

Classification of spin liquids

- Why classify?
- Long-term goal: develop general framework to understand states of quantum matter beyond Landau symmetry-breaking theory
- Shorter-term: sharp distinctions among various spin liquids

Types of spin liquids

- Gapless states ($\mathrm{d}=3$ Coulomb phases, gapless Z_{2} spin liquids, algebraic spin liquids, spinon Fermi surface)
- Gapped, topologically ordered states (e.g. gapped Z_{2} spin liquids)
- (Symmetry-protected topological phases.)

Program of this talk

Ingredients:

Local bosonic model (i.e. spin model)

Fixed topological order (focus on $d=2 \mathrm{Z}_{2}$ spin liquids)

Classify distinct phases with these ingredients

Symmetries (space group, time reversal, spin rotation)

- Will give a symmetry classification. (Not a full classification.)
- This means: classify states by how symmetry acts on the topological degrees of freedom.
- Two phases in different symmetry classes are different phases.
- Two phases in the same class may or may not be different phases.

Distinct types of quantum number fractionalization

Prior work: projective symmetry group (PSG) classification

- Consider e.g. $\mathrm{S}=1 / 2$ spin model, represent with $\mathrm{S}=1 / 2$ fermionic partons

Hilbert space

- Mean-field Hamiltonian: $H_{M F T}=\sum_{\left(r, r^{\prime}\right)}\left[t f_{r \alpha}^{\dagger} f_{r^{\prime} \alpha}+\Delta\left(f_{r \uparrow}^{\dagger} f_{r^{\prime} \downarrow}^{\dagger}+f_{r^{\prime} \uparrow}^{\dagger} f_{r \downarrow}^{\dagger}\right)+\cdots\right]$
- Symmetry: e.g. square lattice space group + time reversal + spin rotation.

Action of symmetry:

1. Non-trivial gauge transformations: $T_{x}: f_{r \alpha} \rightarrow e^{i \lambda_{r}} f_{r+\boldsymbol{x}, \alpha}$
2. Acts projectively: $T_{x} T_{y}=e^{i \phi} T_{y} T_{x}$

- Classify distinct ways symmetry can act, up to unitary (gauge) equivalence.
- Each such class is called a "PSG." Really, PSGs comprise a particular class of projective representations of the symmetry group

PSG pros and cons

- PSG gives a classification of mean-field theories.
- Beyond mean-field: 1. Couple partons to fluctuating gauge field

2. Gutzwiller projected wavefunctions

- PSG pros: Organizes construction of effective theories, wavefunctions. Works for various types of spin liquids.
- PSG cons: Tied to partons. May not hold beyond mean-field.

Symmetry classification of this talk

- Pros: Not tied to any particular formalism or mean-field theory.
- Cons: Probably limited to gapped phases. Not constructive.
- Other prior work: Alexei Kitaev, Ann. Phys. 2006, Appendix F
- Results agree where they overlap

Outline

1. Review: topological properties of Z_{2} spin liquids
2. Symmetry classification

Topological particle types

- Two bosons (e and m). One fermion (ε).
- In Z_{2} gauge theory, m is the vison $\left(\mathrm{Z}_{2}\right.$ flux $)$
- Z_{2} gauge theory with bosonic matter: e is electric charge, ε is charge-flux bound state
- Or, with fermionic matter: ε is electric charge, e is charge-flux bound state
- Fusion rules: $\epsilon \times \epsilon=m \times m=e \times e=1$ $\epsilon \times m=e, \epsilon \times e=m, e \times m=\epsilon$
- Mutual statistics: ϵ $\theta=\pi$

m
- Note: no real distinction between e and m, can relabel $e \leftrightarrow m$

Superselection sectors

- Topological superselection sectors

Contains all physical spin
model states (closed system)

- Cannot locally create single isolated e, m or ε. Create in pairs and separate.
- Sectors are closed under action of local operators (in particular, no matrix elements of any term in Hamiltonian between sectors).

Concrete model: toric code

$$
\begin{gathered}
H=-u \sum_{r} v_{r}-K \sum_{\square} P_{\square} \\
s_{v}=\operatorname{sign} u \quad s_{P}=\operatorname{sign} K \\
{\left[v_{r}, P_{\square}\right]=0}
\end{gathered}
$$

- Ground state has: $P_{\square}=s_{P}, v_{r}=s_{v}$
- 4-fold degenerate ground states on torus (threading of visons)
- Loop operators/algebra:

$L_{y}^{m}=\prod_{y} \sigma^{x}$

$\left\{L_{x}^{e}, L_{y}^{m}\right\}=0$
$\left\{L_{y}^{e}, L_{x}^{m}\right\}=0$
$L_{x}^{e}=\prod_{x} \sigma^{z}$

$D=4$ irrep (4-fold ground state degeneracy)

Outline

1. Review: topological properties of Z_{2} spin liquids

2. Symmetry classification

Basic Idea

- To start, consider just translation symmetry: $T_{x} T_{y}=T_{y} T_{x}$

$$
T_{x} T_{y} T_{x}^{-1} T_{y}^{-1}=1
$$

- Quantum mechanics: $T_{x} T_{y} T_{x}^{-1} T_{y}^{-1}=e^{i \phi}$
- Trivial superselection sector, $\phi=0$, since e.g. $T_{x}: \vec{S}_{r} \rightarrow \vec{S}_{r+\boldsymbol{x}}$
- However, on other sectors, may have $\phi \neq 0$
- $T_{x} T_{y} T_{x}^{-1} T_{y}^{-1}$ must be constant on each sector. Otherwise, could find a local operator on which $T_{x} T_{y} T_{x}^{-1} T_{y}^{-1}$ acts nontrivially, a contradiction.
- Will see this constant takes discrete values, therefore can't change as long as sectors remain well-defined (gap remains open) \rightarrow Universal property
- Note: will not discuss case where some symmetries interchange e and m particles

Meaning of sector-translation operators \& fusion constraints

- Physical states live in trivial sector. How to define, say, T_{x} in other sectors?

Move e-particle with respect to background of the ground state

- Acting on 1-sector state with $2 e$-particles: $T_{x} \simeq T_{x}^{e}(1) T_{x}^{e}(2)$
- Implies: $T_{x}^{e} T_{y}^{e}\left(T_{x}^{e}\right)^{-1}\left(T_{y}^{e}\right)^{-1}=\sigma_{e}= \pm 1$
- This is a constraint imposed by $e^{2}=1$ fusion rule. Other fusion rules imply:

$$
\begin{aligned}
& T_{x}^{m} T_{y}^{m}\left(T_{x}^{m}\right)^{-1}\left(T_{y}^{m}\right)^{-1}=\sigma_{m}= \pm 1 \\
& T_{x}^{\epsilon} T_{y}^{\epsilon}\left(T_{x}^{\epsilon}\right)^{-1}\left(T_{y}^{\epsilon}\right)^{-1}=\sigma_{\epsilon}= \pm 1 \\
& \sigma_{\epsilon}=\sigma_{e} \sigma_{m}
\end{aligned}
$$

Two Z_{2} parameters
$\rightarrow 4$ possibilities
Actually only 3 classes, since two related by relabeling $e \leftrightarrow m$

Construction of sector-translations for toric code

Initial state:

two e-particles, connected by string

Move each particle by
adding piece of string \square

Gives phase $s_{P}^{r_{2 y}-r_{1 y}}$
Define: $T_{x}^{e}(r)=(-1)^{r_{y}} \sigma_{r, r+x}^{z} \square T_{x}=T_{x}^{e}\left(r_{1}\right) T_{x}^{e}\left(r_{2}\right)$

Construction of sector-translations for toric code

- Work out group relation (illustrate for case of two e-particles):

$$
T_{x} T_{y} T_{x}^{-1} T_{y}^{-1}=\left[T_{x}^{e}(1) T_{y}^{e}(1)\left(T_{x}^{e}\right)^{-1}(1)\left(T_{y}^{e}\right)^{-1}(1)\right][(1 \rightarrow 2)]=\left[s_{P}\right]\left[s_{P}\right]
$$

Translation around a plaquette

$$
=P_{\square} \rightarrow s_{P}
$$

- Make analogous definition for $T^{m_{x, y}}$
$\underset{\substack{\text { a vertex } \\ \text { Translation around }}}{ } \quad \sim T_{x}^{m}(1) T_{y}^{m}(1)\left(T_{x}^{m}\right)^{-1}(1)\left(T_{y}^{m}\right)^{-1}(1)=v_{r} \rightarrow s_{v}$
- Finally, can show:
$T_{x}=\sum_{n_{e}, n_{m}} \sum_{\left\{r_{i}^{e}\right\},\left\{r_{i}^{m}\right\}} T_{x}^{e}\left(r_{1}^{e}\right) \cdots T_{x}^{e}\left(r_{n_{e}}^{e}\right) T_{x}^{m}\left(r_{1}^{m}\right) \cdots T_{x}^{m}\left(r_{n_{m}}^{m}\right) P_{n_{e}, n_{m}}\left(r_{1}^{e}, \ldots, r_{n_{e}}^{e} ; r_{1}^{m}, \ldots, r_{n_{m}}^{m}\right)$
Projects onto $n_{e} e$-particles, n_{m} m-particles at given positions
- Can show: sector-relations unchanged for arbitrary number/configuration of particles

Relation to ground state quantum numbers

- Degenerate ground states can have nontrivial quantum numbers

- Suggests associations: $L_{x}^{e} \simeq\left(T_{x}^{e}\right)^{N_{x}}, L_{x}^{m} \simeq\left(T_{x}^{m}\right)^{N_{x}}, \ldots$
- Action of symmetry on loop operators: $T_{y} L_{x}^{e} T_{y}^{-1} \rightarrow T_{y}^{e}\left(T_{x}^{e}\right)^{N_{x}}\left(T_{y}^{e}\right)^{-1}$
- For toric code, calculating with this and this gives same answers.
- Note: this only gives info on relative momenta among 4 ground states

General symmetry group

- Some mathematics...
- Consider symmetry group G, elements $g \in G$, projective representation $\Gamma(g)$

$$
\Gamma\left(g_{1}\right) \Gamma\left(g_{2}\right)=\omega\left(g_{1}, g_{2}\right) \Gamma\left(g_{1} g_{2}\right), \omega\left(g_{1}, g_{2}\right) \in Z_{2}
$$

- Associativity constraint: $\omega\left(g_{1}, g_{2}\right) \omega\left(g_{1} g_{2}, g_{3}\right)=\omega\left(g_{1}, g_{2} g_{3}\right) \omega\left(g_{2}, g_{3}\right)$
- Abelian group structure: $\left(\omega_{A} \omega_{B}\right)\left(g_{1}, g_{2}\right)=\omega_{A}\left(g_{1}, g_{2}\right) \omega_{B}\left(g_{1}, g_{2}\right)$
- "Gauge" transformation:

$$
\Gamma(g) \rightarrow \lambda(g) \Gamma(g) \Longrightarrow \omega\left(g_{1}, g_{2}\right) \rightarrow \lambda^{-1}\left(g_{1}\right) \lambda^{-1}\left(g_{2}\right) \lambda\left(g_{1} g_{2}\right) \omega\left(g_{1}, g_{2}\right)
$$

- Classify factor sets up to "gauge" equivalence.

2nd group cohomology group, coefficients in Z_{2}

Symmetry class (for one sector)

Element of $H^{2}\left(G, Z_{2}\right)$

Meaning of factor set classes: fractionalization classes

- Factor set class is not tied to particular group representation
- For a given class there is a list of (projective) irreps belonging to that class.

Aside: each class associated with distinct "central extension" of symmetry group. Projective reps in a given class are ordinary reps of the central extension group.

- Projective representations \leftrightarrow quantum number fractionalization
- Factor set classes \leftrightarrow distinct types of fractionalization
- Familiar example: spin rotation
- Two classes: $R_{s}(2 \pi \hat{n})= \pm 1$
- Integer vs. half-odd integer spin

Space group + time reversal + spin rotation

- Square lattice space group generators: $T_{x}, P_{x}, P_{x y}$
- Note that: $T_{y}=P_{x y} T_{x} P_{x y}^{-1}$
- Time reversal \mathcal{T}
- Spin rotation (by θ about \hat{n}-axis): $R(\theta \hat{n})$

- Generators + relations specify the symmetry class in one sector:

$$
\begin{array}{r}
P_{x}^{2}=\sigma_{p x} \\
P_{x y}^{2}=\sigma_{p x y} \\
\left(P_{x} P_{x y}\right)^{4}=\sigma_{p x p x y} \\
T_{x} T_{y} T_{x}^{-1} T_{y}^{-1}=\sigma_{t x t y} \\
T_{x} P_{x} T_{x} P_{x}^{-1}=\sigma_{t x p x} \\
T_{y} P_{x} T_{y}^{-1} P_{x}^{-1}=\sigma_{t y p x} \\
\mathcal{T}^{2}=\sigma_{T}
\end{array}
$$

- Here the σ 's $= \pm 1$
- Specify class this way in two sectors (view as specifying two elements of $H^{2}\left(G, Z_{2}\right)$, or one element of $H^{2}\left(G, Z_{2} \times Z_{2}\right) .2^{22}$ classes.
- Third class follows, "almost" a product of other two.

Role of mutual statistics (topological spin)

- Continuum:

- Square lattice: $\left(P_{x}^{e} P_{x y}^{e}\right)^{4}=\sigma_{e},\left(P_{x}^{m} P_{x y}^{m}\right)^{4}=\sigma_{m}$
 $\left(P_{x}^{\epsilon} P_{x y}^{\epsilon}\right)^{4}=-\sigma_{e} \sigma_{m}$
Sign from mutual statistics
- Simple way to see this in toric code:

Localize single e and m, preserving point group symmetry

Work out two-particle effective
Hamiltonian, m sees e as π-flux
Can read off factor set from this
Hamiltonian.

PSG classification revisited

- For any PSG in some parton approach, can find symmetry class of corresponding spin liquid (use effective gauge theory)
- On square lattice, Wen found 272 PSGs (for a single sector). Should be compared with 2^{10} classes for same sector (all have $S=1 / 2$, fixes one parameter).
- Some classes not realized.
- There are distinct PSGs belonging to same class. But in all cases I know, one PSG is gapless.

Open issues

- Allow for symmetries to interchange e and m (in progress)
- Chiral and/or non-Abelian topological order
- Three dimensions?
- How can symmetry class be determined given ground state wavefunction, excited states?

