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Motivation
• Quantum spin liquids --- the “non-trivial” Mott insulators

• In usual context, (gapped) quantum spin liquids feature 
fractionalized excitations and are topologically ordered

Questions behind this talk:

• Properties of topological defects in a topologically 
ordered phase?

(vortices, dislocations, domain walls….. Consequences of 
spontaneous symmetry breaking.)

• In general, how symmetry “acts” on topological order?



Why are these questions important?
Questions behind this talk:
Properties of topological defects in a topologically ordered phase?
How symmetry “acts” on topological order?

• Classification of exotic phases of matter

• Qualitatively new properties of topological 
defects in a topological phase.

For example, vortices in topological superconductor are known to be 
interesting.

Here we will not provide general answers. 
Instead we provide concrete examples where some new 
physics got realized.



Topological phases

Symmetry Protected
Topological phases:

Topological insulators./s.c.
SPT phases…

No fractionalization.
Some have free descriptions.

Gapped Quantum phases of matter

Topological ordered phases:

Gapped QSL, FQH liquids…

Fractionalization, 
Ground state degeneracy…



Topological phases

Symmetry Protected
Topological phases:

Topological defects: gapless 
topological bound states in 
weakly correlated systems.

(With strong correlation?)

Gapped Quantum phases of matter

Topological ordered phases:

Topological defects: 
Some examples were given in 2+1D
recently. 

(Barkeshli, Qi, Bombin, You, Wen)



Topological phases

Symmetry Protected
Topological phases

Gapped Quantum phases of matter

Topological ordered phases:
General understanding of how 
symmetry/defects interplay with 
topological order is still unclear.
We will discuss line-defects in 3+1D.
And provide some concrete examples.

(they can link/knot….)



Dislocation: 
topological defects in crystals

• We will focus on dislocations --- point defects in 
2+1D and line defects in 3+1D.

2D 3D



Previous 2+1D examples
Dislocation points give extra topological ground state 
degeneracy. 

• Bombin (2010), You &Wen (2012): 

Kitaev-type exact solvable models. 

Extra G.S.D = 2#dislocation pairs-1

• Barkeshli & Qi (2012)

Fractional quantum hall states in bands with higher Chern
number.

What happens in 3+1D, where dislocations can link/knot?

Because GSD is topological, it must be a knot/link invariant. 



Main results
• We construct certain Kitaev-type exact solvable models in 3+1D, whose 

ground states are topologically ordered.

(and characterized by Zn x Zn gauge theory)

• In these exact solvable models, 

we show dislocation loops give

extra topological ground state 

degeneracies (cannot be lifted by 

any local perturbations). 

• In these models we can prove: 

The extra ground state degeneracies= n#loops -1

independent of linking/knotting of the dislocation loops and only depend on 
the number of dislocation loops.  (with periodic boundary conditions.)

(In fact, by examining the requirement of the proof, it suggests which models may 
have linking/knotting dependence.)



A warm-up: 2D doubled toric code model

• The Kitaev’s toric code model:

Topological ordered phase: Z2 gauge theory.
Quasiparticles are created by string operators.



A warm-up: 2D doubled toric code model

• Doubled toric code model:



A warm-up: 2D doubled toric code model

• Doubled toric code model:

Two decoupled copies of the 
Toric Code, related by lattice 
translation symmetry: 

Z2 x Z2 gauge theory.

4x4=16 fold GSD on torus.



A warm-up: 2D doubled toric code model

• Create dislocations

• Remove a chain of sites
• Glue the two sides together

• Some stablizers close to the 
dislocation core got messed up.
For example,

This star operator has three red spins.

• A red quasi-particle becomes a 
blue quasi-particle after moving around
the dislocation.



A warm-up: 2D doubled toric code model

• Prescriptions for “bad” stabilizers:

Because some stabilizers close to
dislocation are messed up, we need
to redefine them so that:

(1) Stabilizers still commute with 
each other.
(2) They lift ground state degeneracy
“as much as possible”.
(Will explain shortly.)



A warm-up: 2D doubled toric code model

• To count the ground state degeneracy in the presence of 
dislocations:

A theorem of general Z2 toric code (Gottesman 1996): 

GSD=2^(# of spins - # of independent stabilizers)

• Because we have a well-defined prescription for stabilizers 
around dislocations, we can simply count this GSD. 

• Later we will show that the GSD with our prescription is 
topologically protected. (namely, cannot be lifted further by 
any local perturbations.)



Counting ground state degeneracy

(1) Remove N spins, and N stabilizers along the line. 

(2) Remove 3 stabilizers, replace them by 2 new stabilizers, at each end.

(3) Naively we will have 4 extra GSD. But because the dislocation mixed the 
two copies of toric codes, we also have 2 less dependence relations for 
stabilizers. (product of all stars=1, product of all plaquettes=1).

(4) Finally there is no extra GSD.

These can be explicitly checked by exact numerics ---computing the rank of a 
Z2 valued matrix tells the # of independent stabilizers. . And we did that.

We always work with torus boundary 
condition.

For one pair of dislocations,
let’s count:  



Counting ground state degeneracy

(1) Remove 2N spins, and 2N stabilizers along the line. 

(2) Remove 3 stabilizers, replace them by 2 new stabilizers, at each end.

(3) Still have 2 less dependence relations for stabilizers. (product of all 
stars=1, product of all plaquettes=1).

(4) Finally we have 22=4 fold extra GSD.

Clearly, for N pairs of dislocations, extra GSD=4N-1.

These can be explicitly checked by exact numerics ---computing the rank of a 
Z2 valued matrix tells the # of independent stabilizers. And we did that.

We always work with torus boundary 
condition.

For two pair of dislocations,
let’s count:  



Extra GSD is topological

• Now let’s show the extra GSD cannot be further lifted.

• Construct independent string operators acting within the GS 
sector:

For a single pair of dislocations For two pairs of dislocations

NO new string operators

But this string
is shrinkable---
a product of local stabilizers 

Two new e-strings, Two new m-strings.
They are not shrinkable and independent.
Supporting the extra 4-fold topological GSD.
(Easily generalized to more pairs.)

Again, these can be checked by exact numerics.Because of well-defined prescription,
We know a string is shrinkable or now.



A nice geometric interpretation

• Barkeshli&Qi 2012:

• Dislocation pairs can be interpreted as 
Adding “worm-holes” connecting the two
copies of toric code.

• The first pair does not give more genus.
The second pair gives one more genus:

• GSD=4N-1



A nice geometric interpretation

• Barkeshli&Qi 2012:

• Dislocation pairs can be interpreted as 
Adding “worm-holes” connecting the two
copies of toric code.

• The first pair does not give more genus.
The second pair gives one more genus:

• GSD=4N-1

• Now I will go to 3+1D topological ordered phases, where dislocations also give extra GSD.
• It would be nice to have similar geometric interpretation. 

Unfortunately, I do not know too much about topology of 3-manifolds.
• In fact, this is why we work with exact solvable models --- because of lack of knowledge…



3D doubled toric code

• The 3D toric code:

Ground state is topological ordered: 3+1D Z2 gauge theory.
Excitations are created by string operators (electric charge)
and membrane operators (magnetic flux loop).  



3D doubled toric code

• The 3D toric code:

2^3=8 GSD on 3-Torus.

(Note that different from 2D case, each cube has a local constraint:
Product of 6 Bp operators on the 6 faces =1)



3D doubled toric code

• Sorry for the figure. • As 2D case, two decoupled copies of 3D 
toric codes related by lattice translation 
symmetry along y-direction.

• Can create dislocation loops, for instance,
by removing a plane of sites.

• Glue two sides together.

• Some stabilizers close to the dislocation
core got messed up. Need prescription to 
replace them.

• Then one can count the extra GSD by 
# of spins- # of independent stabilizers.
Again, independence of stabilizers can be 
Checked by exact numerics.

We did all these and find: extra GSD=2^(#loops-1)



3D doubled toric code

• As 2D case, two decoupled copies of 3D 
toric codes related by lattice translation 
symmetry along y-direction.

• Can create dislocation loops, for instance,
by removing a plane of sites.

• Glue two sides together.

• Some stabilizers close to the dislocation
core got messed up. Need prescription to 
replace them.

• Then one can count the extra GSD by 
# of spins- # of independent stabilizers.
Again, independence of stabilizers can be 
Checked by exact numerics.

We did all these and find: extra GSD=2^(#loops-1), independent of linking/knotting.

We even computed the GSD
by exact numerics for the trefoil knot….

Next, I will show you a proof for general knots.



First, the extra GSD is topological

• In 3D, one can construct string and membrane operators 
supporting the topological GSD.

• Because we have a well-defined prescription, we know 
whether a string/membrane is shrinkable or not.

One dislocation loop Two dislocation loops

membrane

string

shrinkable

No extra GSD 2 fold extra GSD supported by the one 
string and one membrane operators.



Surgery rules of string operator

• These rules specify what are allowed motion of string 
operators. (by multiplying local stabilizers) Namely these tells 
whether a string operator is shrinkable, and whether two 
string operators are dependent.



Surgery rules of string operator

• An example on how to use these rules: Borromean rings.

dislocations

String operator

This string must be shrinkable,
As shown here.



Proof of knotting independence
• Need to show: all string operators are shrinkable for a general knotted 

dislocation loop.

Trefoil Figure-8



Proof of knotting independence
• Need to show: all string operators are shrinkable for a general knotted 

dislocation loop.

• To prove this, we need some general way to diagnose  knots:

Seifert Surface (1934)

Any knot can be viewed as the single edge of an oriented connected surface.

Seifert surface is not unique. 

In general they can be constructed

as a set of discs connected by 

twisted ribbons:

Trefoil knot Figure-8 knot



Proof of knotting independence

Given a general knot, using local surgery rules to shrink a string operator:



Proof of knotting independence

Given a general knot, using local surgery rules to shrink a string operator:



Proof of knotting independence

Given a general knot, using local surgery rules to shrink a string operator:



Proof of knotting independence

Given a general knot, using local surgery rules to shrink a string operator:

Discussion: This proof requires being able to annihilate two string operators --- maybe in some
doubled non-abelian models, dislocation GSD can have knotting dependence?



linking independence

Here we do not provide general proof.

But for two linked dislocations, the extra
non-shrinkable string is easy to construct.

String

The more non-trivial task is to construct the non-shrinkable 
membrane operator. 

We constructed the non-shrinkable “minimal” membrane operator 
enclosing one dislocation--- flat thin double sheets.

This membrane operator is basically the same as the
unlinked case,  except for local surgery along the green line.

Minimal membrane



Discussion
• In 2D, GSD=4^(# of pairs-1), signaling a “square-root” theory may exist. 

Indeed Bombin (2010) showed a model with GSD=2^(# of pairs-1).

But in 3D, GSD=2^(# of loops-1). Probably the minimal model   where this 
occurs.

And one can easily generalize these for Zn x Zn double Kitaev models in 3D: 
GSD= n^(# of loops-1). 

• What if one melt the lattice by double dislocations?

The single dislocations dynamic excitations.

In both 2D and 3D, doubled toric code  D4 non-abelian gauge theory



Future directions

• General theoretical framework to 
understand/classify topological defects in 
topological ordered phases?

• Linking/knotting dependence of GSD in other 
3D models?



Future directions

• General theoretical framework to 
understand/classify topological defects in 
topological ordered phases?

• Linking/knotting dependence of GSD in other 
3D models?

• Thank you!


