairs occur. An. approximate theory of such substances
has been developed by Neel, I Bitter, and Van Vleck3 for one
specific case and the results are briefly described below.
Consider a crystalline structure which can be divided into two

interpenetrating lattices such that atoms on one lattice have
nearest neighbors only on the other lattice. Examples are simple
cubic and body-centered cubic structures. Let the exchange
integral for nearest neighbors be negative and consider only
nearest neighbor interactions. Theory then predicts that the
structure will exhibit a Curie temperature. Below the Curie tem-
perature the spontaneous magnetization vs. temperature curve
for one of the sub-lattices is that for an ordinary ferromagnetic
material. However, the magnetization directions for the two
lattices are antiparallel so that no net spontaneous magnetization
exists. At absolute zero all of the atoms on one lattice have their
electronic magnetic moments aligned in the same direction and
all of the atoms on the other lattice have their moments anti-
parallel to the first. Above the Curie temperature the thermal
energy is sufficient to overcome the tendency of the atoms to
lock antiparallel and the behavior is that of a normal paramagnetic
substance.
Materials exhibiting the characteristics described above have

been designated "antiferromagnetic. "Up to the present time the
only methods of detecting antiferromagnetism experimentally
have been indirect, e.g. , determination of Curie points by suscep-
tibility and specific heat anomalies. It has occurred to one of us
(J.S.S.) that neutron diKraction experiments might provide a
direct means of detecting antiferromagnetism. In an antiferro-
magnetic material below the Curie temperature a rigid lattice of
magnetic ions is formed and the interaction of the neutron mag-
netic moment with this lattice should result in measurable co-
herent scattering. Halpern and Johnson' have shown that the
magnetic and nuclear scattering amplitudes of a paramagnetic
atom should be of the same order of magnitude and this result.
has been qualitatively verified by experimental investigators. s At
the time of the above suggestion, an experimental program on the
determination of the magnetic scattering patterns for various
paramagnetic substances (MnO, MnF2, MnSO4 and Fe203) was
underway at Oak Ridge National Laboratory and room ternpera-
ture examination had shown {1)a form factor type of diffusion
magnetic scattering {no coupling of the atomic moments) to exist
for MnF2 and MnSO4, (2) a liquid type of magnetic scattering
(short-range order coupling of oppositely directed magnetic
moments) to exist for MnO and (3) the presence of strong coherent
magnetic diffraction peaks at forbidden re6ection positions for
the n-Fe203 lattice. The latter two observations are in complete
accord with the antiferromagnetic notion since the Curie points
for MnO and o.-Fe203 are respectively' 122'K and 950'K.
Figure 1 shows the neutron diffraction patterns obtained for

powdered MnO at room temperature and at 80'K. The room
temperature pattern shows coherent nuclear diGraction peaks at
the regular face-centered cubic re6ection positions and the liquid
type of diffuse magnetic scattering in the background. It should
be pointed out that the coherent nuclear scattering amplitudes for
Mn and 0 are of opposite sign so that the diGraction pattern is a
reversed NaCl type of pattern. The low temperature pattern also
shows the same nuclear diffraction peaks, since there is no crystal-
lographic transition in this temperature region, T and in addition
shows the presence of strong magnetic reflections at positions not
allowed on the basis of the chemical unit cell. The magnetic re-
jections can be indexed, however, making use of a magnetic unit
cell twice as large as the chemical unit cell. A complete description
of the magnetic structure will be given at a later date.
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Fi( . 1. Neutron diffraction patterns for MnO at room
temperature and at 80~K.

Imprisonment of Resonance Radiation in
Mercury Vapor

D. ALPERT, A. O. McCoUBRFY, AND T. HQLsTEIN
Westinghouse Research Laboratories, East Pittsburgh, Pennsylvania

August 29, 1949

'HE term "imprisonment of resonance radiation" describes
the situation ~herein resonance radiation emitted in the

interior of a gas-filled enclosure is strongly absorbed by normal
gas atoms before it can get out; the eventual escape of a quantum
of radiation then takes place only after a number of successive
atomic absorptions and emissions. The phenomenon was first
observed by Zemansky' who measured the time of decay, T, of
diffuse resonance radiation from an enclosure of optically excited
mercury vapor, after the exciting beam of 2537A light was cut off.
T was found to depend upon gas density and enclosure geometry;
at densities around 10'5/cc, T attained values of the order of 10 4

sec., a thousand times greater than the natural lifetime of an
excited 6'PI atom.
On the theoretical side, a number of treatments' ' have been

presented. The early work' ' is reviewed in reference 6. In the
latter paper (as well as in that of Biebermans), the transport of
resonance quanta is described by a Boltzmann-type integro-
diEerential equation for the density of excited 6'PI atoms; the
solution of this equation by the Ritz variational method gives
accurate values for the decay time, T. It was found that T depends
not only on vapor density and enclosure geometry, but also on
the spectral line shape of the resonance radiation, as pointed out
earlier by Kenty explicit results were obtained for the case of
Doppler broadening and plane-parallel enclosure geometry. Most
recently, unpublished calculations have extended the analysis to
enclosures of the form of infinite circular cylinders and to a variety
of line shapes.

In conclusion it appears that neutron diffraction studies of anti-
ferromagnetic materials should provide a new and important
method of investigating the exchange coupling of magnetic ions.
*This work was supported in part by the ONR.
~ L. Noel, Ann. de physique l7, 5 (1932).
~ F. Bitter, Phys. Rev. 54, ?9 (1938).' J. H. Van Vleck, J. Chem. Phys. 9, 85 (1941).
4 O. Halpern and M. H. Johnson, Phys. Rev. 55, 898 (1939).' Whittaker, Beyer, and Dunning, Phys. Rev. 54, 771 (1938); Ruderman,

Havens, Taylor, and Rainwater, Phys. Rev. 75, 895 (1949); and also
unpublished work at Oak Ridge National Laboratory.

II Bizette, Squire, and Tsai, Comptes Rendus 207, 449 (1938).' B. Ruhemann, Physik. Zeits. Sowjetunion 7, 590 (1935).

• Neutron scattering

• Now we know antiferromagnetism is 
commonplace

Shull and Smart, 1949
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Singlets again

• Anderson (73): revived the idea of singlets 
in the “Resonating Valence Bond” state

• prototype of the modern QSL

+ + … 
Ψ =
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• Local moments: Curie-Weiss law at high T

• Frustration parameter:  f = |ΘCW|/TN

• The empirical search for spin liquids is often 
just for materials with f >> 1

χ ∼ A

T −ΘCW

TTN

Spin liquid

χ−1

ΘCW |ΘCW |

Spin gas (paramagnet)
Spin solid (ordered)

Frustration Parameter
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Quantum Paramagnet
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• Quantum spin liquid = no magnetic order?
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What is a QSL?

• Calling a QSL a quantum paramagnet

• defines what it isn’t!

• is in itself not interesting!

• misses the important physics!

• We need a positive definition
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A Modern View

• Let’s call a QSL a ground state of a spin system 
with long range entanglement 

• This means a state which cannot be regarded 
or even approximated as a product state over 
any finite blocks
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How to describe a 
QSL?

• A long-range entangled wavefunction is a 
complicated thing!

• Very hard to work directly with all these 
coefficients - is there another way?

+ + … Ψ = c2c1
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Free Fermions

• One useful construction uses a Fermi gas: a 
product in momentum space rather than 
real space

c1 +c2 +c3 + · · ·

Ψ =
�

k<kF

c†k|0�

=
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Gutzwiller 
Construction

• Construct QSL state from free fermi gas 
with spin, with 1 fermion per site (S=0)

c1 +c2 +c3 + · · ·Ψ0 =

17



Gutzwiller 
Construction

• Construct QSL state from free fermi gas 
with spin, with 1 fermion per site

• Projection removes empty and doubly 
occupied sites

Ψ = c1 +c2 +c3 + · · ·

Ψ = PGΨ0
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Gutzwiller 
Construction

• Construct QSL state from free fermi gas 
with spin, with 1 fermion per site

• Belief: low energy physics is described by a 
gauge theory, with fermion → spinon

Ψ = c1 +c2 +c3 + · · ·

19



Classes of QSLs

• Topological QSLs

• full gap

• U(1) QSL

• gapless emergent “photon”

• Algebraic QSLs

• Relativistic CFT (power-laws)

• Spinon Fermi surface QSL
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compact 
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gauge 
theory

QED3

QED3 
w/ μ>0
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Why bother?

• QSLs are minimal examples of states with 
quantum order, an entirely new class of 
phases of matter

• Perhaps simpler than strongly correlated 
conducting states

• With robust QSLs, qualitatively different 
quasiparticles would be at our disposal 

• Some would be very useful for quantum 
computing and other applications

22



Symmetry
Long Range 

Entanglement

• Phases characterized by 
measurable order 
parameters
• Phases can “collapse” if 
symmetry is explicitly 
broken 

• Phases are distinct even in 
absence of any symmetry
• LRE can be measured 
directly non-locally, e.g. by 
entanglement entropy
• Supports excitations with 
exotic quantum numbers and 
statistics
• Describable by emergent 
gauge structure

23



Challenges: theory

• Numerical solution of physically relevant 
models is very challenging, and it is also 
hard to extract QSL behavior from finite 
systems

• Many QSLs are described by strongly 
coupled gauge theories

• The hardest part is connecting to real 
materials!

24



Challenges: theory

• Numerical solution of physically relevant 
models is very challenging, and it is also 
hard to extract QSL behavior from finite 
systems

• Many QSLs are described by strongly 
coupled gauge theories

• The hardest part is connecting to real 
materials!

Density Matrix Renormalization Group 
(DMRG) is now able to accurately solve 

realistic 2d quantum spin models
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S=1/2 kagomé AF

• e.g. “Herbertsmithite”
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site of −0.43237(4). This agrees fairly well with the se-
ries expansion energy for this cylinder and λ, −0.431(1).
This supports the idea that the series expansion gives
a reasonable estimate of the energy of the HVBC phase
at λ = 1 in two dimensions: −0.433(1),16 as does the
MERA HVBC energy, −0.4322,17 which is a rigorous
upper bound. MERA produces a rigorous upper bound
because it generates a wavefunction for the infinite 2D
system and evaluates its energy exactly (up to floating
point round-off errors).17

IV. GROUND STATE ENERGIES

It is possible to generate rigorous upper bounds on the
ground state energy of the infinite 2D system from our
results for finite open systems. Consider an open cluster
C which can be “tiled” to fill all of 2D, with no sites left
out, and having an even number of sites NC . We take
as a 2D variational ansatz a product wavefunction, the
product being over all the tiles, where we use our best
variational wavefunction for C (call it |C〉, with energy
EC) as the ansatz for each tile. The energy of any of
the missing bonds connecting different tiles is zero, since
〈C|"Si|C〉 = 0 for any spin i. Therefore the energy per
site of this simple product wavefunction is EC/NC .
This approach is crude and converges slowly with the

cluster size, with an error proportional to one over the
width. Nevertheless, the SL energy is sufficiently low
that we have been able to obtain a new rigorous upper

bound on the 2D energy: E(2D)
0 < −0.4332. This was

obtained with a width-12 open strip (which looks like
XC12 unrolled) withNC = 576, keepingm = 5000 states.
The interior of this cluster had the uniform valence bond
pattern expected for a spin liquid.

TABLE I: Ground state energies and gaps for infinitely long
cylinders of various circumferences, c. The third column
indicates whether the diamond pattern fits perfectly on the
cylinder.

(c/2)2 Cylinder DF E/N Singlet Gap Triplet Gap

3 XC4 no −0.4445

4 YC4 yes −0.4467

7 YC5-2 no −0.43791 0.0108(1) 0.083(1)

9 YC6 no −0.43914 0.0345(5) 0.142(1)

12 XC8 yes −0.43824(2) 0.050(1) 0.1540(6)

13 YC7-2 no −0.43760(2) 0.020(1) 0.055(4)

16 YC8 yes −0.43836(2) 0.0497(6) 0.156(2)

19 XC10-1 no -0.4378(2)

21 YC9-2 no −0.4377(2) 0.032(3) 0.065(5)

25 YC10 no −0.4378(2) 0.041(3) 0.070(15)

28 XC12-2 yes −0.4380(3) 0.054(9) 0.125(9)

36 YC12 yes −0.4379(3)

0 0.05 0.1 0.15 0.2
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-0.44
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FIG. 4: Comparison of energies per site for various lattices
and methods. For cylinders, the horizontal axis in this plot
is the inverse circumference in units of inverse lattice spac-
ings. For tori,18,25–27 the smallest circumference was used.
In one case we show Lanczos energies for two different sized
(36 and 42 sites) tori that have the same circumference.26,27

The MERA17 and our DMRG upper bound results apply di-
rectly to an infinite two dimensional system, as does the series
HVBC result16 that is plotted on the axis. The torus DMRG
energies18 are also upper bounds on the true ground state
energies for those tori.

Our DMRG results are presented in Table I. The
ground state energies are also plotted and compared to
other calculations in Fig. 4. The DMRG energies are
consistent with the Lanczos results25–27 and well below
the energies of MERA17 and the series expansions for the
HVBC.16 We note that the previous DMRG result18 is
close to the true ground state26 for the circumference 6
torus. The entanglement across a cut that separates a
circumference 6 torus into two parts should be roughly
the same as across a cut that separates a circumference 12
cylinder. We find that circumference 12 is presently our
limit for obtaining good ground state energy estimates
on cylinders. Thus it is perhaps not surprising that the
DMRG results for tori18 give substantial overestimates of
the ground state energies for circumferences larger than
6. But these estimates may alternatively be viewed as
variational upper bounds obtained with DMRG.
The XC8 cylinder (1/c ∼ 0.14) allows a direct com-

parison of the energies between the HVBC series and our
DMRG: the DMRG energy is lower by 0.004(1), and the
series result for XC8 is near the 2D result. The corre-
sponding torus shows much larger finite size effects in the
HVBC series,16 but the true finite size effects between
the tori and cylinders are quite small, as seen by the
nearly identical results from Lanczos on tori and DMRG
on cylinders when we use the largest available torus at
each circumference.25–27 This is consistent with the small
correlation length apparent in Fig. 1. We conclude that
our widest cylinders would have minimal finite size ef-
fects even if the system were in the HVBC phase; in the

© Steve White
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YS Lee group
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Ring Exchange Model

• Organic 

Spin Bose-Metal and Valence Bond Solid phases in a spin-1/2 model with ring exchanges on a
four-leg triangular ladder

Matthew S. Block,1 D. N. Sheng,2 Olexei I. Motrunich,3 and Matthew P. A. Fisher1, 3

1
Department of Physics, University of California, Santa Barbara, California 93106, USA

2
Department of Physics and Astronomy, California State University, Northridge, California 91330, USA

3
Department of Physics, California Institute of Technology, Pasadena, California 91125, USA

(Dated: May 20, 2011)

We study a spin-1/2 system with Heisenberg plus ring exchanges on a four-leg triangular ladder using the den-
sity matrix renormalization group and Gutzwiller variational wave functions. Near an isotropic lattice regime,
for moderate to large ring exchanges we find a spin Bose-metal phase with a spinon Fermi sea consisting of three
partially filled bands. Going away from the triangular towards the square lattice regime, we find a staggered
dimer phase with dimers in the transverse direction, while for small ring exchanges the system is in a featureless
rung phase. We also discuss parent states and a possible phase diagram in two dimensions.

In a wide class of crystalline organic Mott insulators it is
possible to tune from the strongly correlated insulating state
into a metallic state. At ambient pressure such “weak Mott in-
sulators” are perched in close proximity to the metal-insulator
transition. The residual electronic spin degrees of freedom
constitute a novel quantum system and can exhibit a myr-
iad of behaviors such as antiferromagnetic (AF) ordering or
a valence bond solid (VBS). Particularly exciting is the pos-
sibility that the significant charge fluctuations in a weak Mott
insulator frustrate the magnetic or other ordering tendencies,
resulting in a quantum spin liquid. This appears to be re-
alized in two organic materials [1–7] κ-(ET)2Cu2(CN)3 and
EtMe3Sb[Pd(dmit)2]2, both quasi-two-dimensional (2D) and
consisting of stacked triangular lattices. Thermodynamic,
transport, and spectroscopic experiments point towards the
presence of many gapless excitations in the spin-liquid phase
of these materials.

The triangular lattice Hubbard model [1, 8–10] is com-
monly used to describe these materials. At half filling the
Mott metal-insulator transition can be tuned by varying the
single dimensionless parameter, the ratio of the on-site Hub-
bard U to the hopping strength t. On the insulator side at
intermediate U/t, the Heisenberg spin model should be aug-
mented by multispin interactions [11–16], such as four-site
ring exchanges (see Fig. 1), which mimic the virtual charge
fluctuations. Accessing a putative gapless spin liquid in 2D in
such models poses a theoretical challenge.

Slave particle approaches provide one construction of gap-
less spin liquids and predict spin correlations that decay as
power laws in space, oscillating at particular wave vectors. In
the so-called “algebraic spin liquids” [17–20] these wave vec-
tors are limited to a finite discrete set, often at high symmetry
points in the Brillouin zone. However, the singularities can
also occur along surfaces in momentum space, as they do in a
“spinon Fermi sea” spin liquid speculated for the organic ma-
terials [12–14]. We will call such a phase a “spin Bose-metal”
(SBM) state [21, 22] to emphasize that it has metal-like prop-
erties for spin and energy transport while the spin model is
bosonic in character.

It should be possible to access an SBM phase by system-

FIG. 1: (color online). Picture of the Heisenberg plus ring Hamilto-
nian on the four-leg ladder showing different two-spin and four-spin
couplings. The isotropic model is defined by Jx̂ = Jŷ = Jx̂+ŷ = J ,
Kx̂,ŷ = Kx̂,x̂+ŷ = Kŷ,x̂+ŷ = K. We also study a broader
phase diagram interpolating between the triangular and square limits
by decreasing Jx̂+ŷ [with appropriate scaling of the ring couplings
Kx̂,x̂+ŷ = Kŷ,x̂+ŷ = (Jx̂+ŷ/Jx̂)Kx̂,ŷ]. The ladder has periodic
boundary conditions in both directions.

atically approaching 2D from a sequence of quasi-1D ladder
models [21–23]. On a ladder the quantized transverse mo-
menta cut through the 2D surface, leading to a quasi-1D de-
scendant state with a set of low-energy modes whose number
grows with the number of legs. These quasi-1D descendant
states can be analyzed in a controlled fashion using numerical
and analytical approaches.

Heisenberg plus ring on a four-leg triangular ladder.—
Pursuing this idea, we consider a spin-1/2 system with Heisen-
berg and four-site ring exchanges,

Ĥ =

�

�ij�

2Jij
�Si · �Sj +

�

rhombi

KP (P1234 +H.c.) . (1)

An earlier exact diagonalization (ED) work [24] on the
isotropic 2D triangular lattice found that K > 0.1J destroys
the 120◦ AF order. A subsequent variational study [12] sug-
gested the spin Bose-metal phase for moderate to large K.
A recent work pursued this model on a two-leg zigzag lad-
der [22, 25] combining density matrix renormalization group
(DMRG), variational Monte Carlo (VMC), and Bosonization
approaches, and argued that it realizes a quasi-1D descendant
of the SBM phase: a remarkable 1D quantum phase with three
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FIG. 2: (color online). Phase diagram of the Heisenberg plus ring

model on the four-leg ladder interpolating between the triangular

Jx̂ = Jŷ = Jx̂+ŷ = 1 and square Jx̂ = Jŷ = 1, Jx̂+ŷ = 0 limits.

The horizontal axis is the ring coupling Kx̂,ŷ while the vertical axis

is the diagonal coupling Jx̂+ŷ , cf. Fig. 1; the other ring couplings are

obtained according to Eq. (2).

gapless modes and power law spin correlations at incommen-

surate wave vectors that are the fingerprints of the parent 2D

phase.

The two-leg ladder is still far from 2D. We take a signifi-

cant step and study the model on a four-leg ladder. We first

consider the case where all nearest neighbor bonds have the

same coupling J and all rhombi have the same coupling K;

thus there is a single parameter K/J .

We study the model numerically using DMRG/ED com-

bined with VMC calculations. All calculations use periodic

boundary conditions. The DMRG calculations keep m =
3600-5000 states per block [26–28] to ensure accurate results,

and the density matrix truncation error for our systems is of

the order of 10−5
(typical relative error for the ground-state

energy is 10−3
or smaller). Information about the state is ob-

tained by measuring spin, dimer, and (scalar) chirality struc-

ture factors.

The phase diagram from such a study using 12×4 and 18×4
ladders can be seen in Fig. 2; the isotropic case is the horizon-

tal cut at Jx̂+ŷ/Jx̂ = 1. For small K/J ≤ 0.15 the system

is in a rung phase, whose caricature can be obtained by al-

lowing Jŷ � Jx̂, Jx̂+ŷ where the rungs effectively decouple.

This phase is gapped and has only short-range correlations.

In the model with isotropic couplings the rungs have rather

strong connections: we find that the x̂ and x̂+ ŷ bonds have

more negative Heisenberg energies than the ŷ bonds. Nev-

ertheless, the data suggest that the system is in a featureless

gapped phase. A further test is provided by increasing Jŷ from

the isotropic case, and we indeed observe a smooth evolution

in all measurements towards the strong rung phase.

Near K/J = 0.2-0.25, the DMRG ground state breaks

translational symmetry. The pattern obtained on both the

12 × 4 and 18 × 4 systems is illustrated in Fig. 3(a). This

state has strong ŷ bonds forming columns along the ladder

direction and strong x̂+ ŷ bonds in the connecting arrange-

ment. Note that we also expect a degenerate state depicted in

FIG. 3: (a) Symmetry breaking pattern found in DMRG on the

isotropic system at K/J = 0.2-0.25. (b) State degenerate with (a)

in the presence of x̂ ↔ x̂+ ŷ symmetry. Both (a) and (b) can be

viewed as triangular VBS states with dimers on the ŷ bonds but dif-

ferent column orientations. The staggered patterns on the x̂+ ŷ and

x̂ bonds correspondingly are expected on the triangular lattice and

follow a rule that each triangle contains only one strong bond. Upon

going to the square limit by decreasing Jx̂+ŷ , we find state (b), which

connects to a staggered ŷ-dimer state.

Fig. 3(b), since the x̂ and x̂+ ŷ directions are equivalent on

the isotropic ladder. The states shown in Fig. 3 are a subset of

possible VBS states on the isotropic 2D triangular lattice, and

the selection must be due to the finite transverse size. The se-

lection of (a) in the DMRG must be due to symmetry breaking

terms that exist in the way it is building up the multileg sys-

tem. Such terms are tiny and translationally invariant ground

states are obtained for all other phases without intrinsic de-

generacy (we also verified that the DMRG obtained identical

results to the ED for 8× 4 systems).

SBM phase.—For K/J ≥ 0.3, we do not find any pattern of

bond ordering in real space and no indication of Bragg peaks

in the dimer or chiral structure factors. The correlation func-

tions are also markedly different from the rung phase at small

K. The 12 × 4 and 18 × 4 systems remain in essentially the

same state for a range of control parameters 0.3 ≤ K/J ≤ 1.

Thus, a putative spin-liquid phase is established based on

finite-size analysis of the DMRG results. Spin and dimer cor-

relations are rather extended in real space and show complex

oscillations. The momentum space structure factors allow a

more organized view and show many features that, remark-

ably, can be manifested by simple variational wave functions

for the SBM phase.

To this end, we perform a VMC study using spin-singlet

trial wave functions that can be viewed as Gutzwiller projec-

tions of spinon hopping mean field states. More systemati-

cally, we vary directly the shape of the “spinon Fermi sea”

in the momentum k space. There are four transverse val-

ues ky = 0,±π/2,π, and for each we can allow an arbitrary

“Fermi segment,” i.e., a contiguous region of occupied k or-

bitals. For the 8×4 system, we optimized the trial energy over

all distinct locations of these segments, the only restriction be-

ing the specified total filling, and found that only three bands

are populated in a manner that respects the lattice symmetries.

For the 18 × 4 system, from the outset we restricted the op-

timization to such three-band states with inversion symmetry

and found a state shown in Fig. 4.

Figure 5(a) shows the spin structure factor measured in

DMRG and calculated using the optimal VMC state on the

18 × 4 ladder, while Fig. 5(b) shows the dimer structure fac-

EtMe3Sb[Pd(dmit)2]2

MS Block et al, 2011
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Challenges: theory

• Numerical solution of physically relevant 
models is very challenging, and it is also 
hard to extract QSL behavior from finite 
systems

• Many QSLs are described by strongly 
coupled gauge theories

• The hardest part is connecting to real 
materials!

Entanglement entropy gives “smoking gun” 
evidence for some QSLs
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Topological 
Entanglement Entropy

A B

ρA = TrB |ψ��ψ|

L

• For gapped QSLs, can define a quantitative 
measure of long-range entanglement

S = −TrA[ρA ln ρA]

S(L) ∼ αL− γ

2006
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Topological 
Entanglement Entropy

S(L) ∼ αL− γ

H.C. Jiang, Z. Wang, LB
arXiv:1205.4289

• For gapped QSLs, can define a quantitative 
measure of long-range entanglement

γDMRG=0.698(8)

γth=ln(2)=0.693
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Spinon Fermi Surface

• Proposed to be realized in some organics
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Spinon Fermi Surface

• Anomalous entanglement S ~ L ln (L) 3

the advantages are detailed in [20]. We benchmarked our
algorithm for three free fermion tight binding problems
on: 1) A one dimensional chain of L = 200 sites with LA

up to 100 sites, 2) An 18×18 square lattice with the linear
size LA up to 7 sites. 3) A honeycomb (graphene) lat-
tice with Dirac dispersion. We find very good agreement
with the exact results [20] that were calculated using the
correlation matrix technique [21].
Gutzwiller Projected Spin Liquid Wavefunctions: Next

we calculate Renyi entropy for the problems of our ac-
tual interest namely projected Fermi liquid wave func-
tions which are considered good ansatz for ground states
of critical spin-liquids. We analyze two different classes
of critical spin-liquids: states that at the slave-particle
mean-field level have a full Fermi surface of spinons and
those with only nodal fermions. For a triangular lat-
tice with uniform hopping trr′ = t one obtains a Fermi
surface of spinons at the mean-field level while for a
square-lattice with π flux through every plaquette (i.e.
Π!trr′ = −1) one obtains nodal Dirac fermions. We also
study the projected wave function on square lattice with
uniform hopping (and no flux).
The wave-functions for these spin-liquids are con-

structed by starting with a system of spin-1/2 fermionic
spinons frα hopping on a finite lattice of size L1 × L2
at half-filling with a mean field Hamiltonian:HMF =
∑

rr′

[

−trr′f †
rσfr′σ + h.c.

]

. The spin wave-function is
given by |φ〉 = PG|φ〉MF where |φ〉MF is the ground
state of HMF and the Gutzwiller projector PG =
∏

i (1− ni↑ni↓) ensures exactly one fermion per site. The
sign-structure of the projected wave-function depends
markedly on the underlying lattice. For a bipartite lattice
with trr′ non-zero and real only for the opposite sublat-
tices, one can prove that the wave-function satisfies the
Marshall sign rule[20]. Thus, for a bipartite lattice, one
only needs to calculate 〈SwapA,mod〉 since 〈SwapA,sign〉
trivially equals unity. The projected wave-function for
the square lattice with and without π-flux (as well as that
for the one-dimensional Haldane-Shastry state) satisfies
the Marshall’s sign rule while that for the triangular lat-
tice doesn’t. We discuss these three cases separately. The
one dimensional case was previously discussed in [22].
Triangular lattice: As mentioned above the mean-field

ansatz describes a spin-liquid with spinons hopping on a
triangular lattice. We consider a lattice with total size
18× 18 on a torus and the region A of square geometry
with linear size LA upto 8 sites. We find a clear signa-
ture of LA logLA scaling in Renyi entropy (Fig. 1). This
is rather striking since the wave-function is a spin wave-
function and therefore could also be written in terms of
hard-core bosons. This result strongly suggests the pres-
ence of an underlying spinon Fermi surface. In fact the
coefficient of the LA logLA term is rather similar before
and after projection. This observation may be rational-
ized by picturing a two dimensional Fermi surface as a
collection of many independent one dimensional systems

FIG. 1: Renyi entropy data for projected and unprojected
Fermi sea state on the triangular lattice of size 18 × 18 with
LA = 1 . . . 8. Note, projection barely modifies the slope,
pointing to a Fermi surface surviving in the spin wavefunc-
tion. We also separately plot S2,sign and S2,mod (as defined
in the text) for the projected state, the former dominates at
larger sizes.

in momentum space, each giving rise to a logL contri-
bution. Gutzwiller projection then just removes a single
charge degree of freedom.
It is interesting to compare the contribution to S2

from S2,sign ≡ − log(
〈

SwapA,sign

〉

) and S2,mod ≡
− log(

〈

SwapA,mod

〉

) separately. Numerically, S2,sign ap-
pears to be responsible for the logarithmic violation of
the area law (Fig. 1). This suggests that the sign struc-
ture of the wavefunction is crucial at least in this case.
The area-law violation of the Renyi entropy for

Gutzwiller projected wave-functions substantiates the
theoretical expectation that an underlying Fermi surface
is present in the spin wavefunction.
Square lattice with π flux : The mean-field ansatz con-

sists of spinons with Dirac dispersion around two nodes,
say, (π/2,π/2) and (π/2,−π/2) (the locations of the
nodes depend on the gauge one uses to enforce the π
flux). The projected wave-function has been proposed in
the past as the ground state of an algebraic spin liquid.
The algebraic spin-liquid is believed to be describable by
a strongly coupled conformal field theory of Dirac spinons
coupled to a non-compact SU(2) gauge field [6, 11]. Be-
cause of this the algebraic spin-liquid has algebraically
decaying spin-spin correlations. We verify this explicitly
for the projected wavefunction using Variational Monte
Carlo on a 36×36 lattice [20]. This state is different from
that in Ref. [23], where Majorana fermions are coupled
to a discrete Z2 gauge field making them effectively free
at low energies, in contrast to our critical state.
Square lattice being bipartite, the projected wavefunc-

Ψ = PG

Yi Zhang et al, 2011
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Challenges: theory

• Numerical solution of physically relevant 
models is very challenging, and it is also 
hard to extract QSL behavior from finite 
systems

• Many QSLs are described by strongly 
coupled gauge theories

• In most experimentally relevant problems, 
the spin interactions are not very well 
known

Recent progress!  
Controlled expansion for field theory

Models within AdS/CFT?
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Challenges: theory

• Numerical solution of physically relevant 
models is very challenging, and it is also 
hard to extract QSL behavior from finite 
systems

• Many QSLs are described by strongly 
coupled gauge theories

• The hardest part is connecting to real 
materials!
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The QSL Landscape

10 years ago
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The QSL Landscape

ZnCu3(OH)6Cl2

Cu3V2O7(OH)2·2H2O
BaCu3V2O3(OH)2Ba3CuSb2O9

Na4Ir3O8

Ba2YMoO6

Yb2Ti2O7

Monoclinic, C2/m 

a = 10.607!, b = 5.864!, c = 7.214! 

! = 94.90° 

2.94! 

3.03!  Cu1 – Cu2 

Cu2 – Cu2 

Cu2+ 

V5+ 

O2- 

!Cu2–Cu1–Cu2 = 57.87 

!Cu1–Cu2–Cu2 = 61.06 

•!Good two dimensionality 

•!No disorder between Cu2+ and V5+ ions 

•!Difference between J1 and J2 may be smaller than 20 % 

Ref.) M. A. Lafontaine et al., JSSC85, 220 (1990);  Z. Hiroi et al., JPSJ70, 3377 (2001). 

triangular kagome spin-orbit

κ-(ET)2Cu2(CN)3

EtMe3Sb[Pd(dmit)2]2

now

Pr2Zr2O7

Na2IrO3
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Where to look?

• Materials with

• S=1/2 spins 

• Frustration

• Significant charge fluctuations

• Exotic interactions (c.f. Spin-orbit 
coupling) 

37



U/t

frustration

metal

AF insulator
QSL

tr
ia

ng
ul

ar
 la

tt
ic

e

ka
go

m
e 

la
tt

ic
e

e-  l
oc

al
iz

at
io

n

Where to look?
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Spin Orbit?

“simple” 
materials TIs, SO-semimetals

strong SO Mott 
insulators

e-  l
oc

al
iz

at
io

n

spin-orbit coupling

“traditional” 
Mott insulators

U/t
QSLs here?

Na4Ir3O8

Ba2YMoO6

Yb2Ti2O7

Pr2Zr2O7

Na2IrO3
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Challenges: experiment

• Quantum order of the ground state is 
intrinsically non-local: not visible to local or 
spatially averaged probes

• Signatures of quantum order are mainly in 
the excitations

• We can see these through 
thermodynamics or directly through 
scattering
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The QSL Landscape

ZnCu3(OH)6Cl2

Cu3V2O7(OH)2·2H2O
BaCu3V2O3(OH)2Ba3CuSb2O9

Na4Ir3O8

Ba2YMoO6

Yb2Ti2O7

Monoclinic, C2/m 

a = 10.607!, b = 5.864!, c = 7.214! 

! = 94.90° 

2.94! 

3.03!  Cu1 – Cu2 

Cu2 – Cu2 

Cu2+ 

V5+ 

O2- 

!Cu2–Cu1–Cu2 = 57.87 

!Cu1–Cu2–Cu2 = 61.06 

•!Good two dimensionality 

•!No disorder between Cu2+ and V5+ ions 

•!Difference between J1 and J2 may be smaller than 20 % 

Ref.) M. A. Lafontaine et al., JSSC85, 220 (1990);  Z. Hiroi et al., JPSJ70, 3377 (2001). 

triangular kagome

κ-(ET)2Cu2(CN)3

EtMe3Sb[Pd(dmit)2]2

now

Pr2Zr2O7

spin-orbit

Na2IrO3
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Specific Heat

• C ~ γT indicates gapless behavior with 
large density of statesLETTERS
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Figure 2 Low-temperature heat capacities of κ-(BEDT-TTF)2Cu2(CN)3. a,b, Data obtained for two samples under magnetic fields up to 8 T in CpT−1 versus T 2 plots.
b contains the data of the typical antiferromagnetic insulators κ-(BEDT-TTF)2Cu[N(CN)2]Cl, deuterated κ-(BEDT-TTF)2Cu[N(CN)2]Br and β�-(BEDT-TTF)2ICl2 for comparison.
The existence of a T-linear contribution even in the insulating state of κ-(BEDT-TTF)2Cu2(CN)3 is clearly observed.

magnetic resonance (NMR) and static susceptibility measurements,

they observed no static order down to 30 mK and concluded that

the spins form a kind of liquid state. The likelihood that a spin-

liquid model is appropriate is strengthened by the prediction of

the resonating-valence-bond (RVB) model of large entropy at low

temperatures and a possible temperature- (T-) linear term due

to the spinon density of states in the heat capacity
3,4

. The heat

capacity is considered as a very sensitive low-energy spectroscopic

method for investigating the low-energy excitations from the

ground state. We can explore a reliable discussion on what kind of

ground state is realized through the entropy with absolute precision

and without any external fields. In this respect, thermodynamic

studies at temperatures as low as possible are necessary and

required for demonstrating the quantum spin-liquid character for

this material.

In Fig. 1, we show the temperature dependence of

the heat capacity of κ-(BEDT-TTF)2Cu2(CN)
3

and other

κ-type BEDT-TTF salts. κ-(BEDT-TTF)2Cu(NCS)
2

is a

superconductor with a transition temperature (Tc) of 9.4 K.

κ-(BEDT-TTF)2Cu[N(CN)
2
]Cl is a Mott insulator with an

antiferromagnetically ordered ground state below the Néel

temperature TN = 27 K. Reflecting the same type of donor

arrangement, the temperature dependencies of the lattice heat

capacities of the samples are similar. The data for another

Mott insulating compound, β�
-(BEDT-TTF)2ICl2, which gives

the highest Tc of 14.2 K among organic superconductors under

an applied pressure of 8.2 GPa (ref. 14), are also shown for

comparison. A slight difference in the lattice contribution

is observed, attributable to the difference of crystal packing,

but the overall temperature dependence resembles that of

the κ-type compounds. Although the overall tendency of the

lattice heat capacity is similar, it should be emphasized that

κ-(BEDT-TTF)2Cu2(CN)
3

shows large heat capacities at low

temperatures as compared with typical Mott-insulating samples.

This fact demonstrates that the spin system retains large entropy

even at low temperatures and is free from ordering owing to the

existence of the frustration.

The temperature dependence of the heat capacity of

κ-(BEDT-TTF)2Cu2(CN)
3

is shown in a Cp T−1
versus T plot

in the inset of Fig. 1. We also show data obtained under an

external magnetic field of 8 T applied perpendicular to the plane,

demonstrating no drastic difference from the 0 T data over the

whole temperature range in the figure. There is no sharp thermal

anomaly indicative of long-range magnetic ordering. This is

consistent with previous NMR experiments
13

. The data at low

temperatures below 2.5 K, shown in Fig. 2, clearly verify the

existence of a linearly temperature-dependent term (the γ term),

even in the insulating salt. The magnitude of γ is estimated at

20 ± 5 mJ K
−2

mol
−1

from the linear extrapolation of the Cp T−1

versus T 2
plot down to T =0 K. However, the low-temperature data

show an appreciable sample dependence. Figure 2a,b shows data for

different samples, (a) and (b), respectively. In the low-temperature

region, sample (a) shows a curious structure in addition to the

finite γ term, which is somewhat field dependent. However, Fig. 2b

does not show such behaviour. The magnetic field dependence seen

in sample (a) is attributable to a possible paramagnetic impurity

and seems to be extrinsic. In fact, the application of a magnetic

field induces a kind of Schottky contribution, which is attributed

to a magnetic impurity of less than 0.5%. The origin of this

contribution is considered to be Cu
2+

contamination in the sample

preparation, as reported by Komatsu et al.15
. We measured several

other samples and found that the data of the better-quality samples

converge to those shown in Fig. 2b, with a small field-dependent

contribution. It should be noted that these samples still possess

a finite Cp T−1
value of about 15 mJ K

−2
mol

−1
, as shown by the

extrapolation of the data down to T = 0 K. The existence of the γ
term in the present insulating state is intrinsic.

The well known Mott insulators κ-(BEDT-TTF)2X

(X = Cu[N(CN)2]Cl, deuterated Cu[N(CN)2]Br) and

β�
-(BEDT-TTF)2ICl2 with three-dimensional antiferromagnetic

ordering show a vanishing γ value, as shown in Fig. 2b

(ref. 16). It is evident that the low-temperature heat capacity of

κ-(BEDT-TTF)2Cu2(CN)
3

is extraordinarily large for an insulating

system. A γ value of the present order (10
1–1.5

mJ K
−2

mol
−1) is

expected, for example, in spin-wave excitations in one-dimensional

antiferromagnetic spin systems with intra-chain couplings of

J/kB = 100–200 K or metallic systems with continuous excitations

around the Fermi surface. However, these are obviously very

different systems from the present two-dimensional insulating

materials. Gapless excitations giving a T-linear contribution to the

460 nature physics VOL 4 JUNE 2008 www.nature.com/naturephysics

S. Yamashita et al, 2008
is observed around 3 K. This corresponds to the kink of 1/T1 in

13C NMR in the same temper-
ature region, and indicates a possibility of crossover phenomena to the spin liquid state.

Figure 16a shows temperature dependence of thermal conductivity (107). Compared with

the Et2Me2Sb salt, the EtMe3Sb salt shows enhanced thermal conductivity, which indicates that

spin-mediated contribution is added to the phonon contribution. Temperature dependence of

the thermal conductivity has a peak structure around 1 K (Figure 16a inset). Thermal conduc-

tivity of the EtMe3Sb salt also shows a T-linear term, indicating gapless excitation from the

ground state. This is markedly different from the case of k-(ET)2Cu2(CN)3.

Field dependence of thermal conductivity of the EtMe3Sb salt, however, suggests another kind
of excitation (Figure 16b). A steep increase above approximately 2 T is observed below 1 K,

which implies that some spin-gap-like excitations are present at low temperatures, along with the

gapless excitations indicated by the T-linear term. At present, there are two possible scenarios:

1. In terms of coexistence of the gapless and gapped excitations (108), the magnetic excitations are
separated from the ground state by a spin gap, which is filled with nonmagnetic excitations.

2. In terms of a possible nodal gap structure in the spinon Fermi surface, the spin-gap-like

behavior is attributed to the pairing gap formation, and the finite residual T-linear term

stems from the zero-energy density of states similar to the disorder-induced normal fluid in

d-wave superconductors (72).

Although there remain many open questions, the unusual bipartite nature of elementary excita-

tions in the quantum spin liquid state places the EtMe3Sb salt in a key position for understand-

ing Mott physics and quantum magnetism.
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Low-temperature heat capacity (Cp) for EtMe3Sb and Et2Me2Sb salts. The main graph shows Cp T
!1 versus

T2 plots of the heat capacity. The inset shows a Cp T
!1 versus T2 plot around a broad hump structure for the

EtMe3Sb salt.
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Specific Heat

• C ~ γT indicates gapless behavior with 
large density of statesLETTERS
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Figure 2 Low-temperature heat capacities of κ-(BEDT-TTF)2Cu2(CN)3. a,b, Data obtained for two samples under magnetic fields up to 8 T in CpT−1 versus T 2 plots.
b contains the data of the typical antiferromagnetic insulators κ-(BEDT-TTF)2Cu[N(CN)2]Cl, deuterated κ-(BEDT-TTF)2Cu[N(CN)2]Br and β�-(BEDT-TTF)2ICl2 for comparison.
The existence of a T-linear contribution even in the insulating state of κ-(BEDT-TTF)2Cu2(CN)3 is clearly observed.

magnetic resonance (NMR) and static susceptibility measurements,

they observed no static order down to 30 mK and concluded that

the spins form a kind of liquid state. The likelihood that a spin-

liquid model is appropriate is strengthened by the prediction of

the resonating-valence-bond (RVB) model of large entropy at low

temperatures and a possible temperature- (T-) linear term due

to the spinon density of states in the heat capacity
3,4

. The heat

capacity is considered as a very sensitive low-energy spectroscopic

method for investigating the low-energy excitations from the

ground state. We can explore a reliable discussion on what kind of

ground state is realized through the entropy with absolute precision

and without any external fields. In this respect, thermodynamic

studies at temperatures as low as possible are necessary and

required for demonstrating the quantum spin-liquid character for

this material.

In Fig. 1, we show the temperature dependence of

the heat capacity of κ-(BEDT-TTF)2Cu2(CN)
3

and other

κ-type BEDT-TTF salts. κ-(BEDT-TTF)2Cu(NCS)
2

is a

superconductor with a transition temperature (Tc) of 9.4 K.

κ-(BEDT-TTF)2Cu[N(CN)
2
]Cl is a Mott insulator with an

antiferromagnetically ordered ground state below the Néel

temperature TN = 27 K. Reflecting the same type of donor

arrangement, the temperature dependencies of the lattice heat

capacities of the samples are similar. The data for another

Mott insulating compound, β�
-(BEDT-TTF)2ICl2, which gives

the highest Tc of 14.2 K among organic superconductors under

an applied pressure of 8.2 GPa (ref. 14), are also shown for

comparison. A slight difference in the lattice contribution

is observed, attributable to the difference of crystal packing,

but the overall temperature dependence resembles that of

the κ-type compounds. Although the overall tendency of the

lattice heat capacity is similar, it should be emphasized that

κ-(BEDT-TTF)2Cu2(CN)
3

shows large heat capacities at low

temperatures as compared with typical Mott-insulating samples.

This fact demonstrates that the spin system retains large entropy

even at low temperatures and is free from ordering owing to the

existence of the frustration.

The temperature dependence of the heat capacity of

κ-(BEDT-TTF)2Cu2(CN)
3

is shown in a Cp T−1
versus T plot

in the inset of Fig. 1. We also show data obtained under an

external magnetic field of 8 T applied perpendicular to the plane,

demonstrating no drastic difference from the 0 T data over the

whole temperature range in the figure. There is no sharp thermal

anomaly indicative of long-range magnetic ordering. This is

consistent with previous NMR experiments
13

. The data at low

temperatures below 2.5 K, shown in Fig. 2, clearly verify the

existence of a linearly temperature-dependent term (the γ term),

even in the insulating salt. The magnitude of γ is estimated at

20 ± 5 mJ K
−2

mol
−1

from the linear extrapolation of the Cp T−1

versus T 2
plot down to T =0 K. However, the low-temperature data

show an appreciable sample dependence. Figure 2a,b shows data for

different samples, (a) and (b), respectively. In the low-temperature

region, sample (a) shows a curious structure in addition to the

finite γ term, which is somewhat field dependent. However, Fig. 2b

does not show such behaviour. The magnetic field dependence seen

in sample (a) is attributable to a possible paramagnetic impurity

and seems to be extrinsic. In fact, the application of a magnetic

field induces a kind of Schottky contribution, which is attributed

to a magnetic impurity of less than 0.5%. The origin of this

contribution is considered to be Cu
2+

contamination in the sample

preparation, as reported by Komatsu et al.15
. We measured several

other samples and found that the data of the better-quality samples

converge to those shown in Fig. 2b, with a small field-dependent

contribution. It should be noted that these samples still possess

a finite Cp T−1
value of about 15 mJ K

−2
mol

−1
, as shown by the

extrapolation of the data down to T = 0 K. The existence of the γ
term in the present insulating state is intrinsic.

The well known Mott insulators κ-(BEDT-TTF)2X

(X = Cu[N(CN)2]Cl, deuterated Cu[N(CN)2]Br) and

β�
-(BEDT-TTF)2ICl2 with three-dimensional antiferromagnetic

ordering show a vanishing γ value, as shown in Fig. 2b

(ref. 16). It is evident that the low-temperature heat capacity of

κ-(BEDT-TTF)2Cu2(CN)
3

is extraordinarily large for an insulating

system. A γ value of the present order (10
1–1.5

mJ K
−2

mol
−1) is

expected, for example, in spin-wave excitations in one-dimensional

antiferromagnetic spin systems with intra-chain couplings of

J/kB = 100–200 K or metallic systems with continuous excitations

around the Fermi surface. However, these are obviously very

different systems from the present two-dimensional insulating

materials. Gapless excitations giving a T-linear contribution to the

460 nature physics VOL 4 JUNE 2008 www.nature.com/naturephysics

S. Yamashita et al, 2008
is observed around 3 K. This corresponds to the kink of 1/T1 in

13C NMR in the same temper-
ature region, and indicates a possibility of crossover phenomena to the spin liquid state.

Figure 16a shows temperature dependence of thermal conductivity (107). Compared with

the Et2Me2Sb salt, the EtMe3Sb salt shows enhanced thermal conductivity, which indicates that

spin-mediated contribution is added to the phonon contribution. Temperature dependence of

the thermal conductivity has a peak structure around 1 K (Figure 16a inset). Thermal conduc-

tivity of the EtMe3Sb salt also shows a T-linear term, indicating gapless excitation from the

ground state. This is markedly different from the case of k-(ET)2Cu2(CN)3.

Field dependence of thermal conductivity of the EtMe3Sb salt, however, suggests another kind
of excitation (Figure 16b). A steep increase above approximately 2 T is observed below 1 K,

which implies that some spin-gap-like excitations are present at low temperatures, along with the

gapless excitations indicated by the T-linear term. At present, there are two possible scenarios:

1. In terms of coexistence of the gapless and gapped excitations (108), the magnetic excitations are
separated from the ground state by a spin gap, which is filled with nonmagnetic excitations.

2. In terms of a possible nodal gap structure in the spinon Fermi surface, the spin-gap-like

behavior is attributed to the pairing gap formation, and the finite residual T-linear term

stems from the zero-energy density of states similar to the disorder-induced normal fluid in

d-wave superconductors (72).

Although there remain many open questions, the unusual bipartite nature of elementary excita-

tions in the quantum spin liquid state places the EtMe3Sb salt in a key position for understand-

ing Mott physics and quantum magnetism.
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Low-temperature heat capacity (Cp) for EtMe3Sb and Et2Me2Sb salts. The main graph shows Cp T
!1 versus

T2 plots of the heat capacity. The inset shows a Cp T
!1 versus T2 plot around a broad hump structure for the

EtMe3Sb salt.
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γCu ~ 0.7 !!
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M. Yamashita et al, 2010

Thermal conductivity
• Huge linear thermal 

conductivity indicates 
the gapless excitations 
are propagating, at least 
in dmit

• Estimate for a metal 
would correspond to a 
mean free path l ~ 1 μm 
≈1000 a !

Similar to expectations for spinon Fermi surface
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Challenges: experiment

• Quantum order of the ground state is 
intrinsically non-local: not visible to local or 
spatially averaged probes

• Signatures of quantum order are mainly in 
the excitations

• Can we probe them directly?

44



Neutron scattering

• In a quantum spin liquid, the elementary 
spin excitations are fractional, S=1/2 spinons

• Most of the information is in the 
continuum!

neutron

spinon S=1/2

K,Ω 

K-k,Ω -ω

k,ω
magnon S=1

k-k’,ω-ω’

k’,ω’

broad peak with 
ω=ε(k’)+ε(k-k’)
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Cs2CuCl4
• Proof of principle: 1d spinons

R. Coldea, 2000

Oleg Starykh Masanori 
Kohno
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Cs2CuCl4
• Proof of principle: 1d spinons

R. Coldea, 2000

Oleg Starykh Masanori 
Kohno
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Spinon interactions
• For each k, spinons may be bound or not

  Curves: 4-spinon theory w/ experimental resolution

Convincing understand required quantitative theory
47



Herbertsmithite

• S=1/2 kagome material does not order to 
50mK with exchange J ~ 200K
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Spin Orbit

“simple” 
materials TIs, SO-semimetals

strong SO Mott 
insulators

e-  l
oc

al
iz

at
io

n

spin-orbit coupling

“traditional” 
Mott insulators

U/t
QSLs here?

Na4Ir3O8

Ba2YMoO6

Yb2Ti2O7

Pr2Zr2O7

Na2IrO3

quantum spin 
ices
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Spin ice

• Spins in Ho2Ti2O7, Dy2Ti2O7 have dominant 
NN Ising coupling Jzz enforcing classical 
2in-2out “ice rules” for T < few K

H ≈ Jzz

�

�ij�

S
z
i S

z
j
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Spin ice

�∇ ·�b = 0

�S ∼ �b

artificial magnetostatics: spins map to field lines

• Spins in Ho2Ti2O7, Dy2Ti2O7 have dominant 
NN Ising coupling Jzz enforcing classical 
2in-2out “ice rules” for T< few K
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Spin ice

magnetic monopoles 
behave like diffusing 

ions in a 
polyelectrolyte

T. Fennell et al, 2009

pinch 
points

�∇ ·�b = 0

expt

NATURE PHYSICS DOI: 10.1038/NPHYS1227 LETTERS

a

b

Figure 1 | Spin-ice structure and emergence of monopoles. a, The
magnetic ions (Ho3+ or Dy3+) lie on the sites of the pyrochlore lattice and
are constrained to the bonds of the dual diamond lattice (dashed lines).
Local topological excitations 3 in–1 out or 3 out–1 in correspond to magnetic
monopoles with positive (blue sphere) or negative (red sphere) charges
respectively. b, The diamond lattice provides the skeleton for the network
of Dirac strings with the position of the monopole restricted to the vertices.
The orientation of the Dirac strings shows the direction of the local field
lines in H.

anArrhenius law τ =τ0 exp(2 Jeff/kBT ), as shownby the red curve in
Fig. 2. The timescale τ0 is fixed by fitting to the experimental time
at 4 K with Jeff = 1.11K, the value estimated for Dy2Ti207 (ref. 7).
2 Jeff is the energy cost of a single, free topological defect in the
nearest-neighbour approximation and is half that for a single spin
flip. The calculation fits the data over the low-temperature part
of the quasi-plateau region, where one expects a significant defect
concentration without any double defects (4-in or 4-out), and gives
surprisingly good qualitative agreement at lower temperature, as
the concentration decreases. Although still in the tunnelling regime,
the plateau region corresponds to high temperature for the effective
Ising system. Good agreement here provides a stringent test and any

Temperature (K)

1

0 3 6 9 12 15 18
τ

(s
)

10¬4

10¬3

10¬2

10¬2

10¬1 10¬1

1

0 1 2 3

Figure 2 | Relaxation timescales τ in Dy2Ti2O7: experiment and
simulation. The experimental data (crosses) are from Snyder et al.3. The
Arrhenius law (red line) represents the free diffusion of topological defects
in the nearest-neighbour model. The relaxation timescale of the Dirac
string network driven by Metropolis dynamics of magnetic monopoles has
been obtained for fixed chemical potential (pink filled triangles) and with µ

varying slowly to match the defect concentration in dipolar spin ice (blue
filled circles). The temperature scale is fixed without any free parameters.
Inset: The same data shown in the low-temperature region.

theory not fitting must be discarded. The above expression clearly
does a good job, enabling us to equate τ0 with the microscopic
tunnelling time. This test therefore already provides very strong
evidence for the fractionalization ofmagnetic charge2 and the diffu-
sion of unconfined particles.However, this (or any other) Arrhenius
function ultimately fails, underestimating the timescale at very low
temperature: although it is possible to fit the data reasonably below
2K by a single exponential function by varying the barrier height,
simultaneous agreement along the plateau and at lower temperature
is impossible. The role of the missing Coulomb interaction is there-
fore clear: although non-confining, it must considerably increase
the relaxation timescale by modifying the defect concentration and
slowing downdiffusion through the creation of locally boundpairs.

We have tested this idea by directly simulating a Coulomb gas of
magnetically charged particles (monopoles), in the grand canonical
ensemble, occupying the sites of the diamond lattice. The magnetic
charge is taken as qi = ±q. In the grand canonical ensemble, the
chemical potential is an independent variable, of which the value in
the correspondingmagnetic experiment is unknown. In a first series
of simulations, we have estimated it numerically by calculating
the difference between the Coulomb energy gained by creating
a pair of neighbouring magnetic monopoles and that required
to produce a pair of topological defects in the dipolar spin-ice
model, with parameters taken from ref. 7, giving a configurationally
averaged estimate µ/kB = 8.92K. In a second series of simulations,
µ was taken as the value required to reproduce the same defect
concentration as in a simulation of dipolar spin ice at temperature
T . Here, µ varied only by 3%, with the same mean value as
in the first series, showing that our procedure is consistent. The
chemical potential used is thus not a free parameter. As the
Coulomb interaction is long-ranged, we treat a finite system
using the Ewald summation method20,21. The monopoles hop
between nearest-neighbour sites through the Metropolis Monte
Carlo algorithm, giving diffusive dynamics, but with a further local
constraint: in the spin model a 3 in–1 out topological defect can
move at low energy cost by flipping one of the 3-in spins, the
direction of the out-spin being barred by an energy barrier of
8 Jeff. An isolated monopole can therefore hop to only 3 out of
4 of its nearest-neighbour sites, dictated by an oriented network
of constrained trajectories similar to the ensemble of classical

NATURE PHYSICS | VOL 5 | APRIL 2009 | www.nature.com/naturephysics 259

Jaubert and 
Holdsworth

Castelnovo 
et al, 2008
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Yb2Ti2O7

• INS: spin waves with bandwidth ~ 1meV ~ 
10K!

• indicates ballistic quantum spin dynamics

K.A. Ross et al (2009,2011)
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probably the most studied, followed by the zirconates,
but many are still poorly represented in the literature.
Both the titanate and zirconate pyrochlores were first
reported by Roth !1956". Since then, over 1000 papers
have been published on the two families.

C. Metal-insulator transitions in the oxide pyrochlores

Two types of metal-insulator !MI" transitions occur in
the oxide pyrochlore family. First are those that, as a
function of a thermodynamic variable !e.g., temperature,
magnetic field, or pressure", change their transport prop-
erties, for example, Tl2Mn2O7 !Fujinaka et al., 1979".
Second, there is the series of compounds where the
room temperature character changes from metal to in-
sulator as the rare-earth ion changes, for example, the
molybdate !Greedan et al., 1986" or iridate series
!Yanagishima and Maeno, 2001". There appears to be
little controversy over the first class of MI transition;
however, for the second type the exact position of this
transition is a topic of debate. For example, in the mo-
lybdenum pyrochlore series, studies of their bulk prop-
erties have indicated a strong correlation between the
magnetism and electrical transport properties, i.e., in
early studies the ferromagnets were found to be metallic
while the paramagnets were insulating !Greedan et al.,
1987; Ali et al., 1989". Indeed, the dependence of the
lattice constant a0 on the A3+ radius showed a distinct
break at the MI boundary !see Fig. 7". In some subse-
quent studies, however, Gd2Mo2O7 is clearly insulating
!Cao et al., 1995; Kézsmárki et al., 2004". The initial stud-
ies were carried out on polycrystalline samples, pre-
pared between 1300 and 1400 °C and, in at least one
case, in a CO/CO2 “buffer gas” mixture which fixes the
oxygen partial pressure during synthesis !Greedan et al.,
1986". Several subsequent studies have used single crys-
tals grown by various methods above 1800 °C, including
melt and floating zone growths !Raju and Gougeon,
1995; Moritomo et al., 2001; Kézsmárki et al., 2004".

While the polycrystalline samples have been fairly well
characterized, including elemental analysis, thermal
gravimetric weight gain and measurement of the cubic
lattice constant a0, this is less true of the single crystals.
The differences between polycrystalline and single-
crystalline samples can be monitored most simply using
the unit cell constant as shown in Fig. 8 in which unpub-
lished data !Raju and Gougeon, 1995" for a selection of
single crystals of Gd2Mo2O7 are plotted. Note that as a0
increases the samples become more insulating. In all
cases, a0 for the crystals exceeds that for the metallic,
polycrystalline sample which is 10.337!1" Å. From accu-
rate structural data for the powders and single crystals, it
has been determined that the increase in a0 correlates
with an increase in the Mo-O distance as shown in Fig. 8.
The most likely origin of this systematic increase is the
substitution of the larger Mo3+ for Mo4+ which can arise
from oxygen deficiency in the crystals, resulting in the
formula Gd2Mo2−2x

4+Mo2x
3+O7−x. Note that other defect

mechanisms, such as vacancies on either the A or Mo

Possible A-site elements
and B site elements

FIG. 6. !Color online" Ele-
ments known to produce the
!3+ ,4+ " cubic pyrochlore ox-
ide phase.

A3+ radius (Å))

C
e
ll
C
o
n
s
ta
n
t
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Insulating

Spin-Glass

Metal

Ferro

FIG. 7. Variation in unit cell constant and physical properties
of the series A2Mo2O7 with the A3+ radius. From Ali et al.,
1989.

63Gardner, Gingras, and Greedan: Magnetic pyrochlore oxides

Rev. Mod. Phys., Vol. 82, No. 1, January–March 2010

Yb2Ti2O7

• INS: spin waves with bandwidth ~ 1meV ~ 
10K!

• indicates ballistic quantum spin dynamics

• Other quantum pyrochlores:

• Er2Ti2O7, Tb2Ti2O7, Pr2Zr2O7, ...spinels?

K.A. Ross et al (2009,2011)
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Yb2Ti2O7

• Complete phenomenological Hamiltonian 
extracted from INS with B=5T

K. Ross, L. Savary, B. 
Gaulin, and LB, PRX 
1, 021002 (2011)
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A flurry of recen
t theoreti

cal and
experim

ental wo
rk has highligh

ted exotic physics
in the clas-

sical dip
olar spin ice compounds,

Ho2Ti2O7 and Dy2Ti2O7, whi
ch have been shown to exhibit

an

emergent “artifici
al magnetost

atics”, m
anifestin

g as Coulom
bic diffuse spin correlat

ions and parti-

cles behavin
g as diffusive

“magnetic
monopole

s”. Here we discuss
the related

material Y
b2Ti2O7,

and extract
its full set

of Hamiltonian
parameters from high field inelastic

neutron
scatterin

g ex-

periments. These results
show that Yb2Ti2O7 is in fact a highly quantum

analog
of spin ice.

Furtherm
ore we show that the

Hamiltonian
may support

a Coulom
bic quantum

spin liquid ground

state in low field, wh
ich could explain

some puzzling
features

in prior ex
periments. Th

is is the
first

potentia
l sightin

g of a quantum
spin liquid state in a material i

n which the spin Hamiltonian
is

quantita
tively known,

and opens th
e door to

a wide range of fascin
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Fluctuations

• Comparison with mean field theory fails 
badly at low field
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Model Check?

• Zero parameter fit to intermediate 
temperature specific heat!

3

FIG. 2: Specific heat, C(T ), per mole of Yb for the model
parameters in Ref. [18], in units of the Boltzmann constant
kB, calculated via NLC (up to 4th order NLC together with
Euler extrapolations) are compared with experimental data
for Yb2Ti2O7. The black circles are data from Ref. [27].

order in λ, only Jz±, by far the largest quantum term
for YbTO, leads to a degeneracy-lifting classical poten-
tial for different spin-ice configurations. It amounts to
a fluctuation-induced ferromagnetic exchange constant
J3 ≡ −3λ2J2

z±/Jzz [25] between shortest distance spins
on the same tetrahedral sublattice that share a neigh-
bor [35]. It leads to the selection of a q = 0 long-range
ordered ground state in which all tetrahedra are in the
same configuration and the spins develop a small ferro-
magnetic moment along one of the 〈100〉 cubic directions.
This q = 0 ferrimagnet (FM) lacks the Coulombic physics
originally present in the Jzz-only spin ice model [36].
To calculate C(T ) and S(T ) in the perturbative regime

at low T , we turn to classical loop Monte Carlo simula-
tions [37] of the J3 − Jzz model [32]. These reveal a
very sharp lower temperature peak signalling a first or-
der phase transition to a q = 0 state (see Fig. S5 [32]).
Excited states in the perturbative regime: spinons and

strings – A surprise of the perturbative treatment is that,
while the ground state is classical, the spin-flip excita-
tions remain non-trivial and of quantum nature. This is
because, once a spin is flipped in a spin-ice state, creating
a spinon/antispinon pair [11], the pair can hop through
Jz± acting through first order degenerate perturbation
theory. Thus, the dispersion in the excited state man-
ifold is λJz±, much larger than the dispersion within
the low-energy manifold of spin ice states, which is only
λ2J2

z±/Jzz.
A sketch of a spinon/antispinon pair is shown in Fig.

1b and 1c. Note that only spins inside the tetrahedron
“already” containing spinons are flippable in first order

FIG. 3: Entropy, S(T ), per mole of Yb, in units kB following
the methods described in the caption of Fig. 2. The black
circles are obtained by integrating the data from Ref. [27]
excluding the nuclear (hyperfine) contribution. The Pauling
entropy SP ∼

kB

2
ln 3

2
is shown as a horizontal line. The inset

shows S(T ) in the perturbative regime with J3/Jzz = −0.001.
A clear plateau at S(T ) ≈ SP is seen, followed at lower T by
a precipitous drop of S(T ) (i.e. latent heat) accompanying
the transition to long range FM order [32].

degenerate perturbation theory. Hence, the connecting
string of misaligned spins can only fluctuate by higher
order processes involving closed loops with alternating
in-out spins [26]. Thus the renormalized string tension
per unit length remains finite and of order J3. One can
estimate the typical string length as the length, ls, at
which the cost of the string becomes comparable to the
delocalization energy of the spinon/antispinon pair. The
string energy per unit length goes as ∼ J3 ∼ λ2, whereas
the delocalization energy (spinon bandwidth) goes as λ.
This leads to ls scaling as 1/λ, which diverges as λ → 0.
A detailed theory of neutron scattering in this ferri-

magnetic phase is not attempted here, but we anticipate
it to follow the proposal of Ref. [26]. At temperatures
above the transition to the q = 0 long-range ordered
state, the system explores the classical two-in/two-out
spin ice states and should display singularities (pinch
points, PPs) in neutron scattering [36] rounded off by
the finite density of thermally excited spinon/antispinon
defects [11, 36]. While the system has thermally smeared
PPs above the ferrimagnetic transition and no static PPs
well below the transition, it may display some remnant
of PPs in the spin dynamics at higher energies. These
interesting issues deserve further attention.
Beyond the λ ' 1 regime – Why is the transition

temperature of YbTO so low? As discussed by Ross et
al. [18], the low T peak in C(T ) is at a temperature lower
than mean-field theory by an order of magnitude. Com-

Applegate et al, 
arXiv:1203.4569
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spin liquid?
[110] magnetic Field-Induced   

Long Range Order in Yb2Ti2O7 

Sharp spin waves at all wavevectors indicate that the system has entered 

a long range ordered phase induced by modest [110] magnetic fields 

• Spin waves appear absent in low field, but 
emerge for B>0.5T

• a low field QSL?

K.A. Ross et al (2009)
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Yb2Ti2O7 controversy

• Is low-T phase ferromagnetic?

• Majority: no...but

• Y. Yasui group: yes

• Likely this is due to strong sample dependence

5
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FIG. 4: Energy dependence of the diffuse scattering above
and below Tc, both on and off the rod of scattering. Thick
lines are guides to the eye. Inset: range of binning for the
on- and off-rod positions. On-rod: HHH=[1.2,1.6], HH-2H=
[−0.1, 0.1]. Off-rod: HHH=[1.2,1.6], HH-2H=[0.3,0.5].

magnetic field of 5T makes it clear that although diffuse
scattering is organized into rods of scattering along [111],
there is appreciable diffuse, inelastic scattering through-
out the Brillouin zone. This “off-rod” scattering has a
relatively flat energy dependence out to 0.6meV. Fur-
thermore, unlike the rod diffuse scattering along [111],
the “off-rod” diffuse scattering shows no temperature
dependence between 500mK and 30mK. This implies
that a dynamic and essentially uncorrelated component
of the spins persists in the zero-field ground state. A
similar situation is encountered in the classical spin ice
Ho2Ti2O7, which retains appreciable elastic diffuse scat-
tering throughout the Brillouin zone at very low temper-
atures, indicating static zero-field spin correlations that
encapsulate at most a single tetrahedron.5

C. Specific Heat

The specific heat provides insight into the extent to
which the entropy changes at temperatures relevant to
the diffuse scattering. Figure 5 shows specific heat re-
sults of poly- and single-crystalline samples, including
the sample from the neutron scattering study. There is
significant sample dependence of the low temperature
Cp anomaly, with at least one feature occurring between
150mK and 265mK in all samples. The sharpest anomaly
is observed in our powder sample, at a temperature that
seems to be the upper limit for all others, T=265mK.
Significantly, our powder Cp peak is sharper by an order
of magnitude, and occurs at a higher temperature than
both the original powder Cp data by Blöte et al, as well

FIG. 5: Examples of low temperature specific heat in
Yb2Ti2O7. Significant sample dependence is observed in
both powders and single-crystals. The powder sample pre-
pared at McMaster University shows the highest temperature
(265mK) and sharpest anomaly. The neutron scattering sam-
ple, B, shows a sharp peak at 265mK similar to the powder,
and a broad, low temperature feature similar to crystal A.
None of the samples studied had any feature at 400mK.

as the powder Cp data by Dalmas de Réotier et al, which
displays an anomaly at 250mK with a peak height of ∼9
J/K mol Yb.20 The neutron scattering sample B exhibits
a sharp peak at 265mK, but also has a broad feature as
seen in sample A.

The specific heat does not show any indication of a
feature at 400mK. This indicates that the buildup of 3D
correlations, as well as the small increase in transverse
correlation length, produces, at most, subtle changes
in the entropy. This could be another manifestation of
the persistently short correlation lengths at all temper-
atures. However, an important question remains - what
is the physical significance of the Cp features at 265mK
and 200mK observed in the neutron scattering crystal?
Drawing on the large change in spin fluctuation fre-
quency observed by Hodges et al at 240mK in their pow-
der sample,16 we should expect a change in dynamics at
these temperatures. As discussed in relation to Fig. 4,
we do observe a change in dynamics between 500mK and
30mK but the intermediate temperature regime awaits

3

Yb3+ (16d)

Ti4+ (16c)

Yb3+ (16c)

FIG. 1: The pyrochlore lattice, showing only cation posi-

tions. The stuffed pyrochlores include some RE cations (mag-

netic Yb
3+

) on the transition metal (non-magnetic Ti
4+

) site.

Here, this extra rare earth is shown in yellow. This introduces

extra near-neighbor exchange at some RE sites.

this material. In the end, our goal should be to be able
to characterize the level of such defects, which will allow
us to systematically study their effects, since we must
accept that real materials are never ideal.

With this goal in mind, we performed powder neutron
diffraction experiments on two samples of Yb2Ti2O7.
One sample is a sintered powder prepared identically to
the starting material used in the OFZ growth of the sin-
gle crystal. Another powder sample prepared in this way
has been shown to have the sharpest and highest tem-
perature specific heat anomaly reported in the literature
to date (this is reproduced in Fig. 6).18 The second sam-
ple is a single crystal grown by the OFZ method and
then crushed (see Section II for details of the growth
conditions). We find, using Rietveld refinements of the
neutron powder diffraction data, that the crushed sin-
gle crystal is accurately modeled by full occupation of
Yb3+ ions on the Yb3+ site, and by a 2.3% substitution
of Yb3+ ions on the Ti4+ sites.

It is well-known that the R2Ti2O7 pyrochlore materi-
als can accommodate extra (magnetic) R3+ ions on the
(non-magnetic) Ti4+ sites, leading to what is known as
a “stuffed” pyrochlore structure.30,31 The Ti sites them-
selves form a pyrochlore lattice which is interpenetrat-
ing with the R sublattice (see Figure 1), and the nearest
neighbor (n. n.) distance between Ti and R sublattices
is equal to the n. n. distance between R atoms; approx-
imately 3.6 Å.

Stuffing introduces an extra n.n. bond for some RE
ions which has different exchange pathway due to dif-
ferent oxygen environment, and thus may be of dif-

ferent strength or even sign. This spatially random
addition of a small number of exchange interactions,
combined with the frustration already inherent in the
system, could conceivably lead to a spin glass state.
This is consistent with the observation of broad humps
in the magnetic specific heat in some of the sin-
gle crystal samples of Yb2Ti2O7,18,20 the formation of
short range correlations with reduced fluctuation time
scales,16,18 and observed long-relaxation times13 with
multiple timescales of relaxation,16 though no frequency-
dependent ac susceptibility is reported at these low tem-
peratures which could conclusively identify a spin glass
transition. We note that the frustrated garnet system
Gd3Ga5O12 (GGG) is also naturally and unavoidably
”stuffed” with 1-2% excess Gd on the Ga sites during
crystal growth. This may also be the cause of the low-
temperature unconventional glassiness that is observed
in that system.32,33

There are reports of the magnetic properties of some
stuffed rare-earth titanates with relatively high stuffing
levels. The stuffed spin ices, Ho2(Ti2−xHox)O7−x/2 and
Dy2(Ti2−xDyx)O7−x/2 with x = 0.3 (i.e. 15% stuffing),
show marked changes in spin dynamics compared to the
unstuffed compounds, including the introduction of mul-
tiple timescales for relaxation,34,35 and slower but more
persistent dynamics.34,36 There is evidence for a change
in n.n. exchange interactions, from ferromagnetic (FM)
in the unstuffed spin ices, to anti-ferromagnetic (AFM)
in the stuffed spin ices with x = 0.3.34–36

In the Tb-based pyrochlores, a different type of dis-
order on the transition metal site has been investigated.
Tb2Sn2O7 is known to reach an AFM ordered state be-
low TN = 850mK, in contrast to the isostructural com-
pound Tb2Ti2O7 which remains dynamic to the lowest
measurable temperatures. Dahlberg et al have shown
that 5% substitution of Ti for Sn completely removes
the transition to long range magnetic order.37 This ex-
ample shows that the rare-earth pyrochlores can be very
sensitive to small concentrations of defects on the non-
magnetic sublattice, even when these substitutions are
non-magnetic in nature.

The structure of several stuffed rare earth titanates
has been studied in detail by Lau et al,30,31 who found
that for lightly stuffed compounds, one observes on av-
erage a pyrohclore structure. At higher levels of stuffing
(x = 0.3) for small RE ions such as Yb3+, one observes
a transition to defect fluorite structure with short range
correlated pyrochlore superstructure.30 The lattice spac-
ing of the cubic unit cell increases linearly with stuff-
ing level, and has been characterized for several stuffed
rare earth titanates including Yb2(Ti2−xYbx)O7−x/2.

30

We have drawn on this previous work to identify signa-
tures in our data which indicate that the stuffed model
is appropriate to the crushed crystal only, and quantify
it using Rietveld refinements. We further suggest that
measurement of the room temperature lattice parame-

Figure 3.

26

LJ Chang et al, 2011 (pub2012)

Yb2+xTi2-xO7KA Ross et al, 2012

“Stuffed” quantum 
spin ice?
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T=0 Phase Diagram

J±/Jzz

J++/Jzz

Jz±/Jzz
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T=0 Phase Diagram

J±/Jzz

J++/Jzz

Jz±/Jzz

QSL

spin 
ice

U(1) QSL = emergent compact QED
M. Hermele, MPA Fisher, L. Balents, 2004

A. Banerjee et al, 2008 
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Excitations

• Where spin ice realizes “emergent 
magnetostatics”, the U(1) QSL is “emergent 
compact quantum electrodynamics”

• coherent propagating monopoles = 
“spinons”

• dual (electric) monopoles 

• artificial photon: gapless!

• Consistent with observed continuum?
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Emergent “Photon”

• Some QSLs may have sharp collective 
excitations, such an “emergent photon” in a 
3d U(1) QSL 3

FIG. 2: (Color online). An illustration of the simplest tunnelling
process between different spin-ice configurations. The ice rules dic-
tate that each tetrahedron within the lattice has two spins which point
“in”, and two which point “out”. Where these spins form a closed
loop on a hexagonal plaquette — here shaded red — the sense of
each spin within the loop can be reversed to give a new configuration
which also obeys the ice rules.

where

δHµ = µ
∑

!

[

|!〉〈! |+ |"〉〈" |
]

. (5)

This makes it possible to fine-tune the model to an exactly sol-
uble Rokhsar-Kivelson (RK) point g = µ, where the ground
state wave is an equally-weighted sum of all possible ice
(dimer) configurations46. The authors then argued, by con-
tinuity, that a quantum liquid phase would occur for a finite
range of parameters µ # 1 bordering on the RK point43,44.
The most striking feature of this quantum liquid is “light”.

The ice rules constraint Eq. (1) is most conveniently resolved
as

B(r) = ∇×A(r) , (6)

and the new feature which enters where there is tunnelling be-
tween ice configurations is the fluctuation in time of the gauge
field A(r). In conventional electromagnetism, this gives rise
to an electric field

E(r) = −
∂A(r)

∂t
. (7)

The bold conjecture of Moessner and Sondhi43, put on a mi-
croscopic footing by Hermele et al.44, and Castro-Neto et
al.45, was that tunnelling between dimer (ice) configurations
could give rise to a state governed by the Maxwell action

SMaxwell =
1

8π

∫

dtd3r

[

E(r)2 − c2B(r)2
]

(8)

Such a state would automatically support linearly-dispersing
transverse excitations of the gauge fieldA— “photons”, with
a speed of “light” c. On the lattice, such a magnetic photon
would have a dispersion ω(k) of the form illustrated in Fig. 3.

FIG. 3: (Color online). Ghostly magnetic “photon” excitation as
it might appear in an inelastic neutron scattering experiment on a
quantum spin ice realising a quantum ice ground state. The photon
dispersion ω(k) is taken from lattice gauge theory developed in Sec-
tion II C of this paper, convoluted with a Gaussian representing the
finite energy resolution of the instrument. The intensity of scattering
vanishes as I ∝ ω(k) at low energies.

Moreover, the fact that the spins now fluctuate in time, as
well as space, introduces an additional power of k in spin cor-
relations44,45,

〈Sµ(−k)Sν(k)〉quantum ∝ k

(

δµν −
kµkν
k2

)

, (9)

which serves to eliminate the pinch points seen in neutron
scattering [Fig. 1(b)]47 . More formally, this theory is a com-
pact, frustrated U(1) gauge theory on a diamond lattice, and
we will refer to the liquid state it describes as the quantum
U(1) liquid below.
The degree of fine-tuning involved in these arguments

might seem to render them of purely academic interest. How-
ever the idea of a quantum U(1) liquid found strong support
in finite-temperature quantum Monte Carlo simulations of an
ice-type model of frustrated charge order on the pyrochlore
lattice48. Subsequently, it has proved possible to determine
the ground state phase diagrams of both the quantum dimer
model on diamond lattice, and the quantum ice model of Her-
mele et al., from zero-temperature quantumMonte Carlo sim-
ulations47,49,50. Both models contains extended regions of a
quantum liquid phase, connecting to the RK point. In both
cases, this quantum liquid has low energy excitations which
are described by a lattice analogue of quantum electromag-
netism47,49,50. Significantly, in the case of the quantum ice
model, this quantum liquid phase encompasses the “physical”
point of the model µ = 0, and so does not require any fine-
tuning [Fig. 4]47.
The theoretical possibility of a three-dimensional spin-

liquid state with excitations described by a lattice analogue
of quantum electromagnetism is now well-established. What
remains is to connect these ideas with experiments. The pur-
pose of this paper is therefore to set out predictions for the
correlations which would be measured in neutron scattering
experiments, if such a state were realised in a spin-ice ma-
terial. For concreteness, we work with the minimal lattice

O. Benton et al, 2012

Similar to a spin wave but:

• Is purely transverse
• Intensity vanishes as ω→0
• Has no anisotropy gap

+ gapped spinon continuum
L. Savary + LB, 2012
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T=0 Phase Diagram

J±/Jzz

J++/Jzz

Jz±/Jzz

QSL

non-perturbative approach?
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Slave rotor formulation

• Exact reformulation of Hamiltonian

• Meaning:

•      is gauge (monopole/spinon) charge

•               is spinon annihilation operator

Qa = (−1)a
�

i∈a

Sz
i

i
a

b

Qa

Φa = eiγa

S±
i = Φ†

aΦbs
±
ab

Sz
i = szab
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Slave rotor formulation

• Exact reformulation of Hamiltonian

• Gauge symmetry

•               play the role of gauge fields

Qa = (−1)a
�

i∈a

Sz
i

i
a

b

Φa → Φae
iθa

S±
i = Φ†

aΦbs
±
ab

Sz
i = szab

s±ab → s±abe
i(θa−θb)

s±ab = eiAab
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Gauge Theory
H =

�

r∈A,B

Jzz

2
Q

2
r

−J±

�
�

r∈B

�

µ>ν

�
Φ†

r−eµΦr−eν s
+
r,r−eµs

−
r,r−eν + h.c.

�
+

�

r∈A

�

µ>ν

�
Φ†

r+eµΦr+eν s
−
r,r+eµs

+
r,r+eν + h.c.

��

−Jz±





�

r∈A

�

µ �=ν

�
γ∗
µνΦ

†
rΦr+eν s

z
r,r+eµs

+
r,r+eν + h.c.

�
+

�

r∈B

�

µ �=ν

�
γ∗
µνΦ

†
r−eνΦrs

z
r,r−eµs

+
r,r−eν + h.c.

�





• Problem is exactly reformulated as a lattice 
compact abelian Higgs theory

• Can apply standard mean-field methods for 
lattice gauge theory (Wilson 1974...)
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Phase Diagram’

GENERIC QUANTUM SPIN ICE PHYSICAL REVIEW B 00, 004400 (2012)

Finally, to render the mean-field problem solvable, we439

replace the constraint |!r| = 1 by the softened constraint440

〈|!r|2〉 = 1, and implement the latter by including a Lagrange441

multiplier term for each sublattice into the action S!.442

Using this formulation, the mean-field Hamiltonian allows443

one to calculate 〈HQED〉 [Eq. (11)] and minimize this varia-444

tional energy. We found and compared several self-consistent445

solutions of the gMFT equations, which are subsets of the446

general Ansatz given above. First, we considered two limits447

allowing for pairing, or A-B sublattice mixing, but not both,448

(i) ξµ = 0, χ
A(B)
0 #= 0, χA(B)

µν #= 0, (30)

(ii) ξµ #= 0, χ
A(B)
0 = χA(B)

µν = 0. (31)

While self-consistent solutions may be found for both these449

cases, we find that the minimum-energy solutions always have450

either vanishing pairing/sublattice mixing (i.e., describe the451

U (1) QSL) or exhibit spinon condensation.452

However, both condensed solutions are unnatural, insofar453

as once a single ! field is condensed, all the expectation454

values χ
A/B
0 ,χ

A/B
i ,ξµ would be expected to be nonzero.455

Guided by the above cases, we found a self-consistent Ansatz456

where all these were allowed to be nonvanishing, with the457

relations χA
0 = χB

0 ,
∑

µ #=ν γµνχ
B
µν =

∑
µ #=ν γ ∗

µνχ
A
µν #= 0 and458

ξ0 = ξi = −ξj = −ξk #= 0, for {i,j,k} and permutation of459

{1,2,3}. This more general Ansatz describes both condensed460

and uncondensed states, and was found to capture all the461

physical minimum-energy solutions.462

2. Spinon condensation463

In the gMFT scheme used here, Higgs phases in which464

the single spinon field is condensed, 〈!r〉 #= 0, also occur.465

This may appear surprising since the single spinon field was466

not introduced explicitly as an order parameter [see Eqs. (13)467

and (14)]. Instead, spinon condensation occurs, as discussed468

in Ref. 15, via the same mechanism as does Bose-Einstein469

condensation in the noninteracting Bose gas. In particular,470

when a condensate is present, the Lagrange multiplier λ adjusts471

itself self-consistently so that the minimum energy spinon state472

lies, in the thermodynamic limit, at precisely zero energy.473

For large but finite volume, a nonintensive part of the λ474

leads to and controls the condensate, manifesting itself via475

off-diagonal long-range order in the spinon Green’s function.476

This is discussed in more detail in Appendix. Captured in this477

way, spinon condensation does not introduce any additional478

self-consistent variables, and only requires careful treatment479

of any zero energy modes and the infinite volume limit. This480

in turn means that the above Ansätze describe Higgs phases as481

well, for appropriate values of parameters.482

C. Gauge mean-field theory phase diagram483

We minimized the variational energy using the above484

Ansatz numerically (see Appendix for the formulation of the485

variational energy). In fact, the self-consistent gMFT equations486

are solved for any local minima of the variational energy, so487

it is sufficient to search for the global minimum of the latter.488

That determines the T = 0 phase diagram as a function of489

J±/Jzz > 0 and J±±/Jzz (we assume Jzz > 0 throughout).490

Note that by a canonical transformation, S± → ±iS±, we491

U 1 QSL AFQ

noncoplanar FQ

Spin Ice
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FIG. 3. Phase diagram of two dimensionless parameters J±/Jzz

vs J±±/Jzz. Four distinct phases exist: classical spin ice (at the origin),
U (1) QSL, AFQ, and FQ. (more details in the main context)

can always choose J±± > 0, without loss of generality. The 492

results are shown in Fig. 3. 493

The full phase diagram contains three distinct phases 494

in addition to the classical point corresponding to the 495

nearest-neighbor spin ice: a deconfined U (1) QSL phase and 496

two Higgs phases, corresponding to XY ferro-pseudospin 497

(antiferroquadrupolar) and antiferropseudospin (noncoplanar 498

ferroquadrupolar) orders. Unfortunately, the Z2 spin liquid 499

phase with nonzero pairing but a spinon gap is never 500

the minimum-energy solution. The QSL or Coulomb 501

phase occurs in the small J±,J±± region, consistent with 502

perturbative expectations. In this model, infinitesimal J± 503

and/or J±± interactions melt the classical spin ice, creating 504

a dynamical photon excitation and emergent quantum 505

electrodynamics. This phase is found to be more stable against 506

J±± than to Jz±, the latter having been studied already in 507

Ref. 15. 508

The Higgs or ordered phases merit some further description. 509

With increasing J±/Jzz but J±± = 0, the U (1) QSL phase 510

remains stable until J±
Jzz

|c ≈ 0.19, at which spinons start to 511

condense at a wave vector k0 ≡ 0 for both A and B sublattices. 512

This induces a classical XY order categorized in Table II and 513

has the ordering structure shown in Fig. 4(a). This phase has 514

already been obtained by a classical MF analysis,10 and in 515

gMFT for J±± = 0.15 From Eqs. (17) and (18), the spinon 516

condensate at k0 yields a ferroic ordering of the XY component 517

of pseudospins, for instance, given by 518

〈)Si〉 ≈
∣∣φk0

∣∣2
x̂i , (32)

for pseudospin on sublattice i. It spontaneously breaks the 519

threefold rotational symmetry while the twofold rotational 520

symmetries are preserved. This ferropseudospin ordering 521

structure is interpreted as an antiferroquadrupolar order for 522

Pr3+ case as is clear from Eq. (3) and the relation
∑3

i=0 x̂i = 0. 523

Namely, it produces an f -electron distribution shown in 524

Fig. 4(a). When J±± > 0 is sufficiently large and J± is small, 525

the QSL becomes unstable to a different Higgs phase, with 526

spinon condensation at k̃0 ≡ 2π (100) or the symmetry-related 527

points, on both A and B sublattices. Note that quantitatively 528

the QSL phase is wider in the J±± direction than in the J± one: 529

004400-7

• Non-Kramers ion: Jz±=0

• S± = quadrupolar operator
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Finally, to render the mean-field problem solvable, we439

replace the constraint |!r| = 1 by the softened constraint440

〈|!r|2〉 = 1, and implement the latter by including a Lagrange441

multiplier term for each sublattice into the action S!.442

Using this formulation, the mean-field Hamiltonian allows443

one to calculate 〈HQED〉 [Eq. (11)] and minimize this varia-444

tional energy. We found and compared several self-consistent445

solutions of the gMFT equations, which are subsets of the446

general Ansatz given above. First, we considered two limits447

allowing for pairing, or A-B sublattice mixing, but not both,448

(i) ξµ = 0, χ
A(B)
0 #= 0, χA(B)

µν #= 0, (30)

(ii) ξµ #= 0, χ
A(B)
0 = χA(B)

µν = 0. (31)

While self-consistent solutions may be found for both these449

cases, we find that the minimum-energy solutions always have450

either vanishing pairing/sublattice mixing (i.e., describe the451

U (1) QSL) or exhibit spinon condensation.452

However, both condensed solutions are unnatural, insofar453

as once a single ! field is condensed, all the expectation454

values χ
A/B
0 ,χ

A/B
i ,ξµ would be expected to be nonzero.455

Guided by the above cases, we found a self-consistent Ansatz456

where all these were allowed to be nonvanishing, with the457

relations χA
0 = χB

0 ,
∑

µ #=ν γµνχ
B
µν =

∑
µ #=ν γ ∗

µνχ
A
µν #= 0 and458

ξ0 = ξi = −ξj = −ξk #= 0, for {i,j,k} and permutation of459

{1,2,3}. This more general Ansatz describes both condensed460

and uncondensed states, and was found to capture all the461

physical minimum-energy solutions.462

2. Spinon condensation463

In the gMFT scheme used here, Higgs phases in which464

the single spinon field is condensed, 〈!r〉 #= 0, also occur.465

This may appear surprising since the single spinon field was466

not introduced explicitly as an order parameter [see Eqs. (13)467

and (14)]. Instead, spinon condensation occurs, as discussed468

in Ref. 15, via the same mechanism as does Bose-Einstein469

condensation in the noninteracting Bose gas. In particular,470

when a condensate is present, the Lagrange multiplier λ adjusts471

itself self-consistently so that the minimum energy spinon state472

lies, in the thermodynamic limit, at precisely zero energy.473

For large but finite volume, a nonintensive part of the λ474

leads to and controls the condensate, manifesting itself via475

off-diagonal long-range order in the spinon Green’s function.476

This is discussed in more detail in Appendix. Captured in this477

way, spinon condensation does not introduce any additional478

self-consistent variables, and only requires careful treatment479

of any zero energy modes and the infinite volume limit. This480

in turn means that the above Ansätze describe Higgs phases as481

well, for appropriate values of parameters.482

C. Gauge mean-field theory phase diagram483

We minimized the variational energy using the above484

Ansatz numerically (see Appendix for the formulation of the485

variational energy). In fact, the self-consistent gMFT equations486

are solved for any local minima of the variational energy, so487

it is sufficient to search for the global minimum of the latter.488

That determines the T = 0 phase diagram as a function of489

J±/Jzz > 0 and J±±/Jzz (we assume Jzz > 0 throughout).490

Note that by a canonical transformation, S± → ±iS±, we491
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FIG. 3. Phase diagram of two dimensionless parameters J±/Jzz

vs J±±/Jzz. Four distinct phases exist: classical spin ice (at the origin),
U (1) QSL, AFQ, and FQ. (more details in the main context)

can always choose J±± > 0, without loss of generality. The 492

results are shown in Fig. 3. 493

The full phase diagram contains three distinct phases 494

in addition to the classical point corresponding to the 495

nearest-neighbor spin ice: a deconfined U (1) QSL phase and 496

two Higgs phases, corresponding to XY ferro-pseudospin 497

(antiferroquadrupolar) and antiferropseudospin (noncoplanar 498

ferroquadrupolar) orders. Unfortunately, the Z2 spin liquid 499

phase with nonzero pairing but a spinon gap is never 500

the minimum-energy solution. The QSL or Coulomb 501

phase occurs in the small J±,J±± region, consistent with 502

perturbative expectations. In this model, infinitesimal J± 503

and/or J±± interactions melt the classical spin ice, creating 504

a dynamical photon excitation and emergent quantum 505

electrodynamics. This phase is found to be more stable against 506

J±± than to Jz±, the latter having been studied already in 507

Ref. 15. 508

The Higgs or ordered phases merit some further description. 509

With increasing J±/Jzz but J±± = 0, the U (1) QSL phase 510

remains stable until J±
Jzz

|c ≈ 0.19, at which spinons start to 511

condense at a wave vector k0 ≡ 0 for both A and B sublattices. 512

This induces a classical XY order categorized in Table II and 513

has the ordering structure shown in Fig. 4(a). This phase has 514

already been obtained by a classical MF analysis,10 and in 515

gMFT for J±± = 0.15 From Eqs. (17) and (18), the spinon 516

condensate at k0 yields a ferroic ordering of the XY component 517

of pseudospins, for instance, given by 518

〈)Si〉 ≈
∣∣φk0

∣∣2
x̂i , (32)

for pseudospin on sublattice i. It spontaneously breaks the 519

threefold rotational symmetry while the twofold rotational 520

symmetries are preserved. This ferropseudospin ordering 521

structure is interpreted as an antiferroquadrupolar order for 522

Pr3+ case as is clear from Eq. (3) and the relation
∑3

i=0 x̂i = 0. 523

Namely, it produces an f -electron distribution shown in 524

Fig. 4(a). When J±± > 0 is sufficiently large and J± is small, 525

the QSL becomes unstable to a different Higgs phase, with 526

spinon condensation at k̃0 ≡ 2π (100) or the symmetry-related 527

points, on both A and B sublattices. Note that quantitatively 528

the QSL phase is wider in the J±± direction than in the J± one: 529

004400-7

• J± < 0 (AF) may be relevant?

• much stabler QSL expected

QSL

J±
0.19-4.2

Q
SL
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Discovery?
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Higgs transition from a magnetic Coulomb liquid to a fer-
romagnet in Yb2Ti2O7

Lieh-Jeng Chang1,2, Shigeki Onoda3, Yixi Su4, Ying-Jer Kao5, Ku-Ding Tsuei6, Yukio Yasui7,8,

Kazuhisa Kakurai2 & Martin Richard Lees9.

1Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan,

2Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195,

Japan,

3Condensed Matter Theory Laboratory, RIKEN, Wako, Saitama 351-0198, Japan,
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In a class of frustrated magnets known as spin ice, magnetic monopoles emerge as classical

defects and interact via the magnetic Coulomb law. With quantum-mechanical interactions,

these magnetic charges are carried by fractionalised bosonic quasi-particles, spinons, which

1

July 4, 2012 Nat. Comm., Aug. 7 2012
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Higgs Transition?

• Not sure what it means

• They observe:

• transition is first order

• quasi-pinch points above Tc

Figure 1.

24

Figure 2.

25

T=0.3K

76



Possible picture

• Paramagnetic phase is 
somewhat like classical 
spin ice, T << Jzz

• Lots of residual entropy

• Can be a “catastrophic” 
collapse of QSL to gain 
the spin ice entropy

• Precisely this happens in 
gMFT: T>0 confinement
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Possible picture

• Paramagnetic phase is 
somewhat like classical 
spin ice, T << Jzz

• Lots of residual entropy

• Can be a “catastrophic” 
collapse of QSL to gain 
the spin ice entropy

• Precisely this happens in 
gMFT: T>0 confinement

picture of classical spin ice above 
Tc might explain both pinch 

points and order of transition
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Outlook on QSI?
Pros Cons

A substantial family of quantum Seff=1/2 
frustrated magnets

May be materials issues (but when are 
there not?)

Interactions can be measured Interactions are complicated

J~1K means can be manipulated by 
laboratory fields

May be a microkelvin problem to 
observe QSL?

Rich phase diagram
Perhaps hard to find material which hits 

a QSL state?

Detailed INS measurements possible.  
Photon could be directly observed

Tough test of theory!  and not so many 
single crystal materials available

We can expect many more experiments it makes me impatient!
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Directions

• Understand pyrochlores in intermediate 
correlation regime (iridates?)

• Metallic spin liquids and connection to 
heavy fermions

• Ties to QSI: Pr2Ir2O7?  

• Application of DMRG technology to more 
realistic models of 2d QSL materials
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Other QSLs?

A2IrO3: Kitaev 
model?

Na4Ir3O8: 
hyperkagomé QSL

Ba2YMoO6 : 
frustrated 

FCC lattice
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A future history of 
magnetism

tim
e sinan, ~200BC

Ferromagnetism 
documented in 
Greece, India, used in 
China 

~500BC:

1949AD:Antiferromagnetism 
proven experimentally

~2016AD:Conclusive experiments 
on quantum spin liquids?
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