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Figure 5: Left: Kagome lattice with the algorithmic three-sublattice structure used in the MPI-parallel

exact diagonalization code. Right: Illustration of the square-kagome lattice consisting of corner sharing

triangles, as the kagome lattice. In this lattice the shortest loops are of length four instead of length six

as in the kagome lattice. The expected two-fold degenerate valence bond crystal according to Ref. [66]

consists of half of the squares forming a singlet (red boxes), while the remaining sites pair up in loops

of length 8 (illustrated with hashed blue lines).

time and simply recalculate more of the information which used to be stored in the lookup

tables.

Beyond the S = 1/2 codes discussed so far we also want to develop codes for larger spin

S > 1/2, both for conventional SU(2) Heisenberg-like models and SU(N) magnetism.

In order to calculate thermodynamic properties for small systems using the complete eigen-

basis of the Hamiltonian we will also integrate and use distributed memory implementations of

full diagonalization libraries, such as Scalapack or ELPA [65].

3.1.2 Frustrated quantum magnets

In this project we intend to investigate large samples of the S = 1/2 quantum antiferromagnet

on the kagome lattice. We have already been able to obtain the low energy spectrum of a 48

site sample in all singlet sectors. The spectrum exhibits an interesting low energy structure,

with hints towards an interesting topological degeneracy. In a first step we want to calculate

a number of observables in the low lying wave functions, in order to ascertain the topological

nature of the collapsing levels. Of particular importance will be observables such as the full

dimer-dimer correlation functions, scalar chirality correlation functions, or correlation density

matrices. Another interesting diagnostics will be provided by the entanglement spectrum of

large blocks winding around the torus in one direction.

With the existing three-sublattice code we can also directly study a related model, the S= 1/2

Heisenberg model on a 48 site square-kagome (“squagome”) lattice [66]. This lattice is closely

related to the standard kagome lattice due to their common corner sharing triangle geome-

try. However there exist two different types of closed loops of length 4 and 8 respectively,

as opposed to the length 6 loops in the kagome lattice, see the right side of Fig. 5 for an il-

lustration. It has been suggested that the ground state of this model is a valence bond crystal

with a twofold degenerate ground state [66], but so far no numerical evidence in this direc-

tion is available [67]. We believe that the 48 site sample is the first sample which combines a

symmetry-breaking compatible lattice geometry with sufficiently long loop lengths for paths

around the torus directions, such that a VBC should be easily detected in case it exists.

Since kagome systems with larger spin S > 1/2 are basically not studied at all, despite many

existing kagome-like materials with S > 1/2, we intend to investigate and explain the low

energy spectra of kagome samples with up to 24 sites for S = 1 and up to 21 sites for S = 3/2.

These simulations might help to develop an understanding whether S > 1/2 systems already

behave qualitatively like semiclassical systems, or whether they form genuine quantum ground

states.

A further interesting application of the three-sublattice code is the calculation of the exci-
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Why still ED for Kagome ? (DMRG did it all ...)

Benchmark results

Spectral evidence for topological degeneracy ?

Compare recently suggested scenarios with actual
(exact) low-energy spectrum
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MPI parallel Exact Diagonalizations are challenging but feasible
in other domains (Full CI Quantum Chemistry, Nuclear structure) 

How far can we go with spin models (~ 50 spins) ? 

How fast is the hardware (demanding all to all communication) ?

Why still ED for Kagome ? (DMRG did it all ...)

Benchmark results

Spectral evidence for topological degeneracy ?

Compare recently suggested scenarios with actual
(exact) low-energy spectrum
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MPI Parallel Kagome ED Code:
Technical Aspects

Three-sublattice stable symmetry implementation for fast lookups

MPI protocol based implementation for distributed memory architectures

Performance (memory requirements up to 12 Terabytes)
P8 Exact diagonalization at the petaflop scale

Lattice size of Hilbert space number of tasks (architecture) time per iteration

kagome Ns = 42 19,223,570,420 1,024 (Intel Xeon Infiniband) 74 seconds
kagome Ns = 48 251,936,333,376 1,600 (Intel Xeon NUMAlink5) 1,450 seconds
kagome Ns = 48 251,936,333,376 3,072 (Intel Xeon Infiniband) 650 seconds
kagome Ns = 48 251,936,333,376 16,384 (BlueGene/P) 520 seconds

Table 2: Iteration times of the MPI-parallel exact diagonalization code with spatial symmetries for

kagome samples with 42 and 48 spins and for the different execution platforms.

sample in all the spatial symmetry sectors of the even total spin sector. The largest sector was

of dimension 504 × 109 and is the largest eigenvalue problem solved so far for a quantum

many body system, to the best of our knowledge. The possible implications of this result on the

understanding of the kagome antiferromagnet will be discussed in the next section. The results

are unpublished so far, but have been presented at a talk at the March Meeting 2012 of the

American Physical Society in Boston [59].

2.2.2 Frustrated quantum magnets

A. M. Läuchli and his collaborators recently established the phase diagram of a frustrated spin

S = 1/2 Heisenberg model on the honeycomb lattice [R4] using exact diagonalization in the

standard Sz basis and exact diagonalization of an effective quantum dimer model. The phase

diagram contains several magnetically ordered phases, but interestingly also a rather large mag-

netically disordered intermediate phase. In some part of this disordered region we found strong

evidence for a plaquette valence bond crystal. An interesting aspect is our finding that a simple

variational wavefunction without further parameters (i.e. Gutzwiller projected half-filled tight

binding model) has an excellent variational energy precisely at the phase transition from the

magnetically ordered Néel state to the plaquette valence bond crystal. This suggest that the

honeycomb lattice might feature Néel-VBC deconfined quantum critical points.

The Mott insulating phase of the triangular lattice Hubbard model has been conjectured to

host a spin liquid phase close to the metal-insulator transition, based on approximate Monte

Carlo methods. In Ref. [R5] we investigated this question from the viewpoint of effective spin

models. We derived a high-order effective spin model based on an expansion in t/U starting

from the t = 0 atomic limit. The effective spin model contains Heisenberg couplings of different

spatial range, as well as four- and six-spin terms of different ranges. Simulating the effective

model using exact diagonalization on various clusters, we detect a sharp transition between the

three-sublattice Néel order at large U and an intermediate insulating phase without magnetic

long range order. The comparison of the non-trivial ground state quantum numbers in the spin

liquid region with those of a Gutzwiller projected Fermi sea wave function provides evidence

for a gapless ‘spin Bose-Metal’ liquid phase.

Regarding the kagome antiferromagnet we have studied the dynamical spin and singlet ex-

citation spectrum on the 36 site cluster [7] and provided evidence for spin spectral functions

which are quite broad in energy, as seen in experiments on some kagome-like materials. We

have also investigated the local effects of non-magnetic impurities in S = 3/2 kagome sys-

tems [60], and in S = 1/2 kagome systems with Dzyaloshinskii-Moriya interactions [61]. As

mentioned already in the previous exact diagonalization section, we have studied the ground

state energy dependence on the cluster geometry in Ref. [R3] for systems up to 42 sites. An

interesting observation was the fact that the spin-spin correlations in the ground state are quite

small as expected, but seem to be somewhat enhanced along the shortest paths which wrap

around the period boundary conditions. This highlights the importance of studying systems

with as large circumferences as possible in order to reduce the effect of artificial resonances

around the torus. In this respect the 48 sites kagome system is a very significant step forward,

not only in Hilbert space sizes, but also resonance-wise, as the number of topological nontrivial

158 Advanced Computational Methods for Strongly Correlated Quantum Systems

Läuchli, Honecker P8

Figure 5: Left: Kagome lattice with the algorithmic three-sublattice structure used in the MPI-parallel

exact diagonalization code. Right: Illustration of the square-kagome lattice consisting of corner sharing

triangles, as the kagome lattice. In this lattice the shortest loops are of length four instead of length six

as in the kagome lattice. The expected two-fold degenerate valence bond crystal according to Ref. [66]

consists of half of the squares forming a singlet (red boxes), while the remaining sites pair up in loops

of length 8 (illustrated with hashed blue lines).

time and simply recalculate more of the information which used to be stored in the lookup

tables.

Beyond the S = 1/2 codes discussed so far we also want to develop codes for larger spin

S > 1/2, both for conventional SU(2) Heisenberg-like models and SU(N) magnetism.

In order to calculate thermodynamic properties for small systems using the complete eigen-

basis of the Hamiltonian we will also integrate and use distributed memory implementations of

full diagonalization libraries, such as Scalapack or ELPA [65].

3.1.2 Frustrated quantum magnets

In this project we intend to investigate large samples of the S = 1/2 quantum antiferromagnet

on the kagome lattice. We have already been able to obtain the low energy spectrum of a 48

site sample in all singlet sectors. The spectrum exhibits an interesting low energy structure,

with hints towards an interesting topological degeneracy. In a first step we want to calculate

a number of observables in the low lying wave functions, in order to ascertain the topological

nature of the collapsing levels. Of particular importance will be observables such as the full

dimer-dimer correlation functions, scalar chirality correlation functions, or correlation density

matrices. Another interesting diagnostics will be provided by the entanglement spectrum of

large blocks winding around the torus in one direction.

With the existing three-sublattice code we can also directly study a related model, the S= 1/2

Heisenberg model on a 48 site square-kagome (“squagome”) lattice [66]. This lattice is closely

related to the standard kagome lattice due to their common corner sharing triangle geome-

try. However there exist two different types of closed loops of length 4 and 8 respectively,

as opposed to the length 6 loops in the kagome lattice, see the right side of Fig. 5 for an il-

lustration. It has been suggested that the ground state of this model is a valence bond crystal

with a twofold degenerate ground state [66], but so far no numerical evidence in this direc-

tion is available [67]. We believe that the 48 site sample is the first sample which combines a

symmetry-breaking compatible lattice geometry with sufficiently long loop lengths for paths

around the torus directions, such that a VBC should be easily detected in case it exists.

Since kagome systems with larger spin S > 1/2 are basically not studied at all, despite many

existing kagome-like materials with S > 1/2, we intend to investigate and explain the low

energy spectra of kagome samples with up to 24 sites for S = 1 and up to 21 sites for S = 3/2.

These simulations might help to develop an understanding whether S > 1/2 systems already

behave qualitatively like semiclassical systems, or whether they form genuine quantum ground

states.

A further interesting application of the three-sublattice code is the calculation of the exci-

Advanced Computational Methods for Strongly Correlated Quantum Systems 161



Convergence for such large Hilbert spaces ? Finite precision arithmetic ?
Seems ok

Upper end of spectrum converges to known energy of the ferromagnetic state !
ok !
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Good agreement between ED and DMRG at same diameter.

DMRG Results: 
S. Yan et al., Science 2011

Kagome S=1/2 Heisenberg model:
Energy per site: earlier ED results

ED Energy per site as a function of diameter (N up to 42 sites).

AML, J. Sudan and E. Sorensen, 
PRB 83, 212401 (2011)
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Now with 48 sites:

New data point for N=48 sites (251‘936‘333‘376 states in GS sector)
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Ground state energy per site:

upper bound on spin gap

substantially lower GS energy than early 48 site torus DMRG 
estimate (HC Jiang et al., PRL 2008) and slightly lower than Depenbrock et al.

good agreement with S. Yan et al., Science 2011 and Depenbrock et al, PRL 
2012 cylinder DMRG results at the same diameter.

still a bit lower than variance extrapolated VMC results by Y. Iqbal et al, arXiv:1209

ED 48 sites:

Exact Diagonalization Study of a 48 Site S = 1/2 Kagome Cluster

Andreas M. Läuchli1, 2

1
Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, D-01187 Dresden, Germany

2
Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria

(Dated: October 23, 2011)

PACS numbers: XX

ED Ground state energy:

E/NJ = −0.43870389715573199218

.
old m-extrapolated DMRG Ground state energy [2]:

E/NJ = −0.43663

ED Spin gap

∆/J = 0.168217128393273185

.
The simulations were performed on the BlueGene/P and on

the PKS-AIMS cluster at the MPG RZ Garching, as well as on
the MACH SGI Altix UV machine operated by Uni Innsbruck
and Uni Linz.

k point Rπ σx Sz → −Sz E/J

Γ +1 +1 +1 −21.057 787 063 475
Γ +1 −1 +1 −21.020 818 759 966
Γ −1 +1 +1 −21.036 569 782 176
Γ −1 −1 +1 −20.980 603 362 130
M +1 +1 +1 −20.996 851 414 820
M +1 −1 +1 −20.997 096 021 933
M −1 +1 +1 −20.974 317 519 453
M −1 −1 +1 −20.969 472 027 375

M/2(4) × +1 +1 −20.983 214
M/2 (4) × −1 +1 −21.005 970

6 × +1 +1 −
6 × −1 +1 −
Γ +1 +1 −1 −20.882 732 807 301
Γ +1 −1 −1 −20.882 732 807 301
Γ −1 +1 −1 −20.856 149 771 420
Γ −1 −1 −1 −20.854 596 490 758
M +1 +1 −1 −20.873 944 088 113
M +1 −1 −1 −20.848 993 609 395
M −1 +1 −1 −20.889 569 935 082
M −1 −1 −1 −20.871 871 568 823

TABLE I: Lowest energy in each sector considered

[1] S. Yan, D.A. Huse, and S.R. White, Spin-Liquid Ground State of

the S = 1/2 Kagome Heisenberg Antiferromagnet, Science 332,
1173 (2011).

[2] H.C. Jiang, Z.Y. Weng, and D. N. Sheng, Density Matrix Renor-

malization Group Numerical Study of the Kagome Antiferromag-

net, Phys. Rev. Lett. 101, 117203 (2008).
[3] M. Indergand, A. Läuchli, S. Capponi, and M. Sigrist, Bond

order wave instabilities in doped frustrated antiferromagnets:

”Valence bond solids” away from half filling, Phys. Rev. B 74,
064429 (2006).
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2

c E/N gap ∆E Eearlier ∆E,earlier

YC4 4 −0.446 77 0.2189 −0.4467

YC6 6 −0.439 15(5) 0.1396(6) −0.439 14 0.142(1)

YC8 8 −0.438 38(5) 0.135(3) −0.438 36(2) 0.156(2)

YC10 10 −0.4378(2) −0.4378(2) 0.070(15)

YC12 12 −0.4386(4) −0.4379(3)

XC8 6.9 −0.43826(4) 0.13899(1) −0.438 24(2) 0.1540(6)

XC12 10.4 −0.438 29(7) 0.134(4) −0.4380(3) 0.125(9)

XC16 13.9 −0.4391(3) 0.130(7)

XC20 17.3 −0.4388(8)

Torus 3 −0.436 278 0.2687 −0.436 278 0.2687 [47]

Torus 4 −0.4383(2) 0.151 −0.435 91 0.140 [31]

Torus 6 −0.4383(3) 0.1148(1) −0.43111 0.105 [31]

TABLE I. Ground state energy per site (E/N) and gaps for

L = ∞ cylinders (circumference c). Errors are from extrapo-

lation; comparisons are with Ref. [57] except for the tori.

limit system sizes, and DMRG favors open boundary con-

ditions (OBCs) over preferable periodic boundary condi-

tions (PBCs). The conventional compromise [57], taken

also by us, is to consider cylinders, i.e. PBCs along the

short direction (circumference c) and OBCs along the

long direction (length L) where boundary effects are less

important. Cost is dominated exponentially by circum-

ference c. We use two different 1D mappings (labeled as

XC and YC plus cylinder size) [67] to check for undesired

mapping dependencies of the DMRG results. Instead of

earlier Abelian U(1) DMRG with up to 8 000 ansatz

states, we employ non-Abelian SU(2) DMRG [68, 69]

based on irreducible representations corresponding to

16 000 ansatz states in a U(1) approach. This has crucial

advantages: available results can be verified with much

higher accuracy. The circumference of the cylinders can

be increased by almost 50 % from 12 to 17.3 lattice sites

(up to 726 sites in total), strongly reducing finite size ef-

fects; we also consider tori of up to 108 sites. We can

eliminate the spin degeneracy that necessitates pinning

fields in U(1)-symmetric simulations and avoid artificial

constraints in gap calculations, making them more accu-

rate and reliable. We also present results on spin, dimer

and chiral correlation functions, the structure factor and

topological entanglement entropy. All data agree with a

gapped non-chiral Z2 spin liquid; other QSL proposals

for the KAFM are inconsistent with at least one of the

numerical results.

Energies.–Energies for cylinders of fixed c and L are ex-

trapolated in the truncation error of single-site DMRG

[70]; bulk energies per site are extracted by a subtrac-

tion technique [66] and extrapolated to L → ∞. Re-

sults for various 1D mappings and c are displayed in Ta-

ble I. We also show the spin (triplet) gap to the S = 1

spin sector. We confirm and extend earlier results [57].

At 16 000 states, DMRG is highly accurate; negligible

changes in energy for substantially larger c support that

-0.45

-0.445

-0.44

-0.435

-0.43

 0  0.05  0.1  0.15  0.2  0.25  0.3

e
n
e
rg

y 
p
e
r 

si
te

inverse circumference

DMRG cylinders
Yan et al

HVBC
DMRG upper bound
MERA upper bound

2D estimate, Yan
2D estimate, this work

FIG. 1. Bulk energies per site. Lengths are in units of lattice

spacings. The HVBC result [18, 19], and the upper bounds

of MERA [56] and DMRG [57] apply directly to the thermo-

dynamic limit; 2D estimates are extrapolations.

the thermodynamic limit energy is found, which we place

at −0.4386(5) (Fig. 1). Similar to Ref. [57] we find the

energy to be significantly below that of VBC states and

no trace of a VBC in the correlation patterns. Except

for the edges, bond energies are fully translationally in-

variant. All results are consistent with strict variational

upper bounds obtained without extrapolations from in-

dependent DMRG calculations for infinitely long cylin-

ders using the iDMRG variant [71], which are below the

VBC energies.

On the issue of a spin (triplet) gap [45, 72], Yan et
al. [57] argue in favor of a small, but finite spin gap.

SU(2) DMRG computes the S = 1 state directly and

more efficiently; boundary excitations are excluded by

examining local bond energies. We find the spin gap

(Table I and Fig. 2) to remain finite also for cylinders

of large c. Whereas the results for small c agree with

the S = 1 state energies and gaps reported in [57], they

display significant differences for larger c, perhaps due

to the more complex earlier calculation scheme. SU(2)-

invariant results evolve more smoothly with c, allowing
a tentative extrapolation to a spin gap ∆E = 0.13(1) in
the thermodynamic limit. Size dependence is small, in

line with very short correlation lengths. The finite spin

gap contradicts conjectures of a U(1) or other gapless

spin liquids. For the calculation of the singlet gap found

to be finite in Ref. [57], SU(2) DMRG does not offer a

significant advantage to be reported here.

Correlation Functions.–For all cylinders, we find an

antiferromagnetic spin-spin correlation function ��Si · �Sj�
along different lattice axes with almost no directional de-

pendence. Exponential fits with a very short correlation

length of ξ � 1 (Fig. 4(a)) were consistently better than

power law fits, in agreement with a spin gap. This is not

consistent with an algebraic spin liquid [23], where the

correlations are predicted to decay according to a power

3

|Ψex� is guaranteed for large p provided the starting state
is not orthogonal to |Ψex�, i.e., for �Ψex|ΨVMC� �= 0.
However, on large cluster sizes, only a few steps can be
efficiently performed and here we consider the case with
p = 1 and p = 2 (p = 0 corresponds to the original
starting variational wave function). Subsequently, an es-
timate of the exact ground-state energy may be achieved
by the method of variance extrapolation: for sufficiently
accurate states, we have that E ≈ Eex + constant × σ2,
where E = �Ĥ�/N and σ2 = (�Ĥ2� − �Ĥ�2)/N are the
energy and variance per site, respectively. Whence, the
exact ground-state energy Eex can be extracted by fitting
E vs σ2 for p = 0, 1, and 2.

The energy, its variance, and other physical proper-
ties of the wave functions corresponding to p = 0, 1,
and 2 Lanczos steps are obtained using standard VMC
method. Moreover, the pure variational approach may
be improved by using the FN approach, in which the
high-energy components of the variational wave function
are (partially) filtered out. [53] In particular, in the FN
Monte Carlo method, the ground state of an auxiliary
FN Hamiltonian is obtained and the approximation con-
sists in assigning the nodal surface a priori, based upon a
given guiding wave function, which is generally the best
variational state. The energies obtained in this way are
variational, [53] and hence we have a controlled approx-
imation of the original problem. Here, the guiding wave
function is obtained by optimizing the mean-field state
of Eq. (2) using the method described in Refs. [55, 56].
Then, we find the best Lanczos parameters αp and finally
we perform the VMC and FN Monte Carlo calculations
for |Ψp−LS� with p = 0, 1, and 2.

Results. We performed our variational calculations on
toric clusters with mixed periodic-antiperiodic bound-
ary conditions on the mean-field Hamiltonian of Eq. (3),
which ensure non-degenerate wave functions at half fill-
ing. We first consider the 48-site cluster (i.e., 4× 4× 3).
As our starting (p = 0) variational wave functions, we
take three different spin liquids, namely, (i) the U(1)
Dirac spin liquid, which has a Fermi surface consisting
of two points. [15, 16] The structure of the wave function
is such that 10% of the configurations |x� (in which elec-
trons reside on different sites of the lattice with given spin
along the z direction) have zero weight (i.e., �x|Ψ� = 0).
(ii) The uniform RVB spin liquid, which consists of a
large circular spinon Fermi surface, [17] and has 35% of
the configurations with zero weight. (iii) The Z2[0,π]β
spin liquid, which is fully gapped [57] and has a negligi-
ble (0.001%) number of configurations with zero weight.
The zero-weight configurations are not visited by the ran-
dom walk in the variational Monte Carlo method. The
effect of two Lanczos steps on these wave functions is
shown in Fig. 1 (see also Table I for the actual val-
ues of the energies of the U(1) Dirac state). Our esti-
mate of the ground-state energy on the 48-site cluster
is thus E/J = −0.437845(4), which is comparable with
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FIG. 4. (Color online) Intensity plot of the static spin struc-
ture factor S(q) on the 192-site cluster.

the DMRG estimate on a torus. [14, 58] Also the best
pure variational energies are comparable within the two
methods, see Table I. We want to stress the fact that the
extrapolated energy is the same (within error bars) upon
starting from all three wave functions. This is mainly due
to the fact that, on relatively small clusters, few Lanczos
steps are enough to filter out the high-energy components
of the initial wave function and get a good estimation of
the ground-state energy.

On larger sizes, the extrapolations of U(1) and
Z2[0,π]β states deviate, the former one giving a slightly
lower extrapolation, see Fig. 2 for the 192-site cluster.
This fact suggests that the actual ground state is better
described by a gapless algebraic U(1) Dirac state, rather
than a gapped topological Z2 spin liquid, as reported
by DMRG calculations. In the following, for obtaining
the ground-state energies on larger clusters we used only
the U(1) Dirac wave function as the starting variational
state. In Table I, we report our best results on different
clusters (see the Supplementary Material for plots of the
variance extrapolations on 108- (see Fig. 6) and 144-site
(see Fig. 7) clusters. Also see Fig. 8). We would like to
emphasize that our best variational energy on a 108-site
cluster is significantly lower compared to the correspond-
ing DMRG one, see Table I.

By using the ground-state energy estimates on different
cluster sizes, we performed a finite size extrapolation, see
Fig. 3. Our final estimate for the energy of the infinite
two-dimensional system is:

E2D
∞ /J = −0.4365(2). (5)
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Low Energy Spectrum (N=36)

C. Lhuillier et al., PRB 1997, EPJB 1998, EPL 2009
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Low Energy Spectrum (N=42b)

AML, R. Johanni, R. Moessner

still rather dense spectrum !
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Low Energy Spectrum (N=48)
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Low Energy Spectrum (N=48)
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Inversion symmetry breaking ?

Low Energy Spectrum (N=48)
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Z2 topological degeneracy ?

Low Energy Spectrum (N=48)
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Low Energy Spectrum (N=48)
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Real space spin-spin correlations

spin correlations are small, but strongest and staggered on paths which wrap 
around the sample

Is this a feature of a spin liquid ? 

36d
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AML, J. Sudan and E. Sorensen, 
PRB 83, 212401 (2011)
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N=48
ground state

Dimer-Dimer correlations
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Effective Quantum Dimer Model

Model properties. The numerical results for the Hamil-
tonian given in Eq. !42" presented in Ref. 7 !corresponding
in fact to an earlier extremely close 14th order estimation of
the model" have been summarized in the phase diagram of
Fig. 3. Here, we have introduced two extra parameters; !i" !
to interpolate !linearly" between the “Heisenberg point” #see
Eq. !42"$ at !=1 and the “RK point” of Ref. 38 !denoted
ĤRK below" at !=0. !ii" A finite pinwheel amplitude J12.
This double interpolation can be summarized in the two-
parameter Hamiltonian

!43"

where J=1 and the RK Hamiltonian has been defined in Ref.
38 with "=−1 /4.33

In agreement with series expansions31 and earlier
work27,30 on the QHAF, the GS of our corresponding ef-
fective model #see Eq. !42"$ is found to be a VBC with a
2%3#2%3 supercell of up triangles !carrying 36 sites"
whose underlying dimerization pattern corresponds to an
honeycomb-lattice arrangement of the resonating “perfect”

hexagons !colored in blue in Fig. 3". Because J12=0, the
Heisenberg effective model given in Eq. !42" is also charac-
terized by a degeneracy of the even and odd resonating pin-
wheels of the motive !colored in yellow in Fig. 3". As
pointed out in Ref. 31 this leads to an extra Ising-type de-
generacy. Remarkably, the numerical results show also that
the “Heisenberg point” lies very close to the critical line
which separate the VBC phase from an extended dimer liq-
uid phase similar to the one at the “RK point.” Interestingly,
a general field-theoretic framework39 based on a double
Chern-Simons theory correctly describes such a quantum
critical point: one considers the spectrum of visons !i.e., to-
pological defects" in the dimer !so-called Z2" liquid phase,
and studies how they condense, the condensation of visons
leads to VBC order. Our approach applied to the kagome
lattice as well as other numerical studies of a generic QDM
on the triangular lattice40 strongly support such a scenario.
Even though the Z2 phase has no broken symmetry, it does
have a topological order. In principle, the topological order
can coexist with the VBC, and so their disappearance at a
common critical point without fine tuning, can be considered
as a non-Landau-Ginzburg-Wilson transition.41

IV. CONCLUDING REMARKS

In summary, a systematic nonperturbative method has
been developed to describe quantitatively the low-energy
physics of frustrated QHAF. Provided that the latter is gov-
erned by fluctuations of !short-range" singlets !which is be-
lieved to happen in many cases", this method is fairly general
and can be applied, in principle, to any lattice geometry. The
low-energy effective model takes the form of a generalized
quantum dimer model which is proven to be local, a physical
requirement. Complete practical formalism is presented as
well as other important general results. It is also shown that
the expansion scheme can be pursued up to high orders and
the most relevant terms can be resummed.

As a practical implementation of the method, we have
considered the much debated kagome QHAF where a fully
resummed parameter-free GQDM can be obtained. Although,
the resulting model bears a sign problem !e.g., could not be
simulated by QMC techniques", ED results up to clusters
with 108 sites can be performed7 showing strong evidence in
favor of a large supercell VBC. Also, it turns out that, in
some extended parameter space, the effective model of the
kagome antiferromagnet lies in the close vicinity of a critical
line toward a topological quantum dimer liquid phase, some-
how clarifying the low-energy puzzle of the original spin
model. Let us recall that a similar approach has also been
applied to the frustrated square lattice.37 This shows that ef-
fective GQDM can efficiently describe the most frustrated
quantum magnets and greatly help to understand their prop-
erties on larger !smaller" length !energy" scales compared,
e.g., to standard ED techniques. It could be used also in three
dimensions to tackle the quantum antiferromagnet, e.g., on
the hyper-kagome lattice.

A number of Hamiltonian extensions could easily be in-
cluded in the following approach like !i" other SU!2"-
invariant terms as multiple exchange or longer-range ex-

J12

1/4

γ

Heisenberg

RK

1

Z2 dimer liquid

VBC 36-site
“odd”

P–

VBC 36-site
“even”

P+

QCP

Critical line

λ

FIG. 3. !Color online". Semiquantitative phase diagram of the
extended GQDM for the kagome lattice as a function of the pin-
wheel resonance amplitude J12 and the parameter $ #see Eq. !43"$.
The two dashed blue lines represent !i" an interpolation !Ĥeff+ !1
−!"ĤRK between the RK model and the effective model for the
Heisenberg quantum antiferromagnet and !ii" a cut at $=1 along
J12, and correspond to the simulations performed in Ref. 7. Red
lines are qualitative phase transitions. Note that for $%0.9, a finite
J12 lifts the degeneracy between two VBC’s with identical 36-site
unit cells but opposite parities P& of their resonating pinwheels
!yellow stars".
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Sec. II B 2. Up to the chosen order, this requires !i" the enu-
meration of all terms appearing in Ĥ, !ii" a careful enumera-
tion of fusion rules that proliferate as the order increases, !iii"
the expansion of Ô−1/2, and !iv" the evaluation of
Ô−1/2ĤÔ−1/2. Note that the two last steps explicitly require
using the fusion rules obtained in step !ii". The details and
results of such a procedure up to order !14 are too lengthy to
be presented in this paper and are therefore provided as
supplementary material at Ref. 8 in which we include all the
relevant fusion rules up to order !14 as well as extensions of
Tables II and III.

C. Resummation

A simple inspection of Table III reveals that all the lead-
ing processes in the effective Hamiltonian are elementary
diagrams in the sense defined in Sec. II B 3. Indeed, none of
the terms enclosing only one hexagon can be split in subpro-
cesses. This important remark shows that the resummation
scheme of elementary diagrams presented above applies di-
rectly. In particular, Eq. !40" immediately leads to the re-
summed amplitudes of the effective Hamiltonian presented
in Table III. The explicit form of Ĥeff is obtained by setting
!= i /#2 which leads to

!42"

D. Discussion

General remarks. Note that the kinetic part of this
Hamiltonian33,34 is quite close to the one originally proposed
by Zeng and Elser18 with only small differences in the mag-
nitudes of the processes, differences introduced by our
infinite-order resummation scheme. This provides strong evi-
dence that the expansion indeed converges rapidly. However,
very importantly, our Hamiltonian includes also diagonal
!i.e., potential" terms which turn out to play a major role but
which were not included in Eq. !7" of Ref. 18 based on a
different expansion scheme.35 Indeed, the low-energy gap
presented in Fig. 3 in Ref. 18, whose magnitude is approxi-
mately 36"0.0055J$J /5, splits two sectors with 2 and 1
flippable hexagon!s", respectively !see Fig. 4 in the same
reference". Interestingly, the value J /5 is precisely the am-
plitude of the potential term disadvantaging flippable hexa-
gons present in the effective Hamiltonian !42". This strongly
suggests that this gap, known to be absent from the exact
spectrum of the Heisenberg Hamiltonian,36 is an artifact pro-
duced by truncating the expansion. As already mentioned
!see Sec. II B 2 and Table I" the traditional expansion
scheme,6,18 by modifying the hierarchy of terms in the ex-
pansion, as a tendency to push away to higher orders in ! the
emergence of processes in the effective Hamiltonian. On the
contrary, including such a potential term is likely to close
this gap and brings the Hamiltonian given in Eq. !42" closer
to the actual gapless low-energy phenomenology of the
kagome antiferromagnet.

Another important remark is that the amplitude of the
kinetic !and potential" pinwheel process,

denoted J12 below, exactly vanishes at all orders. As dis-
cussed below including a finite J12 in the model lifts a very
special degeneracy of the ground-state !GS" manifold.

Large scale numerical computation. In contrast to the
case of the frustrated square lattice,37 for the kagome lattice
we obtain an effective model whose leading coefficients have
alternating signs precluding any stochastic approach. How-
ever, Lanczos exact diagonalizations can be preformed on
relatively large clusters7 due to the very constrained nature of
the dimer basis that greatly limits the number of states
%2N/3+1 compared to 2N for SU!2" spin-1/2 models&. Further-
more, group theory techniques can be applied to block diag-
onalize the Hamiltonian matrix in each of its irreducible rep-
resentations !IRREP" hence further reducing the practical
number of degrees of freedom. For example, for the most
interesting clusters with N=3n2 or 9m2 sites !which possess
all relevant space-group symmetries of the infinite lattice"
such as the 36-, 48-, 108-, and 144-sites clusters, the increas-
ing Hilbert space sizes of their smallest !largest" IRREP are
roughly on the order of 15 !170", 70 !2"103", 80"106

!950"106", and 200"109 !3"1012", respectively. Hence,
current supercomputers enable to tackle the 108-sites cluster
while the larger 144-site cluster might be reachable within a
few decades.
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QDM with slightly
enhanced length-8
resonance amplitude

Now in the Z2 liquid region !

Displays short-ranged
diamond VBC correlations

Can explain quantum
numbers of Z2 liquid +
finite size splitting of topo
levels

But inversion symmetry
breaking level(s) not explained
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Conclusions & Outlook

Highly parallel MPI exact diagonalization for S=1/2 spin systems up to 48 sites

Low energy spectrum reveals no sign of translational symmetry breaking 

Possible inversion symmetry breaking  and / or Z2 topological degeneracy ?

Short range diamond VBC correlations, as in DMRG. 

Correlation functions in excited states (ongoing)

Square kagome ? Valence bond crystal or spin liquid ?

Läuchli, Honecker P8

Figure 5: Left: Kagome lattice with the algorithmic three-sublattice structure used in the MPI-parallel

exact diagonalization code. Right: Illustration of the square-kagome lattice consisting of corner sharing

triangles, as the kagome lattice. In this lattice the shortest loops are of length four instead of length six

as in the kagome lattice. The expected two-fold degenerate valence bond crystal according to Ref. [66]

consists of half of the squares forming a singlet (red boxes), while the remaining sites pair up in loops

of length 8 (illustrated with hashed blue lines).

time and simply recalculate more of the information which used to be stored in the lookup

tables.

Beyond the S = 1/2 codes discussed so far we also want to develop codes for larger spin

S > 1/2, both for conventional SU(2) Heisenberg-like models and SU(N) magnetism.

In order to calculate thermodynamic properties for small systems using the complete eigen-

basis of the Hamiltonian we will also integrate and use distributed memory implementations of

full diagonalization libraries, such as Scalapack or ELPA [65].

3.1.2 Frustrated quantum magnets

In this project we intend to investigate large samples of the S = 1/2 quantum antiferromagnet

on the kagome lattice. We have already been able to obtain the low energy spectrum of a 48

site sample in all singlet sectors. The spectrum exhibits an interesting low energy structure,

with hints towards an interesting topological degeneracy. In a first step we want to calculate

a number of observables in the low lying wave functions, in order to ascertain the topological

nature of the collapsing levels. Of particular importance will be observables such as the full

dimer-dimer correlation functions, scalar chirality correlation functions, or correlation density

matrices. Another interesting diagnostics will be provided by the entanglement spectrum of

large blocks winding around the torus in one direction.

With the existing three-sublattice code we can also directly study a related model, the S= 1/2

Heisenberg model on a 48 site square-kagome (“squagome”) lattice [66]. This lattice is closely

related to the standard kagome lattice due to their common corner sharing triangle geome-

try. However there exist two different types of closed loops of length 4 and 8 respectively,

as opposed to the length 6 loops in the kagome lattice, see the right side of Fig. 5 for an il-

lustration. It has been suggested that the ground state of this model is a valence bond crystal

with a twofold degenerate ground state [66], but so far no numerical evidence in this direc-

tion is available [67]. We believe that the 48 site sample is the first sample which combines a

symmetry-breaking compatible lattice geometry with sufficiently long loop lengths for paths

around the torus directions, such that a VBC should be easily detected in case it exists.

Since kagome systems with larger spin S > 1/2 are basically not studied at all, despite many

existing kagome-like materials with S > 1/2, we intend to investigate and explain the low

energy spectra of kagome samples with up to 24 sites for S = 1 and up to 21 sites for S = 3/2.

These simulations might help to develop an understanding whether S > 1/2 systems already

behave qualitatively like semiclassical systems, or whether they form genuine quantum ground

states.

A further interesting application of the three-sublattice code is the calculation of the exci-
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Thank you for your attention !


