Schwinger boson mean field theory: numerics for the energy landscape and gauge excitations in two-dimensional antiferromagnets

arXiv:1207.4058

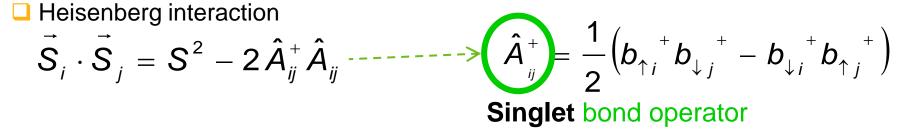
Grégoire Misguich Institut de Physique Théorique, CEA Saclay, France

Schwinger boson representation & mean-field approximation

Spin operators

$$\vec{S}_{i} = \frac{1}{2} b_{i\alpha}^{+} \vec{\sigma}_{\alpha\beta} b_{i\beta} \qquad \alpha, \beta = \uparrow, \downarrow$$

+ constraint $b_{i\uparrow}^{+} b_{i\uparrow} + b_{i\downarrow}^{+} b_{i\downarrow} = 2S$ at each site



Mean-field approximation [Arovas & Auerbach 1988, Read & Sachdev 1989]

$$A_{ij}^{+}\hat{A}_{ij} \longrightarrow \hat{A}_{ij}^{+} \left\langle \hat{A}_{ij} \right\rangle + \left\langle \hat{A}_{ij}^{+} \right\rangle \hat{A}_{ij} - \left| \left\langle A_{ij} \right\rangle \right|^{2}$$

$$= a_{ij}^{-} = -a_{ji}^{-} \left\{ \frac{1}{2} \left\langle b_{\uparrow i}^{+} b_{\downarrow j}^{+} - b_{\downarrow i}^{+} b_{\uparrow j}^{+} \right\rangle_{MF}^{-} = a_{ij}^{-} \right\}$$

$$= 2S^{4}^{-} \text{ chemical potential } \lambda_{i}^{-}$$

Typical mean-field phase diagram

□ So far, most studies have focused on the (mean-field) ground-state properties, assuming the solution is *uniform* -- or with a small unit cell.

Example of phase diagram on non-partite lattices, such as triangular or kagome [Sachdev 92, Wang & Vishwanath 2006]

Gapped Z ₂ spin liquid	K _c	Magnetic LRO	→ K=2S
gapped spinons, short-range correlations No broken symmetry		Long -range magnetic (boson condensation)	order

What is missing: gauge degrees of freedom (confinement, ...), instabilities to VBC, ...

Mean field & large-N

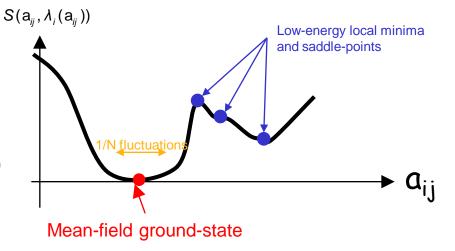
Introduce N "flavors" of bosons [Sp(N) Read & Sachdev 1991]

$$\begin{pmatrix} b_{i\uparrow}^{+}, b_{i\downarrow}^{+} \end{pmatrix} \xrightarrow{SU(2) \to Sp(N)} \begin{pmatrix} b_{i\uparrow1}^{+}, b_{i\downarrow1}^{+} \end{pmatrix}, \begin{pmatrix} b_{i\uparrow2}^{+}, b_{i\downarrow2}^{+} \end{pmatrix} \cdots \begin{pmatrix} b_{i\uparrowN}^{+}, b_{i\downarrowN}^{+} \end{pmatrix}$$

$$Partition function
$$Z_{N} = \int D[a_{ij}(\tau), \lambda_{i}(\tau)] \exp \left(- N \underbrace{S(a_{ij}, \lambda_{i})}_{\text{single -flavour}} \right) \\ = \underbrace{S(a_{ij}, \lambda_{i})}_{\text{boson free energy}} \right)$$$$

□ Large N: Z_N dominated by **saddle-point** of S

- Finding (time-independent) saddle-points is equivalent to solving self-consistently the mean-field Hamiltonian.
- Goal: explore numerically this "energy landscape" and (hopefully) get some insight about the large but finite-N physics



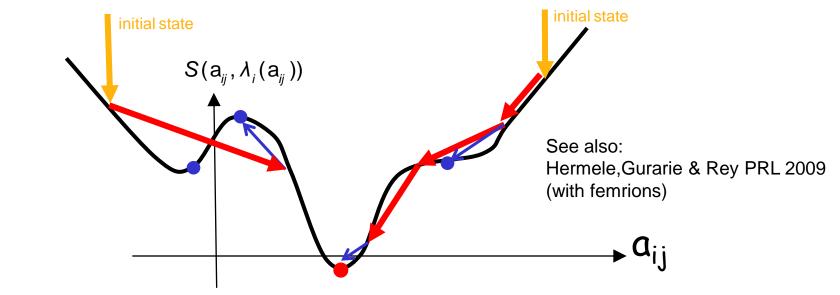
An algorithm to search for saddle-points

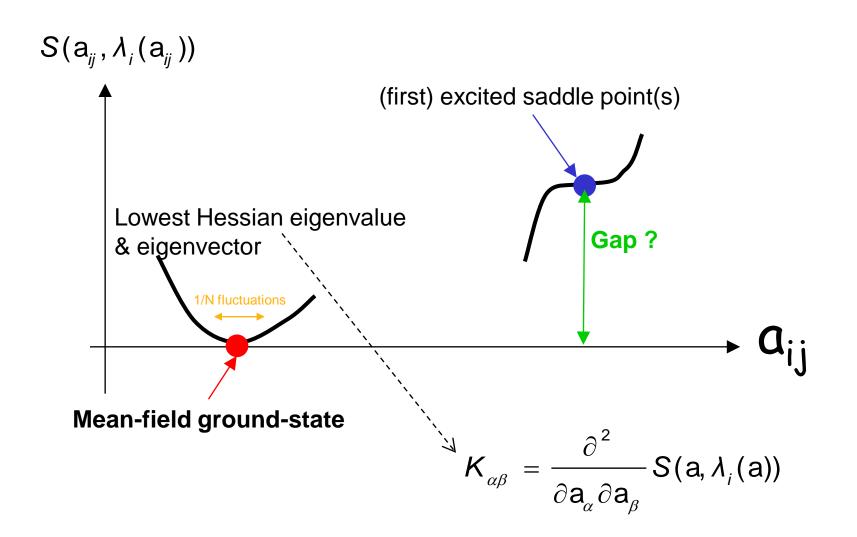
Two stages:

- → 1. iterations of the self-consistency equations: $a_{ij} \rightarrow \langle \hat{A}_{ij} \rangle \rightarrow a_{ij} \rightarrow \langle \hat{A}_{ij} \rangle \rightarrow \cdots$
 - Minimize the energy derivatives using the Levenberg-Marquardt method.
 (= adaptative steepest-descend + Gauss-Newton)

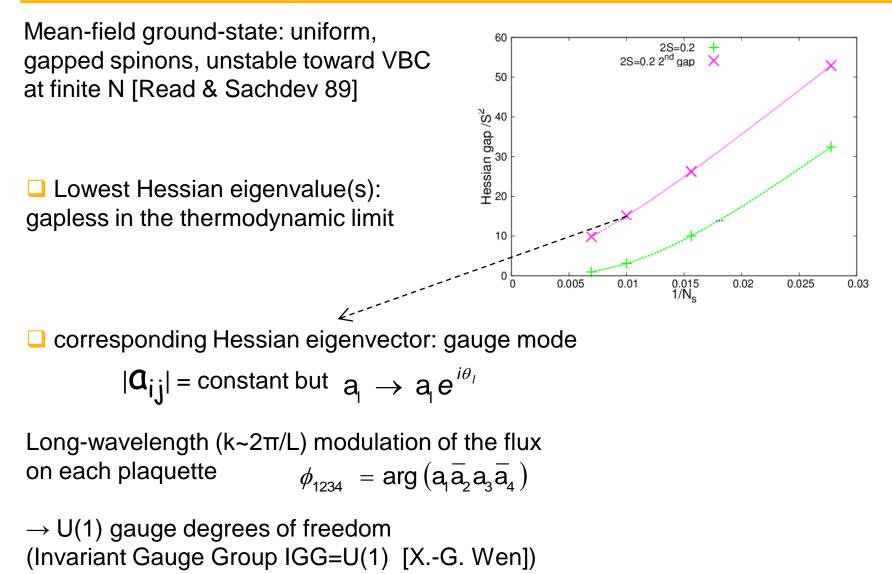
NB: No so fast, because each step requires to compute the λ_i as a function of the a_{ii}

- Repeat with thousands of random initial conditions until no new low-energy solution is found.
- \rightarrow list of low-energy local extrema and saddle-points



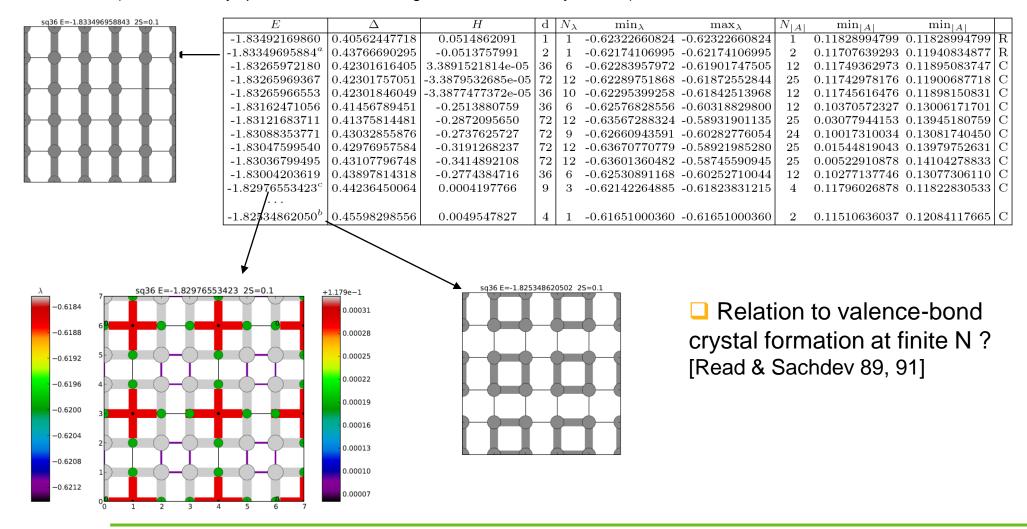


Square lattice S<S_c: Hessian



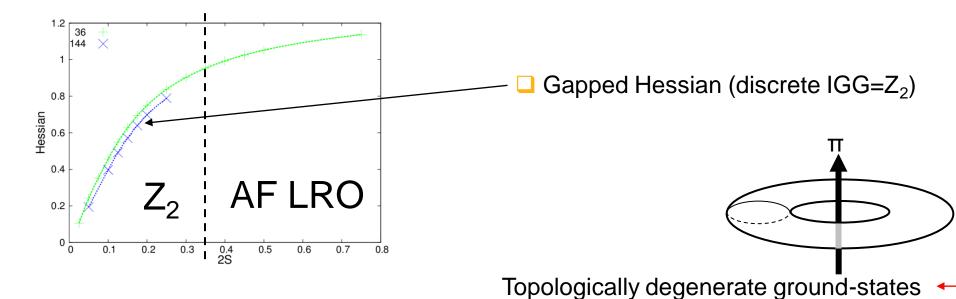
Square lattice S<S_c: excited saddle-points

□ High density of saddle points: energy spacing << spin gap Δ (observe the tiny spatial modulations \rightarrow high numerical accuracy needed)



G. Misguich

Triangular lattice S<S_{c:} Z₂ liquid phase



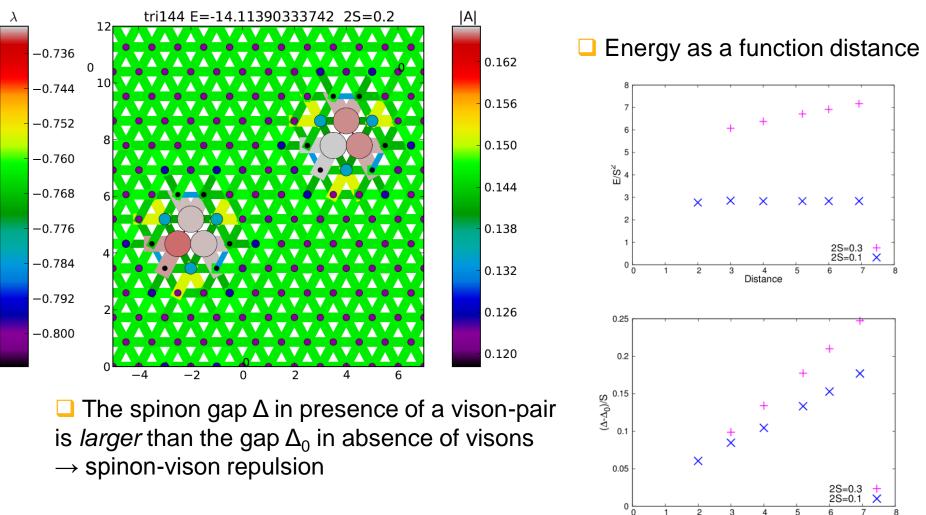
Excited saddle points (N=36, 2S=0.1)

[E	Δ	Н	d	N_{λ}	\min_{λ}	\max_{λ}	$N_{ A }$	$\min_{ A }$	$\max_{ A }$	
	-1.77115513853	0.39183413870	0.2418792448	1	1	-0.63927958247	-0.63927958247	1	0.09721004221	0.09721004221	R
	-1.76857445623	0.43969994315	0.1404951036	3	1	-0.63620536809	-0.63620536809	2	0.09694182615	0.09756074413	R
	-1.76558449027	0.40008559551	-0.0136673394	108	13	-0.64036695527	-0.61163933625	30	0.08631046645	0.10220320383	C
	-1.76556438644	0.39881698544	-0.0662494156	216	21	-0.64094448900	-0.60807754792	57	0.07142251452	0.11045947514	\mathbf{C}
	-1.76519815707	0.40323866935	-0.0476017475	216	21	-0.64101212209	-0.62149883058	57	0.08166138572	0.10941122095	$ \mathbf{C} $
	-1.76517640350	0.40348584568	-0.0574617718	432	36	-0.64242077150	-0.62028199544	108	0.08102625728	0.11240116020	\mathbf{C}
	-1.76512811482	0.40255745524	-0.0675887556	216	21	-0.64418307267	-0.62192577975	57	0.07214207918	0.11553853523	\mathbf{C}
	-1.76498033616	0.40426965800	-0.0822323880	216	18	-0.64027903292	-0.62235496321	56	0.07818420245	0.11549233664	$ \mathbf{C} $
	-1.76494386569	0.40647240030	-0.0077675537	108	12	-0.64031335557	-0.61976563929	31	0.08656330909	0.10201782841	\mathbf{C}
	-1.76490270376	0.41103320490	0.0552851450	216	18	-0.64030870204	-0.62463756694	56	0.08904499619	0.10413653140	$ \mathbf{C} $
	-1.76486322625	0.40885376933	-0.0517770911	432	36	-0.64144886953	-0.62152076605	108	0.08370457723	0.10627245220	\mathbf{C}
	-1.76481070231	0.40714839383	-0.0588744760	216	18	-0.64059451058	-0.62076171059	56	0.08285231897	0.10673538608	\mathbf{C}

?

Triangular lattice: Z₂ vortices in the gapped phase

 \Box Bond amplitude (and λ) modulations in a vison-pair saddle-point



Distance

Kagome lattice - preliminary results

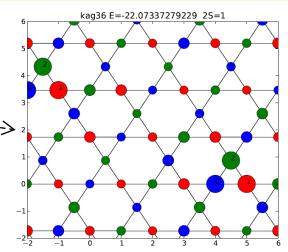
The mean-field ground-state is not the $\sqrt{3}x\sqrt{3}$ state ! (at least on 36, 48 and 108 sites clusters and S>0.2)

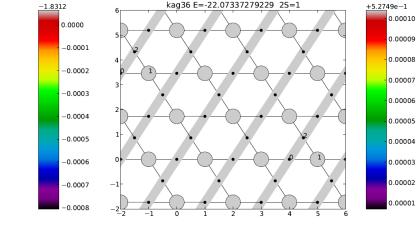
High density of low-energy saddle-points----

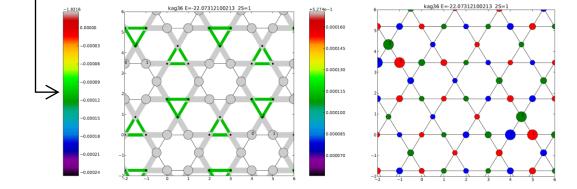
- Some saddle-points are associated to classical planar configuration,

but some other are not (complex fluxes / chiral)...

- connection between VBC patterns & classical planar states







So far:

□ On small systems (<50 sites), we can find numerically the first low-energy saddlepoints (+Hessian), without any symmetry assumtpion.

□ The energy landscape gives some information concerning finite-N gauge degrees of freedom (photons, visons).

Next steps:

- More numerics on the kagome lattice
- Instanton calculation for tunneling processes between local minima ?

(vison dynamics, ...)