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Classification of spin liquids

® Why classify?

® [ong-term goal: develop general framework to understand states of
quantum matter beyond Landau symmetry-breaking theory

® Shorter-term: sharp distinctions among various spin liquids

Types of spin liquids

® Gapless states (d=3 Coulomb phases, gapless Z> spin liquids,
algebraic spin liquids, spinon Fermi surface)

® Gapped, topologically ordered states (e.g. gapped Z» spin liquids)

® (Symmetry-protected topological phases.)




Program of this talk

Ingredients:

Local bosonic model
(i.e. spin model)

Fixed topological order

Classify distinct phases
(focus on d=2 7, spin liquids)

with these ingredients

Symmetries (space group,
time reversal, spin rotation)

® Will give a symmetry classification. (Not a full classification.)

® This means: classify states by how symmetry acts on the topological
degrees of freedom.

® Two phases in different symmetry classes are different phases.

® Two phases in the same class may or may not be different phases.

Distinct types of quantum
Symmetry classes : o
number fractionalization




Prior work: projective symmetry group (PSG) classification

Consider e.g. S=1/2 spin model, represent with S=1/2 fermionic partons

Hilbert space

1
§ — _f;régaﬁfﬁ + + S=1/2 doublet (physical states)  S=1/2, G=0

fT f —1 Unphysical doublet S=0,G=1/2
16

Mean-field Hamiltonian: Hypr = Z tflof e + A(f:Tf:/¢ + f:/Tf:ﬂ + -

(r,7)
Symmetry: e.g. square lattice space group + time reversal + spin rotation.

Action of symmetry:

Non-trivial gauge transformations: T}, : f,, — ' f rae,a

Acts projectively: 1,71, = ewTyTx

Classify distinct ways symmetry can act, up to unitary (gauge) equivalence.

Each such class is called a “PSG.” Really, PSGs comprise a particular class of
projective representations of the symmetry group

(X.G. Wen)
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PSG pros and cons

PSG gives a classification of mean-field theories.
Beyond mean-field: 1. Couple partons to fluctuating gauge field

2. Gutzwiller projected wavefunctions

PSG pros: Organizes construction of effective theories, wavefunctions. Works
for various types of spin liquids.

PSG cons: Tied to partons. May not hold beyond mean-field.

Symmetry classification of this talk

Pros: Not tied to any particular formalism or mean-field theory.

Cons: Probably limited to gapped phases. Not constructive.

Other prior work: Alexei Kitaev, Ann. Phys. 2006, Appendix F

Results agree where they overlap




2.  Symmetry classification




Topological particle types

® Two bosons (e and m). One fermion (€).
® In Z, gauge theory, m is the vison (Z; flux)
® 7/, gauge theory with bosonic matter: e is electric charge, € is charge-flux bound state

® Or, with fermionic matter: € is electric charge, e is charge-flux bound state

® Fusionrules: eXxe=mxXxm=eXxXe=1
EXM=€e,eEXe=m,exXm=¢e

® Mutual statistics: €

® Note: no real distinction between e and m, can relabel e <>m




Superselection sectors

® Topological superselection sectors

¥

1 - “Trivial” sector e - fermion

Contains all physical spin
model states (closed system)

4 o

m - vison (boson) e - boson

® (Cannot locally create single isolated e, m or €. Create in pairs and separate.

® Sectors are closed under action of local operators (in particular, no matrix
elements of any term in Hamiltonian between sectors).




Concrete model: toric code

. A. Kitaev
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S, =slenu Sp =sign K
\vrr = H O-,r-.,rl

rrie+ [vT? PD] =0
® Ground state has: P5 = sp , v, = s, i\
® 4-fold degenerate ground states on torus (threading of visons) )
® Loop operators/algebra: \__/

D=4 irrep (4-fold
ground state
degeneracy)

{Le, Lyt =0
{Ly, Ly} =0




1. Review: topological properties of Z> spin liquids




To start, consider just translation symmetry: 7,7, = T, T,
T,T,T,'T, "' =1

Quantum mechanics: T, T, T, 1 T, L

Trivial superselection sector, ¢ = 0, since e.g. T ,. : §T — §T .

However, on other sectors, may have ¢ #£ 0

11,1, 1T must be constant on each sector. Otherwise, could find a local
operator on Wthh 11,1, 1T acts nontrivially, a contradiction.

Will see this constant takes discrete values, therefore can’t change as long as
sectors remain well-defined (gap remains open) — Universal property

Note: will not discuss case where some symmetries interchange e and m
particles




Meaning of sector-translation operators & fusion constraints

® Physical states live in trivial sector. How to define, say, T in other sectors?

/\ Move e-particle with
O O respect to background

of the ground state

Act with T¢,

® Acting on l-sector state with 2 e-particles: T, ~ T (1)T<(2)
o Impliess T5T:(T5) '(Tg) ' =0e=+1

® This is a constraint imposed by e? = 1 fusion rule. Other fusion rules imply:

TgTJl(T:Zn)_l (T;n)_l =0om = *£1 Two Z» parameters
T;Tye (T;)_l (T;) -1 _ o, = +1 — 4 possibilities
_ Actually only 3
Te TeOm classes, since two
related by

relabeling e<>m




Construction of sector-translations for toric code

T2
Initial state:
two e-particles,
connected by string
r1
o
Move each particle by
adding piece of string
{——

(| —)

—

Translation

—

Shift string over

Gives phase s

P

Define: 7, (1) = (1) 0, 44 ::> T, =T, (r)T,(r2)




Construction of sector-translations for toric code

® Work out group relation (illustrate for case of two e-particles):

1,777, = [T T ()T ()T (W] [(1 - 2)] = [sp] [s7]

/

Translation around — P N
— S
a plaquette . P

® Make analogous definition for 7,

Translation around /Tg&(l)Tm(l)(Tm)_l(1)(Tm)_1(1) = U, — Sy

a vertex y

® Finally, can show:

To= ), ) T Tl )T () - T ) P (15s oo )
ne s {rg} {r"} N
Projects onto n. e-particles, nn,
m-particles at given positions

® (Can show: sector-relations unchanged for arbitrary number/configuration of
particles




Ny

Relation to ground state quantum numbers

Degenerate ground states can have nontrivial quantum numbers

—

Act with(T)V=

<

Ny

Suggests associations: LS ~ (T¢)N= = [m

Action of symmetry on loop operators: Ty LST, " — Ty (T )Ne (To)™"

For toric code, calculating with this and this gives same answers.

Note: this only gives info on relative momenta among 4 ground states




General symmetry group

Some mathematics...

Consider symmetry group G, elements g € (G, projective representation F( g)

I'(91)T'(g2) = w(g1, 92)T'(9192), w(g1,92) € Z2

“Factor set” From fusion rules
Associativity constraint: w(9g1, g2)w (9192, 93) = w(g1, 9293)w (92, g3)
Abelian group structure: (wawp)(g1, g2) = wa(g1, g2)ws (g1, g2)
“Gauge” transformation:

I'(9) = Mg)T(9) = w(g1,92) = A" (g1)A " (92)Mg192)w (g1, 92)

Classify factor sets up to “gauge” equivalence. 2nd group
cohomology group,

Factor set classes also form Abelian group: H?(G, Z 2)/ coefficients in Z

Symmetry class 5
ﬁ El t of
(for one sector) ement of (G, Z3)




Meaning of factor set classes: fractionalization classes

® Factor set class is not tied to particular group representation
® For a given class there is a list of (projective) irreps belonging to that class.

Aside: each class associated with distinct “central extension” of
symmetry group. Projective reps in a given class are ordinary
reps of the central extension group.

® Projective representations <> quantum number fractionalization

® Factor set classes <= distinct types of fractionalization

® Familiar example: spin rotation

® Twoclasses: Rs(2mn) = +1

® Integer vs. half-odd integer spin




Space group + time reversal + spin rotation

® Square lattice space group generators: Ty, Py, Py — 0
® Note that: T} = PwyT:cP:c_yl N \X'
® Time reversal 7 o /', \
® Spin rotation (by 0 about n-axis): R(0n) : P,
Py
® (Generators + relations specify the symmetry class in one sector:
sz = Opzx TT, T T = ors
P:z?y = Opxy TP.T 'P, = orps
(Pxny)4 = Opzpry TnyT_lpwy = OTpay
T, T, T, T, = oy R(2mh) = oR

R(7)T = TR(6A)
R(67)P, = P,R(67)
R(‘gﬁ)Pa:y - P:chR(eﬁ)
T? =or R(02)T, = T, R(07)

(+ Lie algebra of spin rotations)

TxPxTngg_l = Otapx
T, P.T, ' Pl = opype

® Herethe 0’s =1

® Specify class this way in two sectors (view as specifying two elements of
H?(G,Z2), or one element of H*(G, Z> x Z2). 2?2 classes.

® Third class follows, “almost” a product of other two.




Role of mutual statistics (topological spin)

® Continuum:

27|: rotation

e Square lattice: (PgPs,)* =o0c , (PPl = # (PpPry)” = —0com

Sign from mutual

statistics
® Simple way to see this in toric code:

reh Localize single e and m, preserving
.* point group symmetry

Work out two-particle effective
Hamiltonian, m sees e as mt-flux

Can read off factor set from this
Hamiltonian.




PSG classification revisited

® For any PSG in some parton approach, can find symmetry class of
corresponding spin liquid (use effective gauge theory)

® On square lattice, Wen found 272 PSGs (for a single sector). Should be
compared with 219 classes for same sector (all have S=1/2, fixes one
parameter).

® Some classes not realized.

® There are distinct PSGs belonging to same class. But in all cases I know, one
PSG is gapless.




Open 1ssues

Allow for symmetries to interchange e and m (in progress)

Chiral and/or non-Abelian topological order
Three dimensions?

How can symmetry class be determined given ground state wavefunction,
excited states?




