

An Exact Diagonalization Perspective on the S=1/2 Kagome Heisenberg Antiferromagnet

Andreas M. Läuchli Theoretische Physik, Universität Innsbruck http://laeuchli-lab.uibk.ac.at/group-page

Rainer Johanni Computing Center of the Max Planck Society, Garching

Roderich Moessner Max Planck Institute for Physics of Complex Systems, Dresden

KITP Fragnets12 Program, Santa Barbara, 10/31/2012

Motivation(s)

- Why still ED for Kagome ? (DMRG did it all ...)
- Benchmark results
- Spectral evidence for topological degeneracy ?
- Compare recently suggested scenarios with actual (exact) low-energy spectrum

Motivation(s)

- Why still ED for Kagome ? (DMRG did it all ...)
- Benchmark results
- Spectral evidence for topological degeneracy ?
- Compare recently suggested scenarios with actual (exact) low-energy spectrum

MPI parallel Exact Diagonalizations are challenging but feasible in other domains (Full CI Quantum Chemistry, Nuclear structure)

How far can we go with spin models (~ 50 spins) ?

How fast is the hardware (demanding all to all communication) ?

MPI Parallel Kagome ED Code: Technical Aspects

Three-sublattice stable symmetry implementation for fa

MPI protocol based implementation for distributed memory architectures

Performance (memory requirements up to 12 Terabytes)

Lattice	size of Hilbert space	number of tasks (architecture)	time per iteration
kagome $N_s = 42$	19,223,570,420	1,024 (Intel Xeon Infiniband)	74 seconds
kagome $N_s = 48$	251,936,333,376	1,600 (Intel Xeon NUMAlink5)	1,450 seconds
kagome $N_s = 48$	251,936,333,376	3,072 (Intel Xeon Infiniband)	650 seconds
kagome $N_s = 48$	251,936,333,376	16,384 (BlueGene/P)	520 seconds

Convergence

Convergence for such large Hilbert spaces ? Finite precision arithmetic ? Seems ok

Upper end of spectrum converges to known energy of the ferromagnetic state ! ok !

Kagome S=1/2 Heisenberg model: Energy per site: earlier ED results

ED Energy per site as a function of diameter (N up to 42 sites).

Good agreement between ED and DMRG at same diameter.

Now with 48 sites:

New data point for N=48 sites (251'936'333'376 states in GS sector)

ED 48 sites:

Ground state energy per site:

E/NJ = -0.4387

upper bound on spin gap

 $\Delta/J = 0.168$

substantially lower GS energy than early 48 site torus DMRG estimate (HC Jiang *et al.*, PRL 2008) and slightly lower than Dependence *et al.* E/NJ = -0.43663Torus 4 |-0.4383(2) |0.151

- good agreement with S. Yan et al., Science 2011 and Depenbrock et al, PRL 2012 cylinder DMRG results at the same diameter.
- still a bit lower than variance extrapolated VMC results by Y. Iqbal *et al*, arXiv:1209 E/J = -0.437845(4)

C. Lhuillier et al., PRB 1997, EPJB 1998, EPL 2009

C. Lhuillier et al., PRB 1997, EPJB 1998, EPL 2009

AML, R. Johanni, R. Moessner

still rather dense spectrum !

5 x 10¹¹ complex basis states in each sector

5 x 10¹¹ complex basis states in each sector

Z₂ topological times Z₂ spatial symmetry breaking ?

Real space spin-spin correlations

- spin correlations are small, but strongest and staggered on paths which wrap around the sample
- Is this a feature of a spin liquid ?

AML, J. Sudan and E. Sorensen, PRB 83, 212401 (2011)

Dimer-Dimer correlations

Dimer-Dimer correlations

Effective Quantum Dimer Model

AML, R. Johanni & R. Moessner

Quantum Dimer Model

- QDM with slightly enhanced length-8 resonance amplitude
- Now in the Z₂ liquid region !
- Displays short-ranged diamond VBC correlations
- Can explain quantum numbers of Z₂ liquid + finite size splitting of topo levels
- But inversion symmetry breaking level(s) not explained

AML, R. Johanni & R. Moessner

Conclusions & Outlook

Highly parallel MPI exact diagonalization for S=1/2 spin systems up to 48 sites

- Low energy spectrum reveals no sign of translational symmetry breaking
- Possible inversion symmetry breaking and / or Z₂ topological degeneracy ?
- Short range diamond VBC correlations, as in DMRG.

- Correlation functions in excited states (onç
- Square kagome ? Valence bond crystal or

Thank you for your attention !

