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Classification of spin liquids

• Why classify?

• Long-term goal: develop general framework to understand states of 
quantum matter beyond Landau symmetry-breaking theory

• Shorter-term: sharp distinctions among various spin liquids

• Gapless states (d=3 Coulomb phases, gapless Z2 spin liquids, 
algebraic spin liquids, spinon Fermi surface)

• Gapped, topologically ordered states (e.g. gapped Z2 spin liquids)

• (Symmetry-protected topological phases.)

Types of spin liquids



Program of this talk

• Will give a symmetry classification. (Not a full classification.)

• This means: classify states by how symmetry acts on the topological 
degrees of freedom.

• Two phases in different symmetry classes are different phases.

• Two phases in the same class may or may not be different phases.

Ingredients:

Fixed topological order 
(focus on d=2 Z2 spin liquids)

Symmetries (space group, 
time reversal, spin rotation)

Classify distinct phases 
with these ingredients

Local bosonic model 
(i.e. spin model)

Symmetry classes Distinct types of quantum 
number fractionalization



Prior work: projective symmetry group (PSG) classification
 

• Consider e.g. S=1/2 spin model, represent with S=1/2 fermionic partons
(X. G. Wen)
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• Symmetry: e.g. square lattice space group + time reversal + spin rotation.
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• Each such class is called a “PSG.” Really, PSGs comprise a particular class of 
projective representations of the symmetry group

 

• Classify distinct ways symmetry can act, up to unitary (gauge) equivalence.

Action of symmetry: 

1. Non-trivial gauge transformations:
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PSG pros and cons 

• PSG gives a classification of mean-field theories.

• Beyond mean-field: 1. Couple partons to fluctuating gauge field 

2. Gutzwiller projected wavefunctions 

• PSG pros: Organizes construction of effective theories, wavefunctions. Works 
for various types of spin liquids.

• PSG cons: Tied to partons. May not hold beyond mean-field.

 

• Pros: Not tied to any particular formalism or mean-field theory.

• Cons: Probably limited to gapped phases. Not constructive.

Symmetry classification of this talk

 

• Other prior work: Alexei Kitaev, Ann. Phys. 2006, Appendix F

• Results agree where they overlap



1. Review: topological properties of Z2 spin liquids

2. Symmetry classification

Outline



Topological particle types

• Fusion rules:

• Mutual statistics:        

✏⇥ ✏ = m⇥m = e⇥ e = 1
✏⇥m = e , ✏⇥ e = m , e⇥m = ✏

• Two bosons (e and m).  One fermion (ε).

• In Z2 gauge theory, m is the vison (Z2 flux)

• Z2 gauge theory with bosonic matter: e is electric charge, ε is charge-flux bound state

• Or, with fermionic matter: ε is electric charge, e is charge-flux bound state

✏ e

m

✓ = ⇡

✓ = ⇡ ✓ = ⇡

• Note: no real distinction between e and m, can relabel e ↔m



Superselection sectors

• Topological superselection sectors

1 - “Trivial” sector

Contains all physical spin 
model states (closed system)

ε - fermion

e - bosonm - vison (boson)

• Cannot locally create single isolated e, m or ε. Create in pairs and separate.

• Sectors are closed under action of local operators (in particular, no matrix 
elements of any term in Hamiltonian between sectors).



Concrete model: toric code
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• Ground state has:

• 4-fold degenerate ground states on torus (threading of visons)

• Loop operators/algebra:
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Basic Idea

• To start, consider just translation symmetry:

• Quantum mechanics:

• Trivial superselection sector,           , since e.g.

• However, on other sectors, may have                              

•                          must be constant on each sector. Otherwise, could find a local 
operator on which                           acts nontrivially, a contradiction. 

• Will see this constant takes discrete values, therefore can’t change as long as 
sectors remain well-defined (gap remains open) → Universal property
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• Note: will not discuss case where some symmetries interchange e and m 
particles



Meaning of sector-translation operators & fusion constraints

• Physical states live in trivial sector. How to define, say, Tx in other sectors?

Act with Tex

Move e-particle with 
respect to background 

of the ground state

• Acting on 1-sector state with 2 e-particles: T
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Construction of sector-translations for toric code

Initial state:         
two e-particles, 

connected by string Translation
r1

r2

Move each particle by 
adding piece of string

Shift string over
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Construction of sector-translations for toric code

• Make analogous definition for Tmx,y

• Finally, can show:
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• Work out group relation (illustrate for case of two e-particles):
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Relation to ground state quantum numbers

• Degenerate ground states can have nontrivial quantum numbers
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• For toric code, calculating with this and this gives same answers.

• Note: this only gives info on relative momenta among 4 ground states



General symmetry group

• Some mathematics...

• Consider symmetry group G, elements             , projective representation 

�(g1)�(g2) = !(g1, g2)�(g1g2), !(g1, g2) 2 Z2

From fusion rules“Factor set”

• Associativity constraint:

• Abelian group structure:

• “Gauge” transformation:

!(g1, g2)!(g1g2, g3) = !(g1, g2g3)!(g2, g3)

(!A!B)(g1, g2) = !A(g1, g2)!B(g1, g2)

�(g) ! �(g)�(g) =) !(g1, g2) ! ��1(g1)�
�1(g2)�(g1g2)!(g1, g2)

• Classify factor sets up to “gauge” equivalence.

• Factor set classes also form Abelian group:  H2(G,Z2)

2nd group 
cohomology group, 
coefficients in Z2

Symmetry class 
(for one sector)

Element of H2(G,Z2)

g 2 G �(g)



Meaning of factor set classes: fractionalization classes

• Factor set class is not tied to particular group representation

• For a given class there is a list of (projective) irreps belonging to that class.

• Projective representations ↔ quantum number fractionalization

• Factor set classes ↔ distinct types of fractionalization

Aside: each class associated with distinct “central extension” of 
symmetry group. Projective reps in a given class are ordinary 
reps of the central extension group.

• Familiar example: spin rotation

• Two classes:

• Integer vs. half-odd integer spin

Rs(2⇡n̂) = ±1



Space group + time reversal + spin rotation
• Square lattice space group generators:  Tx, Px, Pxy

• Note that: 

• Time reversal 

• Spin rotation (by θ about   -axis): 

• Generators + relations specify the symmetry class in one sector:
P
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P
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(+ Lie algebra of spin rotations)• Here the σ’s = ±1

• Specify class this way in two sectors (view as specifying two elements of 
H2(G,Z2), or one element of H2(G, Z2 × Z2). 222 classes.

• Third class follows, “almost” a product of other two.
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Role of mutual statistics (topological spin)

• Continuum:

2π rotation

• Square lattice:  (P e
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Sign from mutual 
statistics

• Simple way to see this in toric code:

Localize single e and m, preserving 
point group symmetry

Work out two-particle effective 
Hamiltonian, m sees e as π-flux

Can read off factor set from this 
Hamiltonian.



PSG classification revisited

• For any PSG in some parton approach, can find symmetry class of 
corresponding spin liquid (use effective gauge theory)

• On square lattice, Wen found 272 PSGs (for a single sector). Should be 
compared with 210 classes for same sector (all have S=1/2, fixes one 
parameter).

• Some classes not realized.

• There are distinct PSGs belonging to same class. But in all cases I know, one 
PSG is gapless.



Open issues

• Allow for symmetries to interchange e and m (in progress)

• Chiral and/or non-Abelian topological order

• Three dimensions?

• How can symmetry class be determined given ground state wavefunction, 
excited states?


