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General- dimensional reductions: low-dimensional systems
do not exhibit long range order (symmetries rigorously
lead to spin liquid type behavior)

Exact solutions: Including systems directly derived from
the Hubbard model on pyrochlore lattices which exhibit
exact deconfined excitations and “Kitaev like” systems




Dimensional reductions and spin liquids

= Global Symmetry Breaking Orders (e.g. Magnets)
Landau paradigm to matter classification

in terms of an Order Parameter

= Topological Order (e.g., Spin Liquids, Quantum Hall, Gauge
Theories) - no obvious broken symmetry

What characterizes topological orders ?




Symmetry and Phase Transitions
T <T, T >T,
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Local order parameters

In a ferromagnet, a local expectation value is different
for different orthogonal ground states (GSs)

(9o |M|ga) # (95| M|gg) T =0

Applying different boundary conditions can lead, af sufficiently
low temperatures to spontaneous symmetry breaking

<M>a?é<M>ﬁ T#O

Local Measurements can distinguish the GSs




What is TQO?

Colloguially, TQO is often very loosely referred to as order whose GS
degeneracy depends on the surface fopology of the manifold on
which the physical system is embedded.

Our working definition: Robustness I
Non-Distinguishability:  Given a quasi-local operator V'™

Perturbation Theory:
(ga| VGV ...GoV |gs) = ¢ bap, Y a,B € Sy
o
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What is TQO?

Order is evident only in non-local (topological) quantities

Our working definition: Robustness I
Non-Distinguishability:  Given a quasi-local operator V'™

Perturbation Theory:
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What is TQO?

Order is evident only in non-local (topological) quantities
Order hidden to ordinary local probes

Our working definition: Robustness I
Non-Distinguishability:  Given a quasi-local operator V'™

Perturbation Theory:
<ga| VG()V 1 éov ‘gg> =={ 14 50467 \vi Oz,ﬁ e S()
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auge-Like-Symmetries (lead to dim. reductions

Given a D-dim theory: ane TQO)

A d-dim GLS is a group of transformations
that leave the theory invariant such that the minimum non
empty set of fields that are changed under the symmetry

operation occupies a a-dim region

d<D

Group: Qd
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Gauge-Like-Symmetries D = 2

d =0 (Ising Gauge Theory)
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HHubb = —1 Z d 30 I UznzTnzla
(25),0

Huuwpb = H + J3 Y  S; - S; - effective 4th order Hamiltonian at halfilling
((ig))
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HHubb = —1 Z d jO‘ I UznzTnzla
(17),0

Hyuob = H + J3 »  S; - S; - effective 4th order Hamiltonian at halfilling
((24))
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is the total spin of a tetrahedral unit




Hglein = % Z§2 | {f Zgé

is the total spin of a tetrahedral unit




12



12



All ground states are ~ Hx = —
linear superpositions
of dimer states.

Provable consequences: deconfined
excitations, spin-charge separafion, ...,
extensive degeneracy and critical -
correlations in an extended finite |
temperature region about solvable point ><9
(the latter assuming a gap and linear

independence)
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Two- and three-dimensional

fractionalization




Some solvable spin-liquids (e.g., Kitaev's honeycomb model)
are simple Majorana systems in disquise

Ettore Majorana: 1906-1938(?)

1937: “Real” counterpart to a Dirac fermion

Ll LA
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The elusive Majorana fermion

The “real and imaginary parts” of a Dirac
fermion are Majorana fermions.

A representation:
1 | 1 .
il = E(C“ +icp), df = E(Cll — iCl2)

Hilbert space dimension of NV, Majorana fermions scales as

ONs /2




The elusive Majorana fermion

igh energy physics: neutrino(?
Condensed matter: p-wave superconductors(?),
interface between topological insulators and

s-wave superconductors(?), Quantum Hall states(?),
semiconductor wires on s-wave superconductors




This talk: Majorana-Pauli spin dualities

Most of the work to date focuses on non-interacting Majorana fermions.
We wish to map interacting Majorana systems in an arbitrary number

of dimensions fo Pauli spin systems for which much is known.
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Intermezzo
the tool: the bond-algebraic approach to
dualities (incl. fermionization)




“Bond algebras” and their symmetries

Quantum Hamiltonians are built as a sum of quasi-local operators
We call these BONDS:

H = ZJR(’)R
R

A bond algebra for H is the set of all linear combinations of
products of bonds

AH iiii {17 aO’RMBOROR’, (DR OROR/OR//, . }




Exposing Dualities

21



Exposing Dualities

Bonds are more fundamental objects than the
elementary degrees of freedom




The special character of various systems including statistics of their
basic constituents [Bose, Fermi (Dirac or Majorana), spin, or
other], etc. may be irrelevant. In the calculation of most physically
measurable quantities such as various non-vanishing correlation

functions, entropies, complexities, and free energies,




Space-time, momentum, spin (or other) coordinates are (generally
non-unique) labels for bonds. Bonds can automatically be gauge or
Lorentz invariant. It is possible to reformulate the quantum (and
classical) problem using only measurable quantities. We
reformulated electrodynamics with only the gauge invariant
interaction terms (the bonds).




When are two Hamiltonian dual?

H, and H5 are dual if there is an

homomorphism between their bond algebras

DUALITIES are one-to-one, onto mappings
between bond algebras that preserve every
algebraic relation between bonds:

1 2
Or, © g,




Example of Self-Duality:
Ising chain in a transverse field




BOND ALGEBRA\

< < LU
(ATt T 111 S e

Every bond O'ZO'Z anti—-commutes with two bonds O'aj

Every bond 0_:13 anti—-commutes with two bonds O'ZO'Z
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| SELF-DUALITY AUTOMORPHISM I

Homomorphism P py:
Z .2 T x a1 L0
S et g e
’f 10 ;B 0 Uz+1
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Mapping is
Unitarily implementable

Z/{Dgz Uz—l—luT il U UDU;UUID ikl

Ising chain in a transverse
field is self-dual, meaning:

UpH]j, WU}, = H[h, j]
74> h




Interacting Majorana fermion -
- Pauli spin Dualities




Consider a semiconductor Majorana wire
network in any number of dimensions:

Josephson tunneling 2 wires per 5C grain

0 it 2z, 1s even,

Charging energy :{ 1 if 2, is odd.
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Examples in D=2 \

Square lattice Majorana wire architecture
(B. Terhal et al, arXiv:1201.3757)

Triangular network
(Z. Nussinov et al, arXiv:1203.2983)




Hy = —iz Jiciicra — Zhrpra
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Bond algebra:
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Pauli spin operators at the centers X
of all inter-grain links
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Majorana network to QIG duality

on general planar graphs

Hy = —’iz Jiciicrg — Zhrpra
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Hilbert space dimensions are the same
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Majorana network to QIG duality

on general planar graphs

Trivially identical bond algebras!

/ é Hy = —’izl: Jiciicra — Z f
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/ |

Hilbert space dimensions are the same
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Majorana network to QIG duality

on general planar graphs

Trivially identical bond algebras!
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Majorana network to QIG duality

on the square lattice

JelV =t E Ji(iciicr2) — E hyrC11C1,1Cl.2CL,2
[ A T A

// dual dual

Plaquette term
of lattice gauge theories




Critical Behavior

The uniform square lattice Ising gauge theory lies in the 3D Ising
universality class (and thus so does a spatially uniform Majorana
network). Spin-glass behavior may appear for non-uniform systems.
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Critical Behavior

The uniform square lattice Ising gauge theory lies in the 3D Ising
universality class (and thus so does a spatially uniform Majorana
network). Spin-glass behavior may appear for non-uniform systems.
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Majorana network to XXZ Honeycomb compass

model duality on the square laftice

dual

HM e HQ|G

3D Ising
dual dual

HXXZh JlO_ O-'r’—l—el z : h O-T 7“‘|‘€z

non-vertic llnk vertical links




Quantum Simulation of Hubbard-type models

‘) // Mapping of Majorana to Dirac fermions
" leads to interacting Hubbard-type models
S




Hubbard-type Dictionary

R

Ur(nry —1)(nry — 1) = Ur(Pr — 1)

062 /
652 /

Intra-grain Majorana fermion inferaction

Inter-grain Majorana fermion ferm
A T \
(d rl il d""i)(dr—ke UHT d?“-l-ézi) = —1Jic1,160,2

/

Spin polarization dependent electronic hopping and pairing

(compass-type terms)




Hubbard-type Dictionary
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Ur(nry —1)(nry — 1) = Ur(Pr — 1)
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Intra-grain Majorana fermion inferaction

Inter-grain Majorana fermion ferm
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How about simulating the standard Hubbard model ?

. It can be simulated in principle but
2 requires additional Josephson couplings

HHubbard = e E Z.(C’r'acfr'—l—eaa—l—2 1l C’r—l—eaacra—l—Z)




Summary of Main Results

Lightning review of Majorana fermions

Quick Introduction to the Bond algebra technique

1 1 1

" Dualities between Majorana networks and quantum Ising gauge
theories. Adduce Ising, spin-glass, and other behavior.

The XXZ honeycomb compass model = 3D Ising model

Square lattice Hubbard compass model = 3D Ising

1 1 1

| Hubbard model might be simulated by Majorana network




The average of any quasi-local quantity f
is bounded from above by the absolute value of the

mean of the same quantity when this quasi-local
quantity is computed with a Zdimensional Hamiltonian

that preserves the range of the interactions in the
originul D-dim system
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The average of any quasi-local quantity f
is bounded from above by the absolute value of the

mean of the same quantity when this quasi-local
quantity is computed with a Zdimensional Hamiltonian

that preserves the range of the interactions in the
originul D-dim system

(S (@i (D)) mp| < (1)) my
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{ Dimensional reduction
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The average of any quasi-local quantity f
is bounded from above by the absolute value of the

mean of the same quantity when this quasi-local
quantity is computed with a Zdimensional Hamiltonian

that preserves the range of the interactions in the
originul D-dim system

A “boundary to bulk correspondence” as a

bound

i 1fz c C;
{ w=Dimensional reducfion
R —




Dimensional reduction inequalities

The average of any quasi-local quantity f
is bounded from above by the absolute value of the

mean of the same quantity when this quasi-local
quantity is computed with a Zdimensional Hamiltonian

that preserves the range of the interactions in the
originul D-dim system

A “boundary fo bulk correspondence” as a §

bound

i 1fz cC;| ®
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Dimensional reduction in classical systems: I
Izl e || bt e 0
attilii { 12(:1’:) if el
flo] = floo] localized observable I
~BElg0.9 Ye—BE[p0.v
=Y fled -y A 2 B
{v} {o0} {4}
()1 = miny (£)7[] = (/) Wmin], () = maxy (£)°[W] = () [thmax]

<f>?z : El[¢07wmin] and <f>g : Eu[¢07¢max]
Local eftective boundary theories




Dimensional reduction inequalities

In some cases, due to symmetries both upper and lower bounds scale in
the same way.

In other systems, stringent upper bounds (on, e.q., autocorrelation

functions) can be derived due to “lower dimensional symmetries”. The
effect of any additional symmetry breaking perturbations can be
quanfified with the bounds.

When combined with the d-dimensional
GLSs noted earlier in this talk, this allows proofs

" 1fz cC, of topological quantum order.
. {

iif i ¢ C;




Exact Dimensional Reduction

XXYYZZ model (Chamon; Bravyi, Leemhuis, Terhal) o N mes
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Exact Dimensional Reduction

XXYYZZ model (Chamon; Bravyi, Leemhuis, Terhal) o / m + e
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Exact Dimensional Reduction

XXYYZZ model (Chamon; Bravyi, Leemhuis, Terhal)
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Exact Dimensional Reduction

XXYYZZ model (Chamon; Bravyi, Leemhuis, Terhal)
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Exact Dimensional Reduction and holography in the large n limit

large n vector theories are trivial (by comparison to large n matrix
models)

I %Z Tz~ )3(@) - Bly) = ijs > J091600)*

) - oz
(O) de
Self-energy: > = Q / il || 1




Exact Dimensional Reduction and holography in the large n limit

If two systems share the same density of stafes

o) = [ 350 e = I

. . . . ! &l ol LTI
This enables a universal reduction to a one dimensional system with

a kernel .,/ (k)

207 dk |, (

then they will have idenfical seli-energies =© — / L)




Unitorm background gauge

1 I s |1
Lmatter = §|Du¢ fi > 0% + I|¢|4 it ()

Du(x) = 8, — i6A, ()

For uniform non-Abelian A,.(z)

[e.g., emulating background curvature R of preferred orderings
(Nelson and Sachdev)], the density of states at low
energies can be be lower dimensional (ZN, Phys. Rev. B 69, 014208)
and thus lower dimensional behavior appears. The low-energy
entropy is also “holographic” (scaling with area). I ;

0




Conclusions: Holography and dimensional reduction

In any system, there are inequalities that bound the correlation functions by those in lower
dimensional systems.

These inequalities become most potent when there are
“lower dimensional symmetries” and, e.g., afford bounds on auto-correlation times

These effective dimensional reductions due fo matching symmetries can become exact when there are
exact dualities.

Exact dualities can be derived by bond algebras that map two- and three-dimensional quantum
systems to systems in lower dimensions

Universally, in the large n limit, exact dimensional reductions can be constructed by preserving the

density of stafes —_
0
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Conclusions: There are exact spin-Majorana (and similar

other) dualities, holography, and deconfinement
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