KITP Program: "Frustrated Magnetism and Quantum Spin Liquids: From Theory and Models to Experiments"
Aug.13-Nov.9, 2012, The Kavli Institute for Theoretical Physics, UCSB

Transport Criticality near the Mott Transition

Hirokazu Tsunetsugu (ISSP, Univ. of Tokyo)

in collaboration with

Toshihiro Sato (ISSP, Univ. Tokyo)

Kazumasa Hattori (ISSP, Univ. Tokyo)

Supported by MEXT of Japan

➤ Grant-in-Aid for Scientific Research on Priority Areas "Novel State of Matter Induced by Frustration"

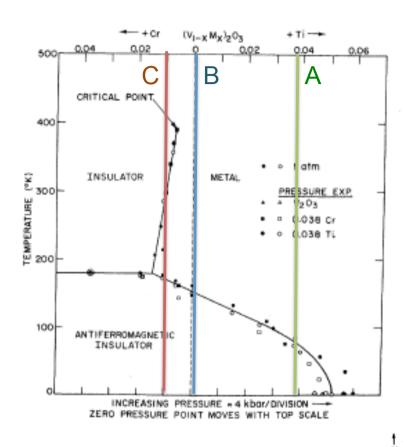
Motivation

- (A) What is unconventional behavior of frustrated electron systems?
- Mott transition is a metal-insulator transition not accompanied by any symmetry breaking and spin frustration is essential to it.
 What is characteristic to Mott transition?
- (B) Mystery in experimental works on singular electric conductivity near the Mott transition

Let us try direct numerical calculations of electric conductivity near the Mott transition and determine its critical exponent

[Ref: Sato, Hattori and Tsunetsugu, J. Phys. Soc. Jpn. **81**, 083703 (2012); full paper submitted to Phys. Rev. B]

V_2O_3 – Mott insulator



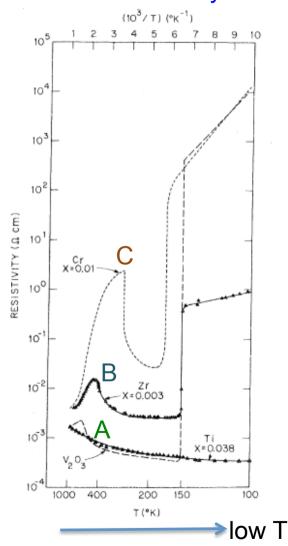
[McWhan et al, (1971, 1973)]

Transition from PMI to PMM

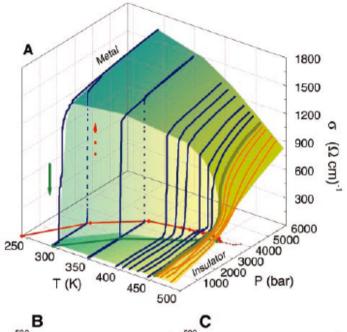
Strongly correlated metal

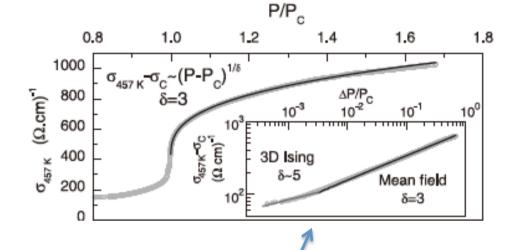
- large specific heat
- large susceptibility

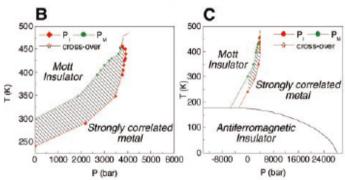
Electric resistivity



V_2O_3 – DC conductivity at T_c







Mott metal-insulator transition takes places inside the paramagnetic region, and is not accompanied by any symmetry breaking.

[Limelette et al, Science (2003)]

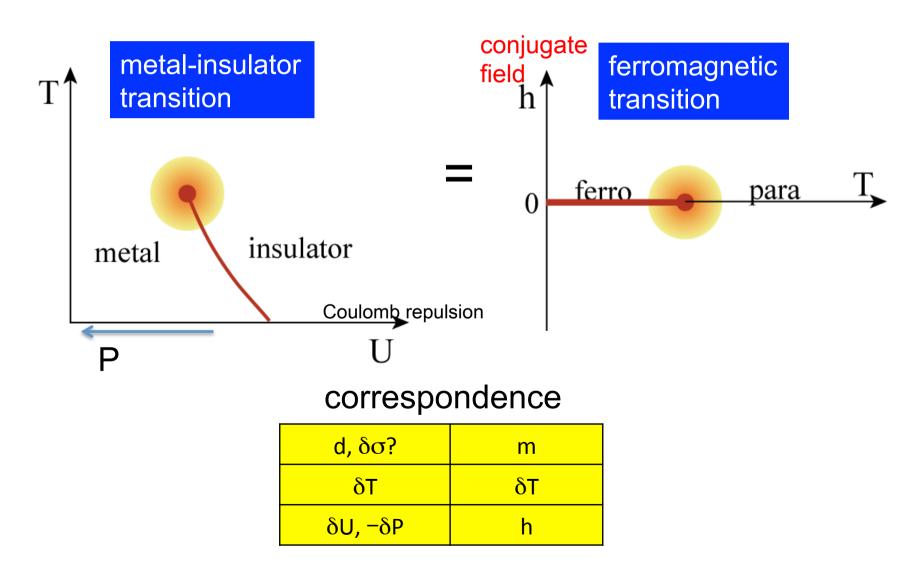
This is similar to liquid-gas transition, which belongs to Ising universality class.

Observe Ising criticality in $\sigma(T,P)$

$$\Delta \sigma \sim \left| \Delta P \right|^{1/\delta}$$
 1/8 = 1/3 \rightarrow 1/5 crossover

Mott transition: Ising universality class

double occupancy d is the order parameter of Mott transition \rightarrow scalar ϕ^4 field theory \rightarrow Ising universality class



Scaling

Ferromagnetic transition

$$m(\delta T, h) = |h|^{1/\delta} f\left(\frac{h}{|\delta T|^{\delta \beta}}\right)$$
 $m = |h|^{1/\delta} \text{ (at } T = T_c)$
 $\Delta m = |\delta T|^{\beta} \text{ (}T < T_c)$

Metal-insulator transition (naive expectation)

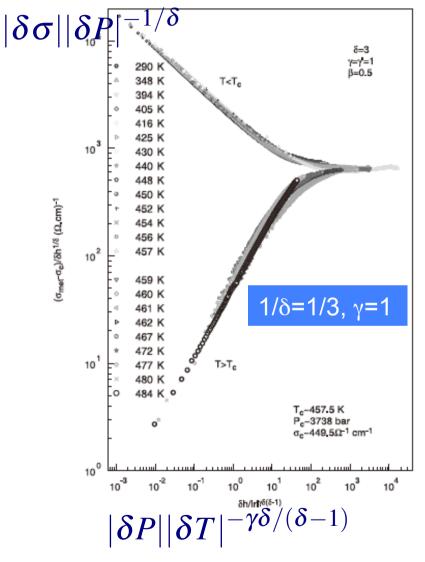
$$\sigma(\delta T, \delta U) - \sigma_c \approx \sigma_{\text{sing}}(\delta T, \delta U) = |\delta U|^{1/\delta} f\left(\frac{\delta U}{|\delta T|^{\delta \beta}}\right)$$

$$\Delta \sigma = |\delta U|^{1/\delta} \text{ (at } T = T_c) \qquad \Delta \sigma = |\delta T|^{\beta} \text{ } (T < T_c)$$

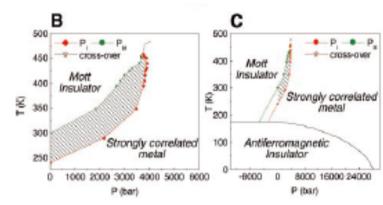
scaling relation
$$\gamma = \beta(\delta - 1)$$

V₂O₃ - Scaling of DC conductivity

[Limelette et al, Science (2003)]



more systematic scaling



$$\delta U = -\delta P$$

$$\sigma(\delta T, \delta U) - \sigma_c = |\delta U|^{1/\delta} f\left(\frac{\delta U}{|\delta T|^{\gamma\delta/(\delta-1)}}\right)$$

$$\delta\sigma \sim -|\delta U|^{1/\delta} {
m sgn} \delta U \ \ ({
m at} \ T=T_c)$$

Basic Hypothesis behind this scaling

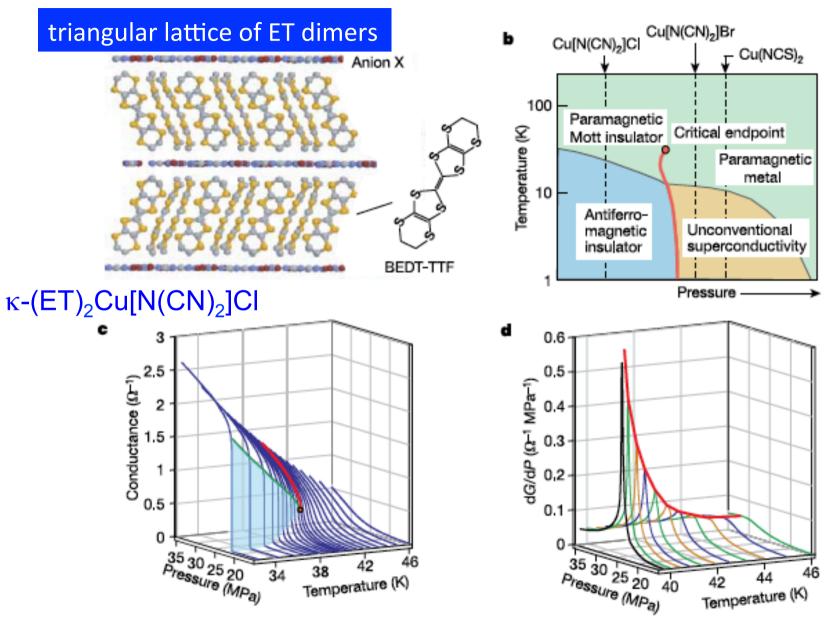
This kind scaling analysis is based on an implicit assumption that conductivity is a regular function of the order parameter in the vicinity of the critical end point.

$$\sigma(T,U) = \sigma_{regular} + \sigma_{singular}$$

$$\sigma_{singular}(\delta T, \delta U) = A_1 < d(\delta T, \delta U) > + A_2 < d(\delta T, \delta U)^2 > + \dots$$
 order parameter

However, this is highly nontrivial.

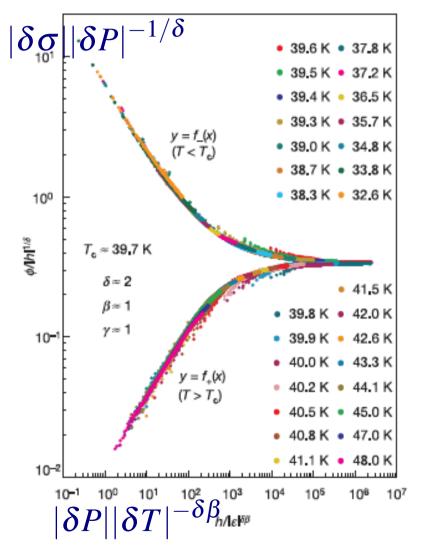
κ-type organic – DC conductivity



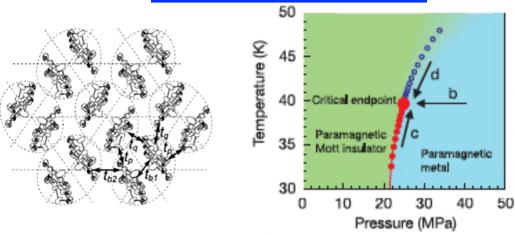
[Kagawa et al, Nature (2005)]

κ-type organic - Scaling of DC conductivity

[Kagawa et al, Nature (2005)]



κ -(ET)₂Cu[N(CN)₂]Cl



$$\delta U = -\delta P$$
 $\sigma(\delta T, \delta U) - \sigma_c = |\delta U|^{1/\delta} f\left(\frac{\delta U}{|\delta T|^{\delta \beta}}\right)$
 $\delta \sigma \sim -|\delta U|^{1/\delta} \operatorname{sgn} \delta U \text{ (at } T = T_c)$

unconventional exponent

 $1/\delta=1/2$ [cf 1/3 (MF), 1/15 (2D Ising), ~1/5 (3D Ising)] $\gamma=1, \beta=1$ scaling relations are satisfied.

Theories for unconventional exponents

triangular-lattice organic compound unconventional exponents

$$\kappa$$
-(ET)₂Cu[N(CN)₂]Cl 1/ δ =1/2 [cf 1/3 (MF), 1/15 (2D Ising), ~1/5 (3D Ising)] β =1 [cf 1/2 (MF), 1/8 (2D Ising), ~5/16 (3D Ising)]

- (1) Marginally quantum critical region in 2 dimensions β =d/2, $1/\delta$ =d/4 (Imada, PRB, 2005)
- (2) 2D-Ising universality, but response to energy density β =1, $1/\delta$ =8/15 (Papanikolaou et al, PRL, 2008)

Both approaches are phenomenological, and also based on the assumption that some thermodynamic critical exponent appears in transport singularity.

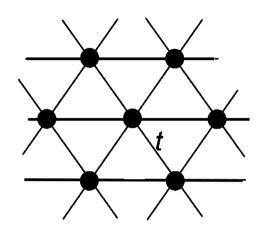
- (1) Let us calculate electric conductivity directly for a microscopic model near the Mott transition.
- (2) Compare its criticality to the criticality of order parameter.

Model and Method

Model: Hubbard model on triangular lattice

- half filling n=1
- t~t′~50 [meV] (Shimizu, PRL 2003)

$$H = -t \sum_{\langle i,j \rangle,\sigma} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{h.c.}) - \mu \sum_{j\sigma} c_{j\sigma}^{\dagger} c_{j\sigma} + U \sum_{j} n_{j\uparrow} n_{j\downarrow}$$



Method: Cluster Dynamical Mean Field Theory (CDMFT)

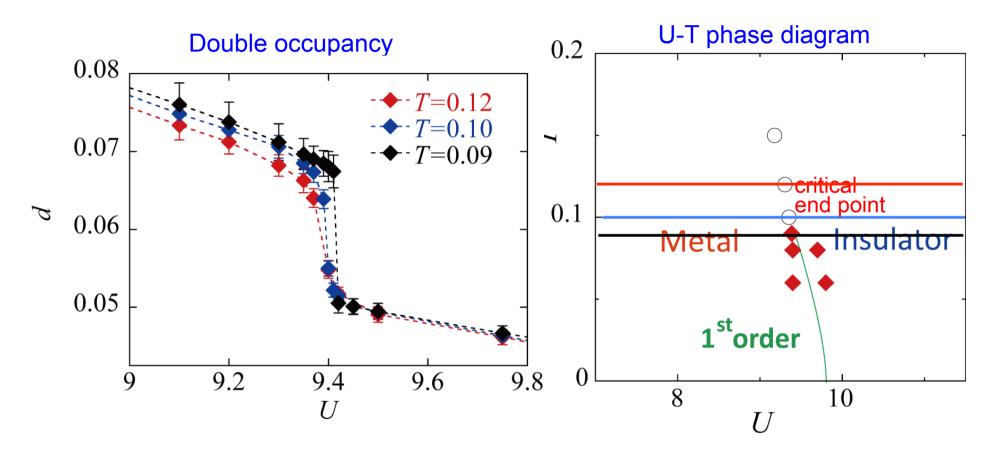
3-site cluster
 correctly describe Mott transition
 take into account short-range quantum&thermal fluctuations

Kotliar Lichtenstein Werner

_ _ _

- continuous-time quantum Monte Carlo (CTQMC) hybridization expansion effective for large U
- Kubo formula for $\sigma(\omega)$ (inc. vertex corrections inside cluster)

U-T Phase diagram



Double occupancy is the order parameter representing thermodynamic criticality of Mott transition.

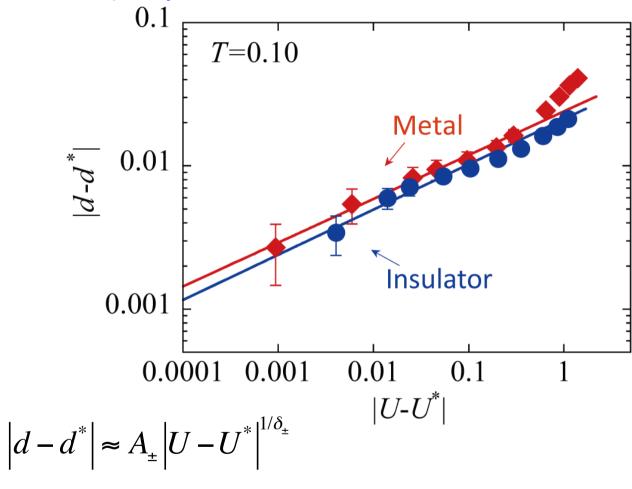
$$\Rightarrow$$
 $T/t = 0.09 \Rightarrow 1^{st}$ order transition $T/t = 0.12 \Rightarrow$ crossover

K. Kanoda, J. Phys. Soc. Jpn. 75. 051007 (2006)

Y. Furukawa (private communication)

Scaling of double occupancy

Double occupancy

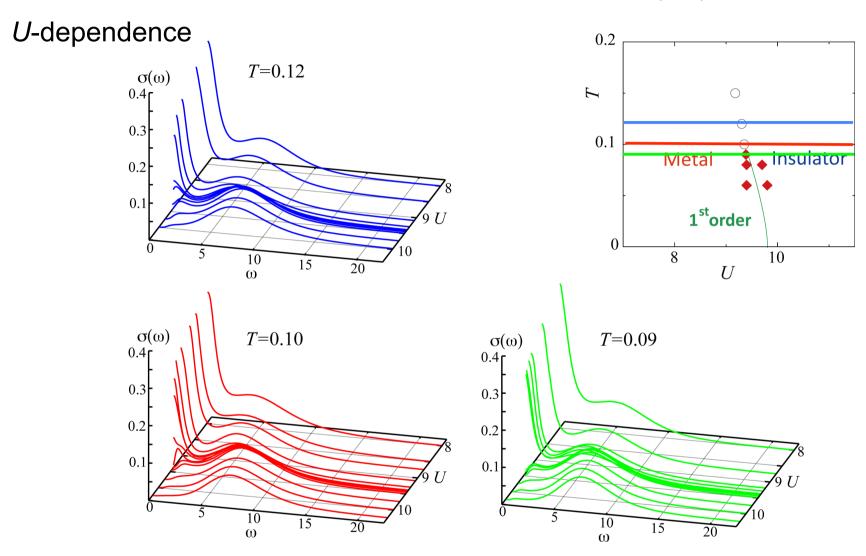


$$1/\delta_{-} = 0.32 \pm 0.05$$

$$1/\delta_{+} = 0.30 \pm 0.04$$

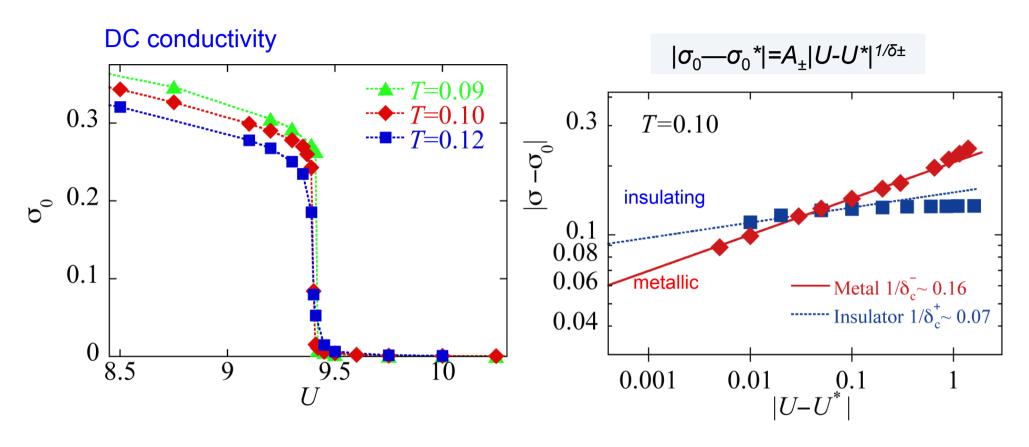
This value is consistent with the mean-field exponent of Ising order parameter $1/\delta=1/3$

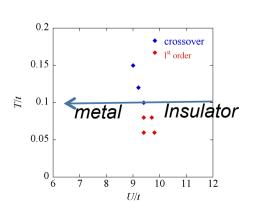
Optical conductivity $\sigma(\omega)$



- High- ω incohent peak is robust and correspond to excitations to the Hubbard bands
- $\ ^{\bullet}$ Low- ω Drude peak appears in the metallic region
- *U*-dependence is continuous but exhibits a singularity around U/t=9.4, T/t=0.10

DC Conductivity and its Scaling





U-dependence of DC conductivity is continuous,

But the singularity does not have the same exponent on the both sides of the transition.

Choice of scaling variable

Simple choice is the singular part of dc-conductivity:

$$\sigma_0(\delta U) = \sigma_0^{\text{reg}}(\delta U) + \sigma_0^{\text{sing}}(\delta U)$$

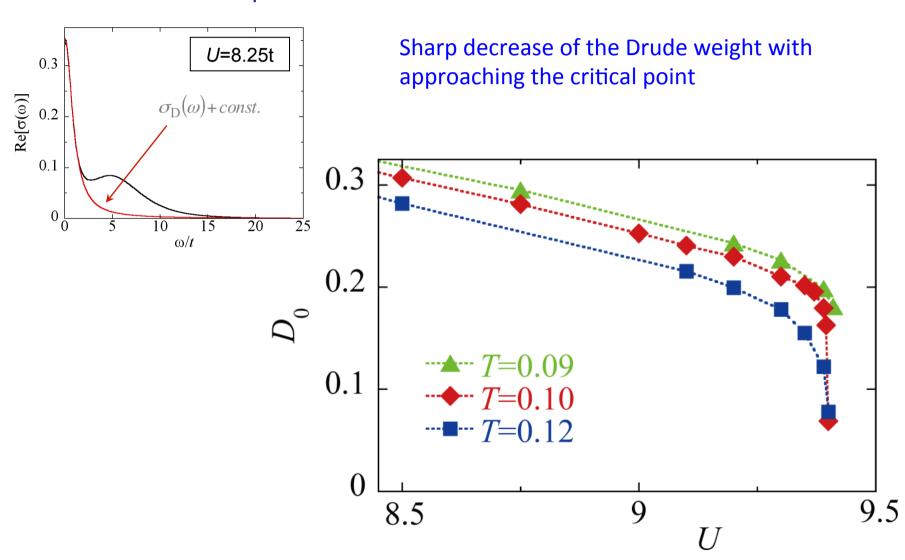
This does not exhibit an expected conventional scaling behavior.

Try another quantity as a scaling variable:

 \rightarrow the weight of a low-energy peak in $\sigma(\omega)$

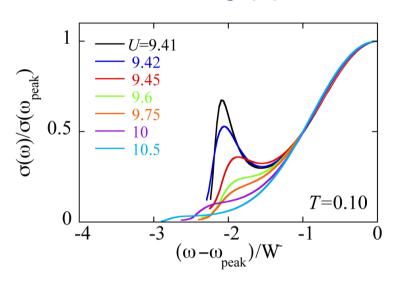
Low-ω Peak (metallic side)

➤ Metal side: Drude peak

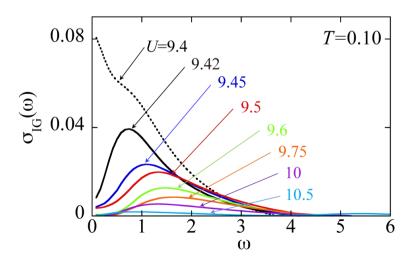


Low-ω Peak (insulating side)

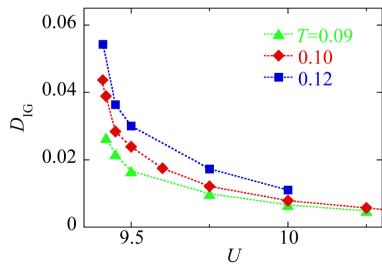
➤Insulator side: Ingap peak



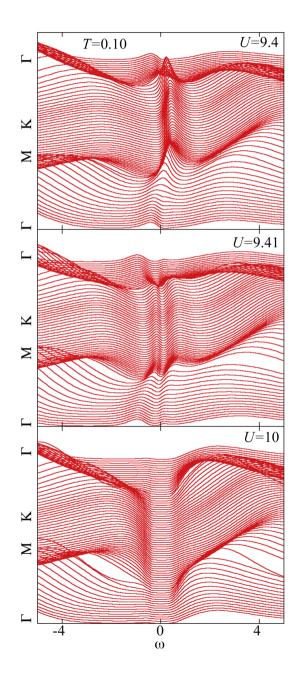
- Within the Hubbard gap, there appears an *ingap* peak.
- Subtract the part of high-energy peak, which is well approximated by Gaussian.
- This ingap peak evolves into the coherent Drude peak on the metallic side.



Weight of the ingap peak



Ingap peak and Electron Spectrum



metallic

heavy quasiparticle band

insulating and near the critical point

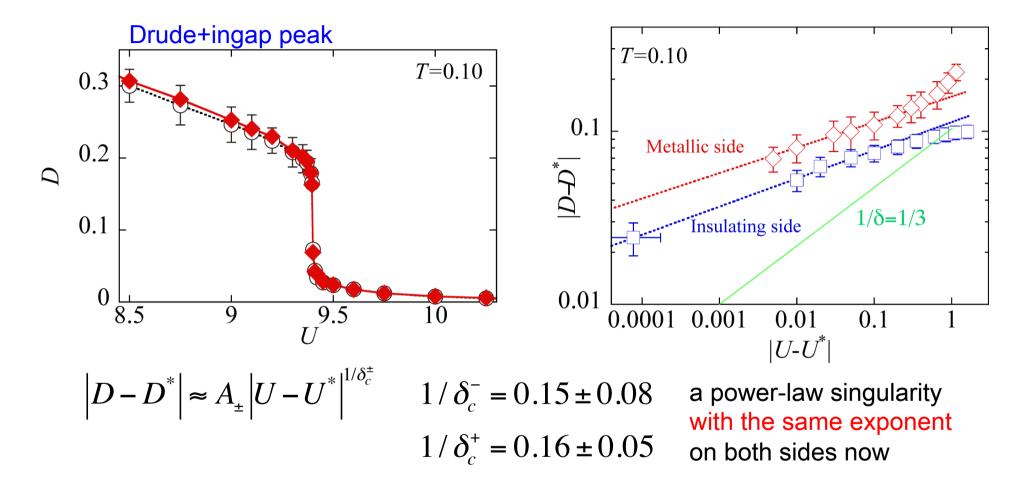
2 small peaks around ω =0

 \rightarrow ingap peak in $\sigma(\omega)$ correspond to transition between these two

insulating

quasiparticle has dissappeared

Scaling analysis of low-ω peaks



The determined transport exponent differs from Ising universality class the exponent of order parameter vs. conjugate field at T_c $1/\delta=1/3$ (MF), 1/15 (2D Ising), $\sim 1/5$ (3D Ising)

Summary

We have calculated optical conductivity $\sigma(\omega)$ of triangular-lattice Hubbard model.

Calculation is performed by Cluseter DMFT with Continuous-Time QMC solver for cluster Green's function and includes vertex corrections

- (1) We have observed a critical behavior in optical weight at the Mott transition
- (2) Exponent = ~0.15 does not agree with thermodynamic exponent of Ising universality class [in any dimensions, also exclude simple expectation of mean-field exponent]
- (3) A small peak emerges within the "Mott gap" with approaching crititcal point on the insulating side (INGAP peak)
- (4) Ingap peak seems to evolve into the Drude peak with $U \downarrow V$
- (5) Weight of Drude and ingap peaks are good scaling variable

Outlook

- (A) How to explain the new exponent theoretically?
- (B) Comparison to experimental data. Hubbard model is enough?