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Some routes to spin-liquid phases (and 
general topological orders)

General- dimensional reductions: low-dimensional systems 
do not exhibit long range order (symmetries rigorously 
lead to spin liquid type behavior)

Exact solutions: Including systems directly derived from 
the Hubbard model on pyrochlore lattices which exhibit 
exact deconfined excitations and “Kitaev like” systems 
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Dimensional reductions and spin liquids

Global Symmetry Breaking Orders (e.g. Magnets)
Landau paradigm to matter classification 

in terms of an Order Parameter
Topological Order (e.g., Spin Liquids, Quantum Hall, Gauge 

Theories) -   no obvious broken symmetry 

What characterizes topological orders ?
Non-local Order Parameters?????
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T  > Tc

M = 0M ≠ 0
Disordered PhaseBroken Symmetry Phase

Symmetry and Phase Transitions
T  < Tc

T 
M ≠ 0

Tc
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Local order parameters
In a ferromagnet, a local expectation value is different 

for different orthogonal ground states (GSs)

Applying different boundary conditions can lead, at sufficiently 
low temperatures to spontaneous symmetry breaking

Local Measurements can distinguish the GSs

〈gα|M̂ |gα〉 #= 〈gβ |M̂ |gβ〉

〈M̂〉α #= 〈M̂〉β

T = 0

T != 0

6



What is TQO?
Colloquially, TQO is often very loosely referred to as order whose GS 
degeneracy depends on the surface topology of the manifold on 
which the physical system is embedded.

Our working definition: Robustness

〈gα|V̂
m|gβ〉 = c δαβ , ∀ α, β ∈ S0,

Perturbation Theory:
〈gα| V̂ Ḡ0V̂ . . . Ḡ0V̂

︸ ︷︷ ︸

m factors V̂

|gβ〉 = c δαβ , ∀ α, β ∈ S0

Ḡ0 = (ε0 − H0)
−1

P̂⊥

Non-Distinguishability: Given a quasi-local operator V̂
m
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Ḡ0 = (ε0 − H0)
−1

P̂⊥

Non-Distinguishability: Given a quasi-local operator V̂
m

7



What is TQO?

Our working definition: Robustness

〈gα|V̂
m|gβ〉 = c δαβ , ∀ α, β ∈ S0,

Perturbation Theory:
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A d-dim GLS is a group of transformations 
that leave the theory invariant such that the minimum non
empty set of fields that are changed under the symmetry

operation occupies a d-dim region

Gauge-Like-Symmetries (lead to dim. reductions 
and TQO)

Given a D-dim theory:

d=0 (Gauge) d < D (Gauge-Like) d=D (Global)

d ≤ D

GdGroup:
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Gauge-Like-Symmetries

H = −K
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p
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klσ
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D = 2
p
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[Jxσ
x
i σ

x
i+êx
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∏

j

exp[−(i/2)θσz
j ]

9



 Exactly solvable systems with  fractionalized deconfined 
excitations. 

Example: the half-filled Hubbard model on the pyrochlore 

HHubb = −t

�

�ij�,σ

d
†
iσdjσ + U

�

i

ni↑ni↓,

H̃Hubb = H + J3

�

��ij��

�Si · �Sj

J1 =
4t2

U
−

160t4

U3
+O

�
t6

U5

�
,

J2 =
40t4

U3
+O

�
t6

U5

�
.

J3 =
4t4

U3
+O

�
t6

U5

�

- effective 4th order Hamiltonian at half-filling 
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 Fractionalization and deconfinement on 
the pyrochlore lattice

HKlein =
J1

2

�

�
�S

2
� +

J2

4

�

�
�S

4
�

�S� is the total spin of a tetrahedral unit  
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 Fractionalization and deconfinement on 
the pyrochlore lattice

J2 = −J1 (K = Kc = 4J/5)

HK =
12
5

J

�

�
P�

Intra-unit projection operator onto maximal total spin
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 Fractionalization and deconfinement on 
the pyrochlore lattice

HK =
12
5

J

�

�
P�All ground states are 

linear superpositions 
of dimer states.
Provable consequences: deconfined 

excitations, spin-charge separation,..., 
extensive degeneracy and  critical 
correlations in an extended finite 

temperature region about solvable point 
(the latter assuming a gap and linear 

independence) 
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 Fractionalization and deconfinement on 
the pyrochlore lattice

HK =
12
5

J

�

�
P�

Trivially exact deconfined excitations
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HK =
12
5

J

�

�
P�

Trivially exact deconfined excitations

Two- and three-dimensional 
fractionalization 
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Some solvable spin-liquids (e.g., Kitaev’s honeycomb model) 
are simple Majorana systems in disguise

The elusive Majorana fermion

Ettore Majorana: 1906-1938(?)

1937:  “Real” counterpart to a Dirac  fermion 
 

{cli, cl�i�} = 2δl,l�δi,i� , c†li = cli
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The elusive Majorana fermion
The “real and imaginary parts” of a Dirac 
fermion are Majorana fermions. 
A representation:

dl =
1√
2
(cl1 + icl2), d†l =

1√
2
(cl1 − icl2)

2Ns/2

Hilbert space dimension of         Majorana fermions scales as  Ns
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The elusive Majorana fermion
High energy physics:  neutrino(?) 
Condensed matter: p-wave superconductors(?), 
interface between topological insulators and
s-wave superconductors(?), Quantum Hall states(?),
semiconductor wires on s-wave superconductors
 

                                                                                                                                                                                                                                                                                                                                                

                                         V. M. Mourik et al (Science 2012)
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This talk: Majorana-Pauli spin dualities

Most of the work to date focuses on non-interacting Majorana fermions. 
We wish to map interacting Majorana systems in an arbitrary number 
of dimensions to Pauli spin systems for which much is known.
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Intermezzo
the tool: the bond-algebraic approach to 

dualities (incl. fermionization)
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Quantum Hamiltonians are built as a sum of quasi-local operators
We call these BONDS:

 

  

A bond algebra for H is the set of all linear combinations of
products of bonds 

   

“Bond algebras” and their symmetries
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Exposing Dualities
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Exposing Dualities

Bonds are more fundamental objects than the 
elementary degrees of freedom
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elementary degrees of freedom

The special character of various systems including statistics of their 
basic constituents [Bose, Fermi (Dirac or Majorana), spin, or 

other], etc. may be irrelevant. In the calculation of most physically 
measurable quantities such as various non-vanishing correlation 

functions, entropies, complexities, and free energies, only 
composite quantities (the bonds) appear.
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The special character of various systems including statistics of their 
basic constituents [Bose, Fermi (Dirac or Majorana), spin, or 

other], etc. may be irrelevant. In the calculation of most physically 
measurable quantities such as various non-vanishing correlation 

functions, entropies, complexities, and free energies, only 
composite quantities (the bonds) appear.

Space-time, momentum, spin (or other) coordinates are (generally 
non-unique) labels for bonds. Bonds can automatically be gauge or 
Lorentz invariant.  It is possible to reformulate the quantum (and 

classical) problem using only measurable quantities. We 
reformulated electrodynamics with only the gauge invariant 

interaction terms (the bonds).
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DUALITIES are one-to-one, onto mappings 
between bond algebras that preserve every 
algebraic relation between bonds: 

  and        are dual if there is an

homomorphism between their bond algebras

When are two Hamiltonian dual? 
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Example of Self-Duality:    
                Ising chain in a transverse field

σ σσσσ
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BOND ALGEBRA

σx
i

Every bond                 anti-commutes with two bonds  
 
Every bond          anti-commutes with two bonds σx

σxσzσz

σzσz
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SELF-DUALITY AUTOMORPHISM

σx
i

σx
i

Dual 

ΦDHomomorphism          : 
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Mapping is 
Unitarily implementable

Ising chain in a transverse 
field is self-dual, meaning:

j ↔ h
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Interacting Majorana fermion - 
- Pauli spin Dualities
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Interacting Majorana Wire Networks
Consider a semiconductor Majorana wire 
network in any number of dimensions:

Pr ≡ izr2 cl1i1cl2i2 · · · clqr iqr
, r ∈ l1, · · · , lqr

Josephson tunneling

Charging energy

r

l

HM = −i

�

l

Jlcl1cl2 −
�

r

hrPr,

cl1

cl2

zr wires per SC grain

zr2 =

�
0 if zr is even,
1 if zr is odd.

(qr = 2zr)
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Examples in D=2

e1

e2
cl42

cl61 cl62

P

r

cl52

cl51

cl22

cl21

cl11 cl12cl32

Square lattice Majorana wire architecture
(B. Terhal et al, arXiv:1201.3757)  

Triangular network
(Z. Nussinov et al, arXiv:1203.2983)  
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Interacting Majorana Bond Algebra

Bond algebra:
(icl1cl2)2 = 1 = (Pr)2,

{Pr, icl1cl2} = 0 = {Pr� , icl1cl2},

r, r� ∈ l

r ∈ li, i = 1, 2, · · · , qrC.    for

{Pr, icli1cli2} = 0.

for

A.

B.

r
l

HM = −i

�

l

Jlcl1cl2 −
�

r

hrPr,

cl2

cl1
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Quantum Ising Gauge theories on planar networks

Pauli spin operators at the centers 
of all inter-grain links 

�Pr =
�

{l|r∈l}

σz
l .

whereHQIG = −
�

l

Jlσ
x
l −

�

r

hr
�Pr

r

l×
σµ
l

×
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Pauli-spin Bond Algebra

Bond algebra:

r, r� ∈ l

r ∈ li, i = 1, 2, · · · , qrC.    for

for

A.

B.

HQIG = −
�

l

Jlσ
x
l −

�

r

hr
�Pr

r

l×
σµ
l

(σx
l )2 = 1 = ( �Pr)2,

{ �Pr, σ
x
l } = 0 = { �Pr� , σx

l },

{ �Pr, σ
x
li} = 0.
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r

l×
σµ
l

Majorana network to QIG duality 
on general planar graphs

Hilbert space dimensions are the same 

HM = −i

�

l

Jlcl1cl2 −
�

r

hrPr,

HQIG = −
�

l

Jlσ
x
l −

�

r

hr
�Pr

33



r

l×
σµ
l

Majorana network to QIG duality 
on general planar graphs

Hilbert space dimensions are the same 

Trivially identical bond algebras!

HM = −i

�

l

Jlcl1cl2 −
�

r

hrPr,

HQIG = −
�

l

Jlσ
x
l −

�

r

hr
�Pr

33



r

l×
σµ
l

Majorana network to QIG duality 
on general planar graphs

Hilbert space dimensions are the same 

Trivially identical bond algebras!

Trivially dual systems!

HM = −i

�

l

Jlcl1cl2 −
�

r

hrPr,

HQIG = −
�

l

Jlσ
x
l −

�

r

hr
�Pr
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e1

e2
cl42

cl61 cl62

P

r

cl52

cl51

cl22

cl21

cl11 cl12cl32

Plaquette term
of lattice gauge theories

Transverse field

dual dual

Majorana network to QIG duality 
on the square lattice
HM = −

�

l

Jl(icl1cl2)−
�

r

hrcl11cl21cl32cl42

HQIG = −
�

l

Jlσ
x
l −

�

r

hrσ
z
l1σ

z
l2σ

z
l3σ

z
l4
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Critical Behavior 
The uniform square lattice Ising gauge theory lies in the 3D Ising 
universality class (and thus so does a spatially uniform Majorana 
network). Spin-glass behavior may appear for non-uniform systems.

σµ
lcl1 cl2
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Critical Behavior 
The uniform square lattice Ising gauge theory lies in the 3D Ising 
universality class (and thus so does a spatially uniform Majorana 
network). Spin-glass behavior may appear for non-uniform systems.

cl1 cl2

(J/h)cr = 0.29112
J/h

TQM

3D Ising universality class
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z z z z

z z z z

z z z z z

z z z

z z z

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

!σj

Majorana network to XXZ Honeycomb compass 
model duality on the square lattice

HXXZh = −
�

non-vertical links

Jl σ
x
rσ

x
r+êl −

�

vertical links

hr σ
z
rσ

z
r+êz

HQIGHM

dual

dual

dual
3D Ising
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e1

e2
cl42

cl61 cl62

P

r

cl52

cl51

cl22

cl21

cl11 cl12cl32

dr↑ =
1√
2
(cl11 + icl32), d

†
r↑ =

1√
2
(cl11 − icl32),

dr↓ =
1√
2
(cl21 + icl42), d†r↓ =

1√
2
(cl21 − icl42)

Quantum Simulation of Hubbard-type models 

Mapping of Majorana to Dirac fermions 
leads to interacting Hubbard-type models

A possible mapping is (see Fig.):

nrσ = d†rσdrσ
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e1

e2
cl42

cl61 cl62

P

r

cl52

cl51

cl22

cl21

cl11 cl12cl32

Hubbard-type Dictionary 

Ur(nr↑ − 1)(nr↓ − 1) = Ur(Pr − 1)

Intra-grain Majorana fermion interaction

 

Inter-grain Majorana fermion term

Spin polarization dependent electronic hopping and pairing

Jl
2
(d†r↓ + dr↓)(d

†
r+ê2↓ − dr+ê2↓) = −iJlcl21cl22

(compass-type terms)
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Hubbard-type Dictionary 

Ur(nr↑ − 1)(nr↓ − 1) = Ur(Pr − 1)

Intra-grain Majorana fermion interaction

 

Inter-grain Majorana fermion term

Spin polarization dependent electronic hopping and pairing

Jl
2
(d†r↓ + dr↓)(d

†
r+ê2↓ − dr+ê2↓) = −iJlcl21cl22

(compass-type terms)

This Hubbard-type system lies in the 3D Ising universality class 
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How about simulating the standard Hubbard model ?

e1

e2
cr2

cr+e21

r

cr+e22

cr4

cr1

cr+e13cr3

HHubbard = − t

�

r,α,a=1,2

i(cracr+eαa+2 + cr+eαacra+2)

+ U

�

r

(Pr − 1)

It can be simulated in principle but 
requires additional Josephson couplings
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Summary of Main Results
Lightning review of Majorana fermions

Quick Introduction to the Bond algebra technique

Dualities between Majorana networks and quantum Ising gauge 
theories. Adduce Ising, spin-glass, and other behavior. 

The XXZ honeycomb compass model = 3D Ising model

Square lattice Hubbard compass model = 3D Ising

Hubbard model might be simulated by Majorana network
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Dimensional reduction inequalities
HDD-dim system with Hamiltonian 

ηi

ψi

ηi if i ∈ Cj

ψi if i /∈ Cj

φi ={
Cj

The average of any quasi-local quantity              
is bounded from above by the absolute value of the 
mean of the same quantity when this quasi-local 
quantity is computed with a d-dimensional Hamiltonian       
that preserves the range of the interactions in the 
original D-dim system

f

Dimensional reduction and holography 
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�f�D =
�

{ψ}

�

{φ0}

f [φ0]
e−βE[φ0,ψ]

Z =
�

{ψ}

z[ψ]
Z

�
{φ0} f(φ0)e

−βE[φ0,ψ]

z[ψ]

�f�dl ≡ minψ �f�d[ψ] = �f�d[ψmin], �f�du ≡ maxψ �f�d[ψ] = �f�d[ψmax]

�f�dl ≤ �f�D ≤ �f�du

�f�dl : El[φ0,ψmin] and �f�du : Eu[φ0,ψmax]

Local effective boundary theories

φ(x) =

�
φ0(x) if x ∈ Γ
ψ(x) if x ∈ Λ̄

Λ

Γ

-

Dimensional reduction in classical systems:

f [φ] = f [φ0] localized observable
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Dimensional reduction inequalities
HDD-dim system with Hamiltonian 

ηi

ψi

ηi if i ∈ Cj

ψi if i /∈ Cj

φi ={
Cj

In some cases, due to symmetries both upper and lower bounds scale in 
the same way.

In other systems, stringent upper bounds (on, e.g., autocorrelation 
functions) can be derived due to “lower dimensional symmetries”. The 

effect of any additional symmetry breaking perturbations can be 
quantified with the bounds.

When combined with the d-dimensional 
GLSs noted earlier in this talk, this allows proofs 

of topological quantum order. 

43



Exact Dimensional Reduction

HXXY Y ZZ = −J
�

m∈ΛP
fcc

Om

H4IP = −J

4�

κ=1

Ns/4�

m=1

σ
z
κ,mσ

z
κ,m+1

Om = σ
x
m+a1−a2

σ
x
m+a3

σ
y
mσ

y
m+a2

σ
z
m+a3−a2

σ
z
m+a1

a1 =
ê2 + ê3

2
, a2 =

ê1 + ê3

2
, a3 =

ê1 + ê2

2

XXYYZZ model (Chamon; Bravyi, Leemhuis, Terhal)
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2

One-dimensional system (four decoupled Ising chains)

XXYYZZ model (Chamon; Bravyi, Leemhuis, Terhal)

44



Exact Dimensional Reduction

Duality connecting the two theories

HXXY Y ZZ = −J
�

m∈ΛP
fcc

Om

H4IP = −J

4�

κ=1

Ns/4�

m=1

σ
z
κ,mσ

z
κ,m+1

Om = σ
x
m+a1−a2

σ
x
m+a3

σ
y
mσ

y
m+a2

σ
z
m+a3−a2

σ
z
m+a1

a1 =
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Exact Dimensional Reduction and holography in the large n limit

large n vector theories are trivial (by comparison to large n matrix 
models)

H0 =
1
2

�

x,y

J(x− y)�φ(x) · �φ(y) =
1

2Ns

�

k

J(k)|�φ(k)|2,

H1 =
�

x

(�φ(x) · �φ(x))2

(0)�
= =

�
dDk

(2π)D

1
J(k) + rSelf-energy:
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Exact Dimensional Reduction and holography in the large n limit

�
dDk

(2π)D
δ(�− J(k)) =

����
dJeff

dk

����
−1

Jeff (k)=�

If two systems share the same density of states

ρ(�) =
�

dDk

(2π)D
δ(D)(�− J(k))

Σ(0) =
�

d�
ρ(�)
� + r

then they will have identical self-energies
This enables a universal reduction to a one dimensional system with 

a kernel Jeff (k) :
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Uniform background gauge 
Lmatter =

1
2
|Dµφν |2 − M2

2
|�φ|2 +

u

4!
|�φ|4 + ...

Dµ(x) = ∂µ − iθAµ(x)

Aµ(x)For uniform non-Abelian
[e.g., emulating background curvature     of preferred orderings 

(Nelson and Sachdev)], the density of states at low 
energies can be be lower dimensional (ZN, Phys. Rev. B 69, 014208)

and thus lower dimensional behavior appears. The low-energy 
entropy is also “holographic” (scaling with area). 

R
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Conclusions: Holography and dimensional reduction
 In any system, there are inequalities that bound the correlation functions by those in lower 

dimensional systems.

These inequalities become most potent when there are 
“lower dimensional symmetries” and, e.g., afford bounds on auto-correlation times

 
These effective dimensional reductions due to matching symmetries can become exact when there are 

exact dualities. 

Exact dualities can be derived by bond algebras that map two- and three-dimensional quantum 
systems to systems in lower dimensions

Universally, in the large n limit, exact dimensional reductions can be constructed by preserving the 
density of states
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Conclusions: There are exact spin-Majorana (and similar 
other) dualities, holography, and deconfinement
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