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(A) What is unconventional behavior of frustrated electron systems?

* Mott transition is a metal-insulator transition not accompanied by
any symmetry breaking and spin frustration is essential to it.
What is characteristic to Mott transition?

(B) Mystery in experimental works on singular electric conductivity
near the Mott transition

—

Let us try direct numerical calculations of electric conductivity
near the Mott transition and determine its critical exponent

[Ref: Sato, Hattori and Tsunetsugu, J. Phys. Soc. Jpn. 81, 083703 (2012);
full paper submitted to Phys. Rev. B]



V,0,; — Mott insulator
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Transition from PMI to PMM

Strongly correlated metal
- large specific heat
- large susceptibility



V,0; — DC conductivity at T
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This is similas to liquid-gas transition,

[Limelette etal, Science (2003)1 \yhich belongs to Ising universality class.

Observe Ising criticality in o(T,P)

Ao ~ |AP|1/(5 1/6 = 1/3 — 1/5 crossover



Mott transition: Ising universality class

double occupancy d is the order parameter of Mott transition
- scalar ¢* field theory - Ising universality class
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Scaling

€ Ferromagnetic transition

h m:‘h‘l/s (atT:Tc)
)
n(6T0) = W' (sts ) am—js1iP (r <)

€ Metal-insulator transition (naive expectation)

oU
0(8T,8U) — 0, ~ Oying (8T, 8U) = [8U|'/° f ( ‘5T|6l3>

Ao = |8T|P (T < T,)

| Ao =[8U|"% (T =T,)

scaling relaton Y=pB(6—1)



V,0, - Scaling of DC conductivity

[ Limelette et al, Science (2003)]
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Basic Hypothesis behind this scaling

This kind scaling analysis is based on an implicit assumption that
conductivity is a regular function of the order parameter
in the vicinity of the critical end point.

O(T, U) = Oregular+0

(3T, 8U) = A, <d (8T, 8U)> + A, <d(8T, dU)2>+. ..

order parameter

singular

smgular

However, this is highly nontrivial.



K-type organic — DC conductivity
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[ Kagawa et al, Nature (2005)]



K-type organic - Scaling of DC conductivity

[ Kagawa et al, Nature (2005)]
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Theories for unconventional exponents

triangular-lattice organic compound unconventional exponents
k-(ET),Cu[N(CN),]ClI 1/16=1/2 [cf 1/3 (MF), 1/15 (2D lIsing), ~1/5 (3D Ising)]
B=1 [cf 1/2 (MF), 1/8 (2D Ising), ~5/16 (3D lIsing)]

(1) Marginally quantum critical region in 2 dimensions
p=d/2, 1/6=d/4 (Imada, PRB, 2005)

(2) 2D-Ising universality, but response to energy density

=1, 1/6=8/15 _
(Papanikolaou et al, PRL, 2008)

Both approaches are phenomenological, and also
based on the assumption that some thermodynamic critical exponent
appears in transport singularity.



(1) Let us calculate electric conductivity
directly for a microscopic model
near the Mott transition.

(2) Compare its criticality to the criticality
of order parameter.



Model and Method

Model: Hubbard model on triangular lattice
* half filling n=1
* t~t'~50 [meV] (Shimizu, PRL 2003)

H = —t Z (cjacjo +h.c.) —,LLZCI-GC]'G —|—UanTnjl
(i.j),0 jo J

Method: Cluster Dynamical Mean Field Theory (CDMFT)

" 3-site cluster Kotliar

correctly describe Mott transition LM'/Ce%ee';Stem
take into account short-range quantum&thermal fluctuations

" continuous-time quantum Monte Carlo (CTQMC)

hybridization expansion
effective for large U

" Kubo formula for o(w) ( inc. vertex corrections inside cluster)



U-T Phase diagram
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Double occupancy is the order parameter
representing thermodynamic criticality of Mott transition.

o . K. Kanoda, J. Phys. Soc. Jpn. 75. 051007 (2006)
< T/t= 0.09 = 15t order transition Y. Furukawa ( private communication)

T/t=0.12 = crossover



Scaling of double occupancy

Double occupancy
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U-dependence

o(w)
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= High-w incohent peak is robust and correspond to excitations to the Hubbard bands

* Low-w Drude peak appears in the metallic region

- U-dependence is continuous but exhibits a singularity around U/t=9.4, T/t=0.10



DC Conductivity and its Scaling
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Choice of scaling variable

Simple choice is the singular part of dc-conductivity:

60(8U) = 6;%(8U) + 0" (8U)

This does not exhibit an expected conventional scaling behavior.

Try another quantity as a scaling variable:
— the weight of a low-energy peak in o(w)



Low-w Peak (metallic side)

»Metal side: Drude peak
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Low-w Peak (insulating side)

»Insulator side: Ingap peak
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which is well approximated by Gaussian.

* This ingap peak evolves into the coherent
Drude peak on the metallic side.
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Ingap peak and Electron Spectrum

metallic

heavy quasiparticle band

insulating and near the critical point

2 small peaks around »=0
— ingap peak in o(w) correspond to
transition between these two

insulating

quasiparticle has dissappeared




Scaling analysis of low-w peaks
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The determined transport exponent differs from

Ising universality class
the exponent of order parameter vs. conjugate field at T

1/5=1/3 (MF), 1/15 (2D Ising), ~1/5 (3D Ising)



Summary

We have calculated optical conductivity o(w) of triangular-lattice Hubbard model.

Calculation is performed by Cluseter DMFT with Continuous-Time QMC solver for
cluster Green’s function and includes vertex corrections

(1) We have observed a critical behavior in optical weight at the Mott transition

(2) Exponent = ~0.15
does not agree with thermodynamic exponent of Ising universality class
[in any dimensions , also exclude simple expectation of mean-field exponent ]

(3) A small peak emerges within the “Mott gap” with approaching crititcal point
on the insulating side (INGAP peak)

(4) Ingap peak seems to evolve into the Drude peak with U,
(5) Weight of Drude and ingap peaks are good scaling variable

Outlook

(A) How to explain the new exponent theoretically?

(B) Comparison to experimental data. Hubbard model is enough?





