Spin-Majorana (and other) Dualities, Holography, and Deconfinement

Zohar Nussinov

Department of Physics - Washington University in St. Louis

Emilio Cobanera: Lorentz Institute

Gerardo Ortiz: Indiana University

KITP - September 20, 2012

Zohar Nussinov
 Department of Physics - Washington University in St. Louis

Emilio Cobanera: Lorentz Institute

Gerardo Ortiz: Indiana University

NSF (DMR-1106293)

KITP-September 20, 2012

Cristian Batista: Los Alamos National Lab

Bruce Normand: Renmin University

Stuart Trugman: Los Alamos National Lab

Some routes to spin-liquid phases (and general topological orders)

General- dimensional reductions: low-dimensional systems do not exhibit long range order (symmetries rigorously lead to spin liquid type behavior)

Exact solutions: Including systems directly derived from the Hubbard model on pyrochlore lattices which exhibit exact deconfined excitations and "Kitaev like" systems

Dimensional reductions and spin liquids

Global Symmetry Breaking Orders (e.g. Magnets)

 Landau paradigm to matter classification in terms of an Order ParameterTopological Order (e.g., Spin Liquids, Quantum Hall, Gauge Theories) - no obvious broken symmetry

What characterizes topological orders?
Non-local Order Parameters?????

Symmetry and Phase Transitions

Broken Symmetry Phase $\mathbf{M} \neq \mathbf{0}$

Local order parameters

In a ferromagnet, a local expectation value is different for different orthogonal ground states (GSS)

$$
\left\langle g_{\alpha}\right| \hat{M}\left|g_{\alpha}\right\rangle \neq\left\langle g_{\beta}\right| \hat{M}\left|g_{\beta}\right\rangle \quad T=0
$$

Applying different boundary conditions can lead, at sufficiently low temperatures to spontaneous symmetry breaking

$$
\langle\hat{M}\rangle_{\alpha} \neq\langle\hat{M}\rangle_{\beta} \quad T \neq 0
$$

Local Measurements can distinguish the GSs

What is TQO?

Colloquially, TQO is often very loosely referred to as order whose GS degeneracy depends on the surface topology of the manifold on which the physical system is embedded.

Our working definition: Robustness

Non-Distinguishability: Given a quasi-local operator \hat{V}^{m}

$$
\left\langle g_{\alpha}\right| \hat{V}^{m}\left|g_{\beta}\right\rangle=c \delta_{\alpha \beta}, \forall \alpha, \beta \in \mathcal{S}_{0}
$$

Perturbation Theory:

$$
\left\langle g_{\alpha}\right| \underbrace{\hat{V} \bar{G}_{0} \hat{V} \ldots \bar{G}_{0} \hat{V}}\left|g_{\beta}\right\rangle=c \delta_{\alpha \beta}, \forall \alpha, \beta \in \mathcal{S}_{0}
$$

m factors \hat{V}

$$
\bar{G}_{0}=\left(\epsilon_{0}-H_{0}\right)^{-1} \hat{P}_{\perp}
$$

What is TQO?

Our working definition: Robustness

 Non-Distinguishability: Given a quasilocal operator $\hat{V}^{m}$$$
\left\langle g_{\alpha}\right| \hat{V}^{m}\left|g_{\beta}\right\rangle=c \delta_{\alpha \beta}, \forall \alpha, \beta \in \mathcal{S}_{0}
$$

Perturbation Theory:

$$
\left\langle g_{\alpha}\right| \underbrace{\hat{V} \bar{G}_{0} \hat{V} \ldots \bar{G}_{0} \hat{V}}\left|g_{\beta}\right\rangle=c \delta_{\alpha \beta}, \forall \alpha, \beta \in \mathcal{S}_{0}
$$

m factors \hat{V}

$$
\bar{G}_{0}=\left(\epsilon_{0}-H_{0}\right)^{-1} \hat{P}_{\perp}
$$

What is TQO?

Order is evident only in non-local (topological) quantities

Our working definition: Robustness

 Non-Distinguishability: Given a quasi-local operator $\hat{V}^{m}$$$
\left\langle g_{\alpha}\right| \hat{V}^{m}\left|g_{\beta}\right\rangle=c \delta_{\alpha \beta}, \forall \alpha, \beta \in \mathcal{S}_{0}
$$

Perturbation Theory:

$$
\left\langle g_{\alpha}\right| \underbrace{\hat{V} \bar{G}_{0} \hat{V} \ldots \bar{G}_{0} \hat{V}}\left|g_{\beta}\right\rangle=c \delta_{\alpha \beta}, \forall \alpha, \beta \in \mathcal{S}_{0}
$$

m factors \hat{V}

$$
\bar{G}_{0}=\left(\epsilon_{0}-H_{0}\right)^{-1} \hat{P}_{\perp}
$$

What is TQO?

Order is evident only in non-local (topological) quantities

Order hidden to ordinary local probes

Our working definition: Robustness

 Non-Distinguishability: Given a quasi-local operator $\hat{V}^{m}$$$
\left\langle g_{\alpha}\right| \hat{V}^{m}\left|g_{\beta}\right\rangle=c \delta_{\alpha \beta}, \forall \alpha, \beta \in \mathcal{S}_{0},
$$

Perturbation Theory:

$$
\left\langle g_{\alpha}\right| \underbrace{\hat{V} \bar{G}_{0} \hat{V} \ldots \bar{G}_{0} \hat{V}}\left|g_{\beta}\right\rangle=c \delta_{\alpha \beta}, \forall \alpha, \beta \in \mathcal{S}_{0}
$$

Gauge-Like-Symmetries (lead to dim. reductions and TQO)

Given a D-dim theory:
A d-dim GLS is a group of transformations
that leave the theory invariant such that the minimum non empty set of fields that are changed under the symmetry operation occupies a d-dim region

$$
d=0 \text { (Gauge) }
$$

$$
d<D \text { (Gauge-Like) }
$$

$$
d=D \text { (Global) }
$$

Group: \mathcal{G}_{d}

Gauge-Like-Symmetries

$D=2$ $d=0 \quad$ (sing Gauge Theory)

$$
H=-K \sum_{p} \sigma_{i j}^{z} \sigma_{j k}^{z} \sigma_{k l}^{z} \sigma_{l i}^{z} \quad G_{i}=\prod_{s \in \mathrm{nn}} \sigma_{i s}^{x}
$$

$$
d=1 \quad \text { (Orbital Compass Model) }
$$

$$
H=-\sum_{i}\left[J_{x} \sigma_{i}^{x} \sigma_{i+\hat{e}_{x}}^{x}+J_{y} \sigma_{i}^{y} \sigma_{i+\hat{e}_{y}}^{y}\right]
$$

$$
O^{x}=\prod_{j \in C_{x}} i \sigma_{j}^{x}
$$

$$
O^{y}=\prod_{j \in C_{y}} i \sigma_{j}^{y}
$$

$$
d=D=2 \quad \text { (XY model) }
$$

$$
H=-J \sum_{\langle i j\rangle}\left[\sigma_{i}^{x} \sigma_{j}^{x}+\sigma_{i}^{y} \sigma_{j}^{y}\right]
$$

$$
U(\theta)=\prod \exp \left[-(i / 2) \theta \sigma_{j}^{z}\right]
$$

Exaclly solvable systems wihh fractionalized deconfined

 excitations.Example: the half-filled Hubbard model on the pyrochlore

$$
H_{\mathrm{Hubb}}=-t \sum_{\langle i j\rangle, \sigma} d_{i \sigma}^{\dagger} d_{j \sigma}+U \sum_{i} n_{i \uparrow} n_{i \downarrow},
$$

$\tilde{H}_{\text {Hubb }}=H+J_{3} \sum_{\langle\langle i j\rangle\rangle} \vec{S}_{i} \cdot \vec{S}_{j}$ - effective 4th order Hamiltonian at half-filling

$$
\begin{aligned}
& J_{1}=\frac{4 t^{2}}{U}-\frac{160 t^{4}}{U^{3}}+\mathcal{O}\left(\frac{t^{6}}{U^{5}}\right), \quad J_{3}=\frac{4 t^{4}}{U^{3}}+\mathcal{O}\left(\frac{t^{6}}{U^{5}}\right) \\
& J_{2}=\frac{40 t^{4}}{U^{3}}+\mathcal{O}\left(\frac{t^{6}}{U^{5}}\right)
\end{aligned}
$$

$$
H_{\mathrm{Hubb}}=-t \sum_{\langle i j\rangle, \sigma} d_{i \sigma}^{\dagger} d_{j \sigma}+U \sum_{i} n_{i \uparrow} n_{i \downarrow},
$$

$\tilde{H}_{\text {Hubb }}=H+J_{3} \sum_{\langle\langle i j\rangle\rangle} \vec{S}_{i} \cdot \vec{S}_{j}$ - effective 4th order Hamiltonian at half-filling

$$
\begin{aligned}
& J_{1}=\frac{4 t^{2}}{U}-\frac{160 t^{4}}{U^{3}}+\mathcal{O}\left(\frac{t^{6}}{U^{5}}\right), \quad J_{3}=\frac{4 t^{4}}{U^{3}}+\mathcal{O}\left(\frac{t^{6}}{U^{5}}\right) \\
& J_{2}=\frac{40 t^{4}}{U^{3}}+\mathcal{O}\left(\frac{t^{6}}{U^{5}}\right) .
\end{aligned}
$$

Fractionalization and deconfinement on

 the pyrochlore lattice

$$
H_{K l e i n}=\frac{J_{1}}{2} \sum_{\boxtimes} \vec{S}_{\boxtimes}^{2}+\frac{J_{2}}{4} \sum_{\boxtimes} \vec{S}_{\boxtimes}^{4}
$$

$\vec{S}_{区} \quad$ is the total spin of a tetrahedral unit

$$
H_{\text {Klein }}=\frac{J_{1}}{2} \sum_{\boxtimes} \vec{S}_{\boxtimes}^{2}+\frac{J_{2}}{4} \sum_{\boxtimes} \vec{S}_{\boxtimes}^{4}
$$

$\vec{S}_{\boxtimes} \quad$ is the total spin of a tetrahedral unit

Fractionalization and deconfinement on

 the pyrochlore lattice

$$
J_{2}=-J_{1} \quad\left(K=K_{c}=4 J / 5\right)
$$

Intra-unit projection operator onto maximal total spin

$$
H_{K}=\frac{12}{5} J \sum_{\boxtimes} \mathcal{P}^{区}
$$

$$
J_{2}=-J_{1} \quad\left(K=K_{c}=4 J / 5\right)
$$

Intra-unit projection operator onto maximal total spin

$$
H_{K}=\frac{12}{5} J \sum_{\boxtimes} \mathcal{P}^{区}
$$

Fractionalization and deconfinement on

 the pyrochlore latticeAll ground states are linear superpositions of dimer states.
Provable consequences: deconfined excitations, spin-charge separation,..., extensive degeneracy and critical correlations in an extended finite temperature region about solvable point

$$
H_{K}=\frac{12}{5} J \sum_{\boxtimes} \mathcal{P}^{\boxtimes}
$$

 (the latter assuming a gap and linear independence)

All ground states are linear superpositions of dimer states.
Provable consequences: deconfined excitations, spin-charge separation,..., extensive degeneracy and critical correlations in an extended finite temperature region about solvable point (the latter assuming a gap and linear

$$
H_{K}=\frac{12}{5} J \sum_{\boxtimes} \mathcal{P}^{\boxtimes}
$$

 independence)

Fractionalization and deconfinement on

 the pyrochlore lattice$$
H_{K}=\frac{12}{5} J \sum_{\boxtimes} \mathcal{P}^{\boxtimes}
$$

Trivially exact deconfined excitations

$$
H_{K}=\frac{12}{5} J \sum_{\boxtimes} \mathcal{P}^{\boxtimes}
$$

Trivially exact deconfined excitations

$$
H_{K}=\frac{12}{5} J \sum_{\boxtimes} \mathcal{P}^{\boxtimes}
$$

Trivially exact deconfined excitations

Two- and three-dimensional fractionalization

Some solvable spin-liquids (e.g., Kitaev's honeycomb model) are simple Majorana systems in disguise

The elusive Majorana fermion

Ettore Majorana: 1906-1938(?)
1937: "Real" counterpart to a Dirac fermion

$$
\left\{c_{l i}, c_{l^{\prime} i^{\prime}}\right\}=2 \delta_{l, l^{\prime}} \delta_{i, i^{\prime}}, \quad c_{l i}^{\dagger}=c_{l i}
$$

The elusive Majorana fermion

The "real and imaginary parts" of a Dirac fermion are Majorana fermions.
A representation:

$$
d_{l}=\frac{1}{\sqrt{2}}\left(c_{l 1}+i c_{l 2}\right), d_{l}^{\dagger}=\frac{1}{\sqrt{2}}\left(c_{l 1}-i c_{l 2}\right)
$$

Hilbert space dimension of N_{s} Majorana fermions scales as

$$
2^{N_{s} / 2}
$$

The elusive Majorana fermion

High energy physics: neutrino(?)
Condensed matter: p-wave superconductors(?), interface between topological insulators and s-wave superconductors(?), Quantum Hall states(?), semiconductor wires on s-wave superconductors

V. M. Mourik et al (Science 2012)

This talk: Majorana-Pauli spin dualifies

Most of the work to date focuses on non-interacting Majorana fermions. We wish to map interacting Majorana systems in an arbitrary number of dimensions to Pauli spin systems for which much is known.

Intermezzo

the tool: the bond-algebraic approach to dualities (ind. fermionization)

"Bond algebras" and their symmetries

Quantum Hamiltonians are built as a sum of quasi-local operators

 We call these BONDS:$$
H=\sum_{R} J_{R} \mathcal{O}_{R}
$$

A bond algebra for H is the set of all linear combinations of products of bonds
$\mathcal{A}_{H}=\left\{1, \alpha \mathcal{O}_{\mathcal{R}}, \beta \mathcal{O}_{R} \mathcal{O}_{R^{\prime}}, \mathcal{O}_{R}-\mathcal{O}_{R} \mathcal{O}_{R^{\prime}} \mathcal{O}_{R^{\prime \prime}}, \cdots\right\}$

Exposing Dualiies

Exposing Dualifies

Bonds are more fundamental objects than the elementary degrees of freedom

The special character of various systems including statistics of their basic constituents [Bose, Fermi (Dirac or Majorana), spin, or other], etc. may be irrelevant. In the calculation of most physically measurable quantities such as various non-vanishing correlation functions, entropies, complexities, and free energies, only composite quantities (the bonds) appear.

Space-time, momentum, spin (or other) coordinates are (generally non-unique) labels for bonds. Bonds can automatically be gauge or Lorentz invariant. It is possible to reformulate the quantum (and classical) problem using only measurable quantities. We reformulated electrodynamics with only the gauge invariant interaction terms (the bonds).
\qquad

When are two Hamiltonian dual?

H_{1} and H_{2} are dual if there is an

homomorphism between their bond algebras

DUALITIES are one-to-one, onto mappings between bond algebras that preserve every algebraic relation between bonds:

$$
\mathcal{O}_{R_{1}}^{1} \leftrightarrow \mathcal{O}_{R_{2}}^{2}
$$

Example of Self-Duality:

Ising chain in a transverse field

$$
H[j, h]=\sum_{i} j \sigma_{i}^{z} \sigma_{i+1}^{z}+h \sigma_{i}^{x}
$$

BOND ALGEBRA

$$
\sigma_{i-1}^{z} \sigma_{i}^{z} \quad \sigma_{i}^{z} \sigma_{i+1}^{z}
$$

$$
\sigma_{i-1}^{x} \quad \sigma_{i}^{x} \quad \sigma_{i+1}^{x}
$$

Every bond $\sigma^{z} \sigma^{z}$ anti-commutes with two bonds σ^{x}
Every bond σ^{x} anti-commutes with two bonds $\sigma^{z} \sigma^{z}$

SELF-DUALITY AUTOMORPHISM

Homomorphism Φ_{D} :
$\sigma_{i}^{z} \sigma_{i+1}^{z} \mapsto \sigma_{i}^{x}$
$\sigma_{i}^{x} \mapsto \sigma_{i-1}^{z} \sigma_{i}^{z}$

$$
\sigma_{i-1}^{z} \sigma_{i}^{z} \quad \sigma_{i}^{x} \quad \sigma_{i}^{z} \sigma_{i+1}^{z}
$$

Mapping is Unitarily implementable

$$
\mathcal{U}_{D} \sigma_{i}^{z} \sigma_{i+1}^{z} \mathcal{U}_{D}^{\dagger}=\sigma_{i}^{x} \quad \mathcal{U}_{D} \sigma_{i}^{x} \mathcal{U}_{D}^{\dagger}=\sigma_{i-1}^{z} \sigma_{i}^{z}
$$

Ising chain in a transverse field is self-dual, meaning:

$$
\begin{aligned}
\mathcal{U}_{D} H[j, h] \mathcal{U}_{D}^{\dagger} & =H[h, j] \\
j & \leftrightarrow h
\end{aligned}
$$

Interacting Majorana fermion -- Pauli spin Dualifies

Interacting Majorana Wire Networks

Consider a semiconductor Majorana wire network in any number of dimensions:

$$
H_{\mathrm{M}}=-i \sum_{l} J_{l} c_{l 1} c_{l 2}-\sum_{r} h_{r} \mathcal{P}_{r}
$$

Josephson funneling

z_{r} wires per SC grain
Charging energy $z_{r_{2}}=\left\{\begin{array}{llll}0 & \text { if } & z_{r} \text { is even, } \\ 1 & \text { if } & z_{r} \text { is odd. }\end{array}\right.$

$$
\mathcal{P}_{r} \equiv i^{z_{r_{2}}} c_{l_{1} i_{1}} c_{l_{2} i_{2}} \cdots c_{l_{q r} i_{q r}}, r \in l_{1}, \cdots, l_{q_{r}} \quad\left(q_{r}=2 z_{r}\right)
$$

Examples in $\mathrm{D}=2$

Triangular network
(Z. Nussinov et al, arXiv:1203.2983)

Interacting Majorana Bond Algebra

$H_{\mathrm{M}}=-i \sum_{l} J_{l} c_{l 1} c_{l 2}-\sum_{r} h_{r} \mathcal{P}_{r}$, Bond algebra:
A. $\left(i c_{l 1} c_{l 2}\right)^{2}=1=\left(\mathcal{P}_{r}\right)^{2}$,
B. for $r, r^{\prime} \in l$

$\left\{\mathcal{P}_{r}, i c_{l 1} c_{l 2}\right\}=0=\left\{\mathcal{P}_{r^{\prime}}, i c_{l 1} c_{l 2}\right\}$,
C. for $r \in l_{i}, i=1,2, \cdots, q_{r}$
$\left\{\mathcal{P}_{r}, i c_{l_{i} 1} c_{l_{i} 2}\right\}=0$.

Quantum Ising Gauge theories on planar networks

$$
H_{\mathrm{QIG}}=-\sum_{l} J_{l} \sigma_{l}^{x}-\sum_{r} h_{r} \widetilde{\mathcal{P}}_{r}
$$

where

$$
\widetilde{\mathcal{P}}_{r}=\prod_{\{l \mid r \in l\}} \sigma_{l}^{z}
$$

Pauli spin operators at the centers x of all inter-grain links

Pauli-spin Bond Algebra

$H_{\text {QIG }}=-\sum_{l} J_{l} \sigma_{l}^{x}-\sum_{r} h_{r} \widetilde{\mathcal{P}}_{r}$ Bond algebra:
A. $\left(\sigma_{l}^{x}\right)^{2}=1=\left(\widetilde{\mathcal{P}}_{r}\right)^{2}$,
B. for $r, r^{\prime} \in l$
$\left\{\widetilde{\mathcal{P}}_{r}, \sigma_{l}^{x}\right\}=0=\left\{\widetilde{\mathcal{P}}_{r^{\prime}}, \sigma_{l}^{x}\right\}$,
C. for $r \in l_{i}, i=1,2, \cdots, q_{r}$
$\left\{\widetilde{\mathcal{P}}_{r}, \sigma_{l_{i}}^{x}\right\}=0$.

Majorana network to Q|G duality on general planar graphs

Hilbert space dimensions are the same

Majorana network to QIG duality on general planar graphs

Trivially idenical bond algebras!

Majorana network to Q|G duality on general planar graphs

Majorana network to Q|G duality

on the square latifice

$$
H_{M}=-\sum_{l} J_{l}\left(i c_{11} c_{12}\right)-\sum_{r} h_{r} c_{11} c_{12} c_{12} c_{32} c_{1 c_{2}}
$$

Transverse field Plaquette term

 of lattice gauge theories
Critical Behavior

The uniform square lattice Ising gauge theory lies in the 3D Ising universality class (and thus so does a spatially uniform Majorana network). Spin-glass behavior may appear for non-uniform systems.

Critical Behavior

The uniform square lattice Ising gauge theory lies in the 3D Ising universality class (and thus so does a spatially uniform Majorana network). Spin-glass behavior may appear for non-uniform systems.

Critical Behavior

The uniform square lattice Ising gauge theory lies in the 3D Ising universality class (and thus so does a spatially uniform Majorana network). Spin-glass behavior may appear for non-uniform systems.

3D Ising universality class
$(J / h)_{\mathrm{cr}}=0.29112$

Majorana network to XXZ Honeycomb compass

model duality on the square lattice

H_{M}

dual

dual 30 lsing $/$ dual

Quantum Simulation of Hubbard--ypee models

Mapping of Majorana to Dirac fermions leads to interacting Hubbard-type models

A possible mapping is (see Fig.):

$$
d_{r \uparrow}=\frac{1}{\sqrt{2}}\left(c_{l_{1} 1}+i c_{l_{3} 2}\right), d_{r \uparrow}^{\dagger}=\frac{1}{\sqrt{2}}\left(c_{l_{1} 1}-i c_{l_{3} 2}\right),
$$

$$
d_{r \downarrow}=\frac{1}{\sqrt{2}}\left(c_{l_{2} 1}+i c_{l_{4} 2}\right), d_{r \downarrow}^{\dagger}=\frac{1}{\sqrt{2}}\left(c_{l_{2} 1}-i c_{l_{4} 2}\right)
$$

$$
n_{r \sigma}=d_{r \sigma}^{\dagger} d_{r \sigma}
$$

Spin polarization dependent electronic hopping and pairing (compass-type terms)

Hubbard-type Dictionary

This Hubbard-type system lies in the 3D Ising universality class
(compass-type terms)

How about simulating the standard Hubbard model ?

It can be simulated in principle but requires additional Josephson couplings

$$
H_{\text {Hubbard }}=-t \sum_{r, \alpha, a=1,2} i\left(c_{r a} c_{r+e_{\alpha} a+2}+c_{r+e_{\alpha} a} c_{r a+2}\right)
$$

$$
+U \sum_{r}\left(\mathcal{P}_{r}-1\right)
$$

Summary of Main Resulis

Lightning review of Majorana fermions
Quick Introduction to the Bond algebra technique
Dualities between Majorana networks and quantum Ising gauge theories. Adduce Ising, spin-glass, and other behavior.

The XXZ honeycomb compass model = 3D Ising model
Square lattice Hubbard compass model = 3D Ising
Hubbard model might be simulated by Majorana network

The average of any quasi-local quantity f is bounded from above by the absolute value of the mean of the same quantity when this quasi-local quantity is computed with a d dimensional Hamiltonian that preserves the range of the interactions in the original D-dim system

Dimensional reduction and holography

The average of any quasi-local quantity f
is bounded from above by the absolute value of the mean of the same quantity when this quasi-local quantity is computed with a d dimensional Hamiltonian that preserves the range of the interactions in the original D-dim system

The average of any quasi-local quantity f
is bounded from above by the absolute value of the mean of the same quantity when this quasi-local quantity is computed with a d-dimensional Hamiltonian that preserves the range of the interactions in the original D-dim system

Dimensional reduction inequalities

The average of any quasi-local quantity f is bounded from above by the absolute value of the mean of the same quantity when this quasi-local quantity is computed with a d-dimensional Hamiltonian that preserves the range of the interactions in the original D-dim system

Dimensional reduction in classical systems:

$\phi(\boldsymbol{x})=\left\{\begin{array}{cll}\phi_{0}(\boldsymbol{x}) & \text { if } & \boldsymbol{x} \in \Gamma \\ \psi(\boldsymbol{x}) & \text { if } & \boldsymbol{x} \in \bar{\Lambda}\end{array}\right.$
$f[\phi]=f\left[\phi_{0}\right]$ localized observable

$\langle f\rangle^{D}=\sum_{\{\psi\}} \sum_{\left\{\phi_{0}\right\}} f\left[\phi_{0}\right] \frac{e^{-\beta E\left[\phi_{0}, \psi\right]}}{\mathcal{Z}}=\sum_{\{\psi\}} \frac{z[\psi]}{\mathcal{Z}} \frac{\sum_{\left\{\phi_{0}\right\}} f\left(\phi_{0}\right) e^{-\beta E\left[\phi_{0}, \psi\right]}}{z[\psi]}$
$\langle f\rangle_{l}^{d} \equiv \min _{\psi}\langle f\rangle^{d}[\psi]=\langle f\rangle^{d}\left[\psi_{\text {min }}\right], \quad\langle f\rangle_{u}^{d} \equiv \max _{\psi}\langle f\rangle^{d}[\psi]=\langle f\rangle^{d}\left[\psi_{\text {max }}\right]$

$$
\langle f\rangle_{l}^{d} \leq\langle f\rangle^{D} \leq\langle f\rangle_{u}^{d}
$$

$\langle f\rangle_{l}^{d}: E_{l}\left[\phi_{0}, \psi_{\text {min }}\right]$ and $\langle f\rangle_{u}^{d}: E_{u}\left[\phi_{0}, \psi_{\text {max }}\right]$
Local effective boundary theories

Dimensional reduction inequalities

In some cases, due to symmetries both upper and lower bounds scale in the same way.

In other systems, stringent upper bounds (on, e.g., autocorrelation functions) can be derived due to "lower dimensional symmetries". The effect of any additional symmetry breaking perturbations can be quantified with the bounds.
\mathcal{C}_{j}
η_{i}
$\phi_{i}=\left\{\begin{array}{l}\eta_{i} \text { if } i \in \mathcal{C}_{j} \\ \psi_{i} \text { if } i \notin \mathcal{C}_{j}\end{array}\right.$

When combined with the d-dimensional GLSs noted earlier in this talk, this allows proofs of topological quantum order.

Exact Dimensional Reduction

XXYYZZ model (Chamon; Bravyi, Leemhuis, Terhal)

$$
\mathbf{a}_{1}=\frac{\hat{e}_{2}+\hat{e}_{3}}{2}, \mathbf{a}_{2}=\frac{\hat{e}_{1}+\hat{e}_{3}}{2}, \mathbf{a}_{3}=\frac{\hat{e}_{1}+\hat{e}_{2}}{2}
$$

$$
O_{m}=\sigma_{m+a_{1}-a_{2}}^{x} \sigma_{m+a_{3}}^{x} \sigma_{m}^{y} \sigma_{m+a_{2}}^{y} \sigma_{m+a_{3}-a_{2}}^{z} \sigma_{m+a_{1}}^{z}
$$

$$
\begin{aligned}
& H_{X X Y Y Z Z}=-J \sum_{m \in \Lambda_{f c c}^{P}} O_{m} \\
& H_{4 I P}=-J \sum_{\kappa=1}^{4} \sum_{m=1}^{N_{s} / 4} \sigma_{\kappa, m}^{z} \sigma_{\kappa, m+1}^{z}
\end{aligned}
$$

Exact Dimensional Reduction

XXYYZZ model (Chamon; Bravyi, Leemhuis, Terhal)

$$
\mathbf{a}_{1}=\frac{\hat{e}_{2}+\hat{e}_{3}}{2}, \mathbf{a}_{2}=\frac{\hat{e}_{1}+\hat{e}_{3}}{2}, \mathbf{a}_{3}=\frac{\hat{e}_{1}+\hat{e}_{2}}{2}
$$

$$
O_{m}=\sigma_{m+a_{1}-a_{2}}^{x} \sigma_{m+a_{3}}^{x} \sigma_{m}^{y} \sigma_{m+a_{2}}^{y} \sigma_{m+a_{3}-a_{2}}^{z} \sigma_{m+a_{1}}^{z}
$$

$$
\begin{aligned}
& H_{X X Y Y Z Z}=-J \sum_{m \in \Lambda_{f c c}^{P}} O_{m} \\
& H_{4 I P}=-J \sum_{\kappa=1}^{4} \sum_{m=1}^{N_{s} / 4} \sigma_{\kappa, m}^{z} \sigma_{\kappa, m+1}^{z}
\end{aligned}
$$

Exact Dimensional Reduction

XXYYZZ model (Chamon; Bravyi, Leemhuis, Terhal)

$$
\mathbf{a}_{1}=\frac{\hat{e}_{2}+\hat{e}_{3}}{2}, \mathbf{a}_{2}=\frac{\hat{e}_{1}+\hat{e}_{3}}{2}, \mathbf{a}_{3}=\frac{\hat{e}_{1}+\hat{e}_{2}}{2}
$$

$$
O_{m}=\sigma_{m+a_{1}-a_{2}}^{x} \sigma_{m+a_{3}}^{x} \sigma_{m}^{y} \sigma_{m+a_{2}}^{y} \sigma_{m+a_{3}-a_{2}}^{z} \sigma_{m+a_{1}}^{z}
$$

$$
\begin{gathered}
H_{X X Y Y Z Z}=-J \sum_{\substack{m \in \Lambda_{f c c}^{P}}} O_{m} \text { Duality connecting the two theories }
\end{gathered}
$$

One-dimensional system (four decoupled lsing chains)

Exact Dimensional Reduction

XXYYZZ model (Chamon; Bravyi, Leemhuis, Terhal)

$$
\mathbf{a}_{1}=\frac{\hat{e}_{2}+\hat{e}_{3}}{2}, \mathbf{a}_{2}=\frac{\hat{e}_{1}+\hat{e}_{3}}{2}, \mathbf{a}_{3}=\frac{\hat{e}_{1}+\hat{e}_{2}}{2}
$$

$$
O_{m}=\sigma_{m+a_{1}-a_{2}}^{x} \sigma_{m+a_{3}}^{x} \sigma_{m}^{y} \sigma_{m+a_{2}}^{y} \sigma_{m+a_{3}-a_{2}} \sigma_{m+a_{1}}^{z}
$$

Three-dimensional system

Duality connecting the two theories

$$
4 \quad N_{s} / 4
$$

One-dimensional system (four decoupled lsing chains)

Exact Dimensional Reduction and holography in the large n limit

large n vector theories are trivial (by comparison to large n matrix models)
$H_{0}=\frac{1}{2} \sum_{x, y} J(x-y) \vec{\phi}(x) \cdot \vec{\phi}(y)=\frac{1}{2 N_{s}} \sum_{\mathbf{k}} J(\mathbf{k})|\vec{\phi}(\mathbf{k})|^{2}$,

$$
H_{1}=\sum_{x}(\vec{\phi}(x) \cdot \vec{\phi}(x))^{2}
$$

Self-energy:

$$
=\int=\int \frac{d^{D} k}{(2 \pi)^{D}} \frac{1}{J(\mathbf{k})+r}
$$

Exact Dimensional Reduction and holography in the large n limit

If two systems share the same density of states

$$
\rho(\epsilon)=\int \frac{d^{D} k}{(2 \pi)^{D}} \delta^{(D)}(\epsilon-J(\mathbf{k}))
$$

then they will have identical self-energies $\Sigma^{(0)}=\int d \epsilon \frac{\rho(\epsilon)}{\epsilon+r}$ This enables a universal reduction to a one dimensional system with
a kernel $J_{e f f}(\mathbf{k})$:

$$
\int \frac{d^{D} k}{(2 \pi)^{D}} \delta(\epsilon-J(\mathbf{k}))=\left|\frac{d J_{\text {eff }}}{d k}\right|_{J_{\text {cff }}(k)}^{-1}=\overline{1}
$$

Uniform background gauge

$$
\mathcal{L}_{\text {matter }}=\frac{1}{2}\left|D_{\mu} \phi^{\nu}\right|^{2}-\frac{M^{2}}{2}|\vec{\phi}|^{2}+\frac{u}{4!}|\vec{\phi}|^{4}+\ldots
$$

$$
D_{\mu}(x)=\partial_{\mu}-i \theta A_{\mu}(x)
$$

For uniform non-Abelian $A_{\mu}(x)$
[e.g., emulating background curvature R of preferred orderings (Nelson and Sachdev)], the density of states at low energies can be be lower dimensional (ZN, Phys. Rev. B69, 014208) and thus lower dimensional behavior appears. The low-energy entropy is also "holographic" (scaling with area).

Conclusions: Holography and dimensional reduction

In any system, there are inequalities that bound the correlation functions by those in lower dimensional systems.

These inequalities become most potent when there are "lower dimensional symmetries" and, e.g., afford bounds on auto-correlation times

These effective dimensional reductions due to matching symmerries can become exact when there are exact dualities.

Exact dualities can be derived by bond algebras that map two- and three-dimensional quantum systems to systems in lower dimensions

Universally, in the large n limit, exact dimensional reductions can be constructed by preserving the
 density of states

In any system, there are inequalities that bound the correlation functions by those in lower dimensional systems.

These inequalities become most potent when there are "lower dimensional symmetries" and, e.g., afford bounds on auto-correlation times

These effective dimensional reductions due to matching symmerries can become exact when there are exact dualities.

Exact dualities can be derived by bond algebras that map two- and three-dimensional quantum systems to systems in lower dimensions

Universally, in the large n limit, exact dimensional reductions can be constructed by preserving the density of states

Conclusions: There are exact spin-Majorana (and similar other) dualities, holography, and deconfinement

Further reading:

Z. Nussinov and G. Ortiz, "Autocorrelations and Thermal Fragility of Anyonic Loops in Topologically Quantum Ordered Systems", Physical Review B 77, 064302 (2008) Zohar Nussinov, Gerardo Ortiz "Orbital order driven quantum criticality", Europhysics Letters 84 (2008) 36005
Z. Nussinov and G. Ortiz, "A symmetry principle for topological quantum order", Annals of Physics 324, Issue 5, Pages 977-1057 (2009)
G. Ortiz, E. Cobanera, an Z. Nussinov, "Dualities and the phase diagram of the p-clock model", Nuclear Physics B 854, 780 (2011)
Z. Nussinov, C. D. Batista, and E. Fradkin, "Intermediate symmetries in electronic systems: dimensional reduction, order out of disorder, dualities, and fractionalization", International Journal of Modern Physics B 20, 5239 (2006)

Most directly related to this talk:

Z. Nussinov and G. Ortiz, "Bond Algebras and Exact Solvability of Hamiltonians: Spin S=1/2 Multilayer Systems and Other Curiosities", Physical Review B 79, 214440 (2009)
E. Cobanera, G. Ortiz, and Z. Nussinov, "Unified approach to classical and quantum dualities", Physical Review Letters 104, 020402 (2010)
E. Cobanera, G. Ortiz, and Z. Nussinov, "The bond-algebraic approach to dualities", Advances in Physics 60, 679 (2011)
C. D. Batista and Z. Nussinov, "Generalized Elitzur's theorem and dimensional reductions", Physical Review B 72, 045137 (2005)
Z. Nussinov, G. Ortiz, and Emilio Cobanera, "Arbitrary Dimensional Majorana Dualities and Network Architectures for Topological Matter", Physical Review B 86, 085415 (2012) Z. Nussinov, G. Ortiz, and E. Cobanera, "Effective and exact holographies from symmetries and dualities in quantum systems", arXiv:1110.2179, Annals of Physics (2012)
Z. Nussinov, C. D. Batista, B. Normand, and S. A. Trugman, "High dimensional fractionalization and spinon deconfinement in pyrochlore antiferromagnets", Physical Review B 75, 094411 (2007)

Further reading:

Z. Nussinov and G. Ortiz, "Autocorrelations and Thermal Fragility of Anyonic Loops in Topologically Quantum Ordered Systems", Physical Review B 77, 064302 (2008) Zohar Nussinov, Gerardo Ortiz "Orbital order driven quantum criticality", Europhysics Letters 84 (2008) 36005
Z. Nussinov and G. Ortiz, "A symmetry principle for topological quantum order", Annals of Physics 324, Issue 5, Pages 977-1057 (2009)
G. Ortiz, E. Cobanera, an Z. Nussinov, "Dualities and the phase diagram of the p-clock model", Nuclear Physics B 854, 780 (2011)
Z. Nussinov, C. D. Batista, and E. Fradkin, "Intermediate symmetries in electronic systems: dimensional reduction, order out of disorder, dualities, and fractionalization", International Journal of Modern Physics B 20, 5239 (2006)

Most directly related to this talk:

Z. Nussinov and G. Ortiz, "Bond Algebras and Exact Solvability of Hamiltonians: Spin S=1/2 Multilayer Systems and Other Curiosities", Physical Review B 79 , 214440 (2009)
E. Cobanera, G. Ortiz, and Z. Nussinov, "Unified approach to classical and quantum dualities", Physical Review Letters 104, 020402 (2010)
E. Cobanera, G. Ortiz, and Z. Nussinov, "The bond-algebraic approach to dualities", Advances in Physics 60, 679 (2011)
C. D. Batista and Z. Nussinov, "Generalized Elitzur's theorem and dimensional reductions", Physical Review B 72, 045137 (2005)
Z. Nussinov, G. Ortiz, and Emilio Cobanera, "Arbitrary Dimensional Majorana Dualities and Network Architectures for Topological Matter", Physical Review B 86, 085415 (2012) Z. Nussinov, G. Ortiz, and E. Cobanera, "Effective and exact holographies from symmetries and dualities in quantum systems", arXiv:1110.2179, Annals of Physics (2012)
Z. Nussinov, C. D. Batista, B. Normand, and S. A. Trugman, "High dimensional fractionalization and spinon deconfinement in pyrochlore antiferromagnets", Physical Review B 75 , 094411 (2007)

