

Molecular orbital picture of Mo triangle gives $\mathrm{S}=1 / 2$ per triangle.

These triangles form a triangular lattice.

From Curie constant, g factor is 1.6 , vs 2 for free spin $1 / 2$. This may be due to spin orbit coupling.

$$
g_{m}=g_{e}\left(1-A \frac{\xi}{\Delta E}\right)
$$

for Mo is $\xi=0.068 \mathrm{eV}$, similar to the value for $\mathrm{Cu}, \xi=0.100 \mathrm{eV}$

Ongoing work with Rebecca Flint. Rotation of triangles shorten bonds between triangles on hexagon and lengthen bonds to central site.

Spin $1 / 2$ on hexagonal lattice forms a gapped spin liquid which co-exists with isolated moments.
J1-J2 model ?
Detect rotation experimentally?

