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Interesting directions in frustrated magnetism

Spin liquids and disorder
» disorder as fact of life

B
» disorder as diagnostics S
E
» new disorder phases g
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» AHE, Weyl metals, ...
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Material realisations

» long-ongoing search ...

Method-+model development
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» new phases and d.o.f.
» soluble models in d > 2
» 2d DMRG
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HOW gauge fieIdS can emerge (K)ITP activities for many years

High-energy d.o.f.: spins
-+ constraint due to interactions
Origin of ‘hardcore constraint’
» quantum dynamics of singlet formation

> local energetics: ice rule

> slave-particle treatment maxs tutorial
= Low-energy d.o.f.: gauge field
» local (but can be redundant)

» fluxes/charges: can be ‘physical’ d.o.f
> spin-charge separation; visons; ...

» often unstable



Genesis of new degrees of freedom

Fractionalisation
> electrons—holons+spinons
» electrons—Laughlin q.p.
» magnetic moments— monopoles
» ions—fract. charge
More prosaic: phase transitions
» phonons, magnons,...
» D — 1 dimensional domain walls
Other extended d.o.f.?

> polymers, cosmic strings, ...

> in magnetism?



Outline: magnets as loop models

Loops and strings/worms in the Coulomb phase

» Ising and bionic Potts Coulomb phases

» Coupling to itinerant electrons

» Kasteleyn transition, simulations and log-corrections
RVB physics and the loop soup

> Neel order coexisting with dipolar bond correlations

Flat band ferromagnets

» as Pauli-correlated percolation



Loops and worms in the ice/six-vertex model

Corner-sharing square/tetrahedra
» Ising spins as basic d.o.f.
Each square/tetrahedral unit
> two up/two down spins

> realises six-vertex model

Two red and two blue sites each
» worms = alternating red/blue
» emergent gauge flux = spins!
» adjacent red (blue) spins form
red (blue) loops

» fully-packed two-color loop
model Kondev-+Henley



Statistics of loops

Algebraic length distribution

» but finite average loop length 10 3
(24 acbosen Vs. 227) . 10’
> 2d vs. 3d qualitatively different h"*;:Zj
Specific properties of 3d - 10?

» two populations: (non-)winding i

» finite fraction of sites on each of

longest loop
» 6% of spins on non-w. loops

Different effective descriptions

» 2d critical percolation
» 3d Brownian motion
» topological phase!




Intuitive picture for monopoles

Simplest picture does not work: disconnect monopoles
N — [N . - S

Next best thing: no string tension between monopoles:

NG - == - S

Two monopoles form a dipole:
> connected by tensionless ‘Dirac string’

» Dirac string is observable



Signatures of loops — ‘Dirac strings’ i cotaboration

Neutron scattering in spin ice

» saturate spins with field

» Kasteleyn transition

» flipped spins occur in strings/loops
> loops execute 'random walk’




Use for numerical SimU|ati0nS Newman+Barkema; Gingras et al; Isakov et al; . . .

Algorithm flips worms — weighted by length of worm

> in d = 3, each MC move flips finite fraction of sample
> can simulate unconventional phase transition very accurately
> log-corrections at upper critical dim. of Kasteleyn transition
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Itinerant electrons—double exchange

Consider (double-exchange) model: electrons hop only along loops
> zero-point energy favors short loops
> transition to short-loop phase cf Nahum+chaker @S density increases
= L. Jaubert



Signature of loops — ‘glassy order’

Heisenberg magnet (pyrochlore CsNiCrFg)
» Cr/Ni coloured red/blue
> species ice rule Banks+Bramwell

Cr-Cr and Ni-Ni exchange larger than Cr-Ni

» dimensional reduction: decoupled
ordered 1D loops

Finite prob. to be on same loop
= fractal magnetic LRO

» fate of state under fluctuations?




Pyrochlore Potts afm: a bionic Coulomb liquid

From Ising to Heisenberg via Potts
» Potts still discrete but spans 3D

» more components (e.g. from .
spin-orbital?)
> Potts ice rule gives 4-colouring
model (a)
Potts AFM: unit contain all colors

» 4-colouring model on
square/diamond

» dipolar algebraic correlations
Effective field theory

» Three independent emergent
gauge f|e|ds cf. Chern+Wu

(0)




Bionic excitations

Defects charged under two gauge fields

» Potts nature of spins shows up in

matter content
» Heisenberg: charges independent, —

no longer quantised o

» Corresponding worms/Dirac strings =

have same statistics as in spin ice AN
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Néel and dipolar correlations in RVB

Resonating valence bond wavefunctions

> parent of superconducting state?pwa F—p——%

> singlet-dominated phase h

Encodes magnetic correlations

» on square lattice, long(short)-range ]
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RVB have (no) Néel order tiang etal Va

Nature of bond (energy) correlations?

> proximity to valence-bond solid in <

2D
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» what happens on 3D cubic lattice?
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Correlations from RVB wavefunctions sunedand: seach, sandvik

(Si-8j) = NP Y2, 4(dlSi - Sjle)

Wl Bond correlators
» contribution if i,j on same loop

» contributions more

= properties of loop soup? complex
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Results for cubic n.n. RVB
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Loop soup has two populations

> long loops give rise to Neel order ¢

Bond correlators have algebraic dipo- .

fields

> Néel order can disappear
independently 001

lar form ot
» different power law from 007 TS

. , 006
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Connections to physical/mathematical problems

Coulomb Phase - 2D Pol)@ers at
3D Weinnb et Halperin mt in 2D

PRB (1983)
lantier et Saleur
PRL (1987)

Planar Percolation

* O(1) percolating cluster
= 0(1) winding loop in 2D
Brownian Motions = 1 percolating hull = 1 loop
\ same fractal dimension D;= 7/4
“ Smirnov
\ CRASP 2001

Schramm-Loewner
\ Evolution SLE_5

\
\ /EEEIH
¥ Pioneer Points of Lakea )

Brownian Motions



Origin of pairwise magnetic interactions

Anderson superexchange

Ferromagnetism _ el
uncertainty principle

Pauli principle
o(p)

LT
1

antisymmetric real space wavefctn:
V() =@(R)d(p=n—r) H=—t3c o+ US;nin,
» suppresses Coulomb repulsion ;o —|t?/U

» node: kinetic energy cost > kinetic energy gain



Removing kinetic energy: flat bands

How to get rid of kinetic energy? ||||
» need constant kinetic energy
(may be nonzero) '

= cf. degeneracy of Hund's rule

In lattice, need oo effective mass
» E(k) = (hk)?/2m* =0

= flat (dispersionless) band
< ‘local modes’

= frustrated lattices




Flat-band ferromagnetism

Hubbard model:

H= —tZCLCJ‘U + UZ, nitnjy

> kinetic 4 interaction energy

Single electron states

» kinetic energy constant in flat
band

Many-body states

» on-site repulsion invisible to
ferromagnetic state

Model: (decorated) Tasaki lattice

» simple orthogonal basis
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Quantum-statistical effective interaction

Electrons with overlapping wavefunctions have aligned spins

» cluster wavefunction L + 1-fold degenerate

L
| EREn

L=4 W=L+1=5 L=1, W=(1+1)"=16
Nature of statistical interaction

» geometric

» range-free but bounded by In2 per particle

» multi-particle interaction: not two-body decomposable
> ‘entropic interaction’: finite weight ratios at T =0



Ferromagnetic transition as percolation problem

Ferromagnetic transition: need infinite cluster

> otherwise no symmetry breaking

Compare percolation

» emergence of spanning cluster with O(N)
Sites Mielke Tasaki

» non-trivial weights: Pauli-correlated
percolation

Complexity reduction
» quantum many-body problem — classical

combinatorics




Exact solution in d =1

Continuous transition at density n =1

> new structure compared to

standard percolation

Weird lattices exist in reality!
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Higher dimension: efficient simulations

Simulations much harder than standard percolation
» but much easier than quantum ones
Percolative transition to ferromagnetism

» transition around n =~ 0.65

» first-order transition: density jumps with chemical potential
» for canonical ensemble, phase separation is evident




Moment size and cluster distribution

Maximal moment size only at p = 1 (full coverage)
» near full coverage, AS x (1 — p)*
» below percolation: no moment
> magnetic structure of coexistence regime unkonwn!

Cluster-size distribution never algebraic (first order)
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Summary: magnetic extended d.o.f.

One-dimensional strings/loops/worms o
» Spin ice (loops/worms)
» fractal order; Dirac strings in neutron

scattering; efficient simulations; ... e e
. " 1712
» Potts ice
» bionic charges and strings N N -

» loops in RVB physics
» long-range magnetic order
independent of dipolar bond order
Percolative transition for flat bands |
» Pauli correlated percolation with
quantum statistical weight

» first-order transition; unsaturated
magnetism; large-scale simulations;
coexistence properties?




