Revisit of single-hole problem in Mott insulators: A DMRG study

Zheng-Yu Weng

(Institute for Advanced Study, Tsinghua University)

KITP "Frustrated Magnetism and Quantum Spin Liquids"

Santa Barbara 2012.10.16

frustrated Mott antiferromagnets

doped antiferromagnets

geometric frustrations

dynamic frustrations

Collaborators

Zheng Zhu (IAS, Tsinghua)

Hong-Chen Jiang (KITP/UCSB)

Chushun Tian (IAS, Tsinghua)

Outline

- Overview (after two decades...)
- DMRG results
- Implications

Problem of single hole doped into a Mott insulator

Question: How a single hole behaves?

Half-filling:

A Mott insulator antiferromagnet

Theoretical debate in one-hole problem

- Spin polaron picture (self-consistent Born approximation)
 - S. Schmitt-Rink, C. M. Varma, and A. E. Ruckenstein (1988);
 - C. L. Kane, P. A. Lee, and N. Read (1989);
 - \rightarrow Quasiparticle
- ED result
 P.W. Leung and R. J. Gooding (1995);... → Quasiparticle
- P. W. Anderson's unrenormalizable phase shift argument (1990) → Non-quasiparticle
- Phase string effect (D.N. Sheng, Y. C. Chen, ZYW (1996))

 \rightarrow Localization (non-quasiparticle) (ZYW, et al. (2001))

Quasiparticle (spin-polaron) picture

Bloch theorem holds for a many-body system?

S^z (Ising)-strings can be destroyed by quantum spin flips (*C. L. Kane, P. A. Lee, and N. Read (1989))*

P.W. Leung and R. J. Gooding (1995)

ARPES result: A broad peak at x=0

 H_{2} b) H_{2} b) 18 16 $(\pi/2, \pi/2)$ A B -1.0 -0.5 0.0 Energy (eV)

Ca₂CuO₂Cl₂

K. M. Shen et al, PRL 93, 267002 (2004)

Experimental Results (STM)

Localization

C. Ye, et. al., arXiv:1201.0342v1 (Yayu Wang's group in Tsinghua)

Ca₂CuO₂Cl₂

Strong localization of a single electron donated by a CI defect

Theoretical debate in one-hole problem

• Spin polaron picture (self-consistent Born approximation)

S. Schmitt-Rink, C. M. Varma, and A. E. Ruckenstein (1988); C. L. Kane, P. A. Lee, and N. Read (1989); …. → Quasiparticle

- ED result
 P.W. Leung and R. J. Gooding (1995);... → Quasiparticle
- P. W. Anderson's unrenormalizable phase shift argument (1990)

 \rightarrow Non-quasiparticle

• Phase string effect (D.N. Sheng, Y. C. Chen, ZYW (1996))

 \rightarrow Localization (non-quasiparticle) (ZYW, et al. (2001))

A minimal model for doped Mott insulators: t-J model

$$H = -t \sum_{\langle ij \rangle} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + h.c. \right) + J \sum_{\langle ij \rangle} \left(\mathbf{S}_{\mathbf{i}} \cdot \mathbf{S}_{\mathbf{j}} - \frac{1}{4} n_{i} n_{j} \right)$$

constrained by

1-hole propagator : Phase string effect

$$G(j,i,E) = \langle \mathcal{Y}_{0} | c_{js}^{\dagger} G(E) c_{is} | \mathcal{Y}_{0} \rangle \propto \sum_{c} c_{c} \mathcal{W}[c;E] \qquad G(E) = \frac{1}{E - H_{t-J} - 0^{+}}$$

$$\int dE = \frac{1}{E - H_{t-J} - 0^{+}}$$

$$W[c;E] = \left(\frac{t}{-E}\right)^{M_{h}} \left(\frac{J}{-2E}\right)^{M_{11} + M_{Q}} \ge 0$$

$$W[c;E] = \left(\frac{t}{-E}\right)^{M_{h}} \left(\frac{J}{-2E}\right)^{M_{11} + M_{Q}} \ge 0$$

$$Partition function : \int dE = \frac{1}{E - H_{t-J} - 0^{+}}$$

$$W[c] = \frac{2}{J} \sum_{d} \frac{2}{J} \cdots \frac{2}{J} \sum_{n} \frac{2}{n} \frac{(bJ/2)^{n}}{n!} d_{M_{h} + M_{n}, n} \stackrel{3}{\rightarrow} 0$$

D.N. Sheng, Y.C. Chen, ZYW, PRL (1996); K. Wu, ZYW, J. Zaanen, PRB (2008)

Removing the phase string: A sign-free model

$$H = -t \sum_{\langle ij \rangle} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + h.c. \right) + J \sum_{\langle ij \rangle} \left(\mathbf{S}_{\mathbf{i}} \cdot \mathbf{S}_{\mathbf{j}} - \frac{1}{4} n_{i} n_{j} \right)$$

$$Z = \mathop{\text{a}}_{loop c} t_c W(c)$$

for one-hole case

$$W(c) = \frac{2t}{J} \times \frac{2t}{J} \dots \frac{2t}{J} a_{n}^{2} \frac{(bJ/2)^{n}}{n!} d_{M_{h}+M_{-},n}^{2} = 0$$

Prediction: self-localization of the one-hole

ZYW, V. N. Muthukumar, D.N. Sheng, C.S. Ting (2001)

Holon localization at low doping:

S.P. Kou, ZYW, PRL (2003) P. Ye and Q.R. Wang,

arXiv:1206.0258

DMRG results

Real space distribution of a single hole in t-J ladders

Z. Zhu, H.C. Jiang, Y. Qi, C.S.Tian, ZYW (2012)

t-J ladders: t = 3J

Ln-Linear

12 16 20 24 28

25

30

20

even (4-legs)

odd (3-legs)

$$\sum_{i}\left\langle n_{i}^{h}\right\rangle =1$$

1. Localization length is monotonically reduced as t/J increases

- spin dynamics is not essential to the hole localization.
- 2. Oscillation for the even-leg ladders diminish as t/J increases
- the spin-gap effect will be gradually reduced with the increase of t/J

Single-hole problem: A DMRG calculation

Effect of phase string effect

no phase string effect

Self-localization of the hole!

Picturing the Fermi surface

- DMRG gives n(k) of the ground state
- Jump in $n(k) \rightarrow$ Fermi surface

Vanishing quasiparticle weight

- 1-n(k) ~ 1/N
- peak height ~ 1/N
- peak width ~ const
- quasiparticle within the localized region

Momentum distribution

Spin-charge separation

+ ...

ZYW, V. N. Muthukumar, D.N. Sheng, C.S. Ting (2001

Implications

Emergent gauge force in doped Mott insulators!

$$(+1)$$
 (-1) (-1) (-1) t_c

Partition function

$$Z = \mathop{\text{a}}_{loop c} t_c W(c) \qquad \qquad W(c) \stackrel{3}{\circ} 0$$

C. N. Yang (1974), Wu and Yang (197

"An intrinsic and complete description of electromagnetism" "Gauge symmetry dictates the form of the fundamental forces in nature"

At arbitrary doping, dimensions, temperature: t-J model

$$Z = \sum_{c} \tau_{c} \mathcal{Z}(c)$$

$$\tau_c = (-1)^{N_h^{\downarrow}(c)} \times (-1)^{N_h^{h}(c)}$$

$$\mathcal{Z}[c] = \left(\frac{2t}{J}\right)^{M_h[c]} \sum_n \frac{(\beta J/2)^n}{n!} \delta_{n,M_h + M_{\uparrow\downarrow} + M_Q}$$

 $\mathcal{Z}(c) \ge 0$

 $M_h(C)$ = total steps of hole hoppings $M_{\uparrow\downarrow}(C)$ = total number of spin exchange processes $M_Q(C)$ = total number of opposite spin encounters

Wu, Weng, Zaanen, PRB (2008)

General sign struture rule:

$$\tau_c = (-1)^{N_h^{\downarrow}(c)} \times (-1)^{N_h^{h}(c)}$$

Feynman's path-integral

$$\begin{aligned} \mathcal{Z} &= \operatorname{Tr} \exp(-\beta \hat{\mathcal{H}}) \\ &= \int d\mathbf{R} \rho(\mathbf{R}, \mathbf{R}; \beta) \quad \mathbf{Fermion \ signs} \\ \rho_{B/F}(\mathbf{R}, \mathbf{R}; \beta) &= \frac{1}{N!} \sum_{\mathcal{P}} (\pm 1)^{\mathcal{P}} \rho_{\mathcal{P}}(\mathbf{R}, \mathcal{P}\mathbf{R}; \beta) \\ &= \frac{1}{N!} \sum_{\mathcal{P}} (\pm 1)^{\mathcal{P}} \int_{\mathbf{R} \to \mathcal{P}\mathbf{R}} \mathcal{D}\mathbf{R}(\tau) \exp\left\{-\frac{1}{\hbar} \int_{0}^{\hbar/T} d\tau \left(\frac{m}{2} \dot{\mathbf{R}}^{2}(\tau) + V(\mathbf{R}(\tau))\right)\right\} \end{aligned}$$

t-J model:
$$\begin{aligned} Z &= \sum_{c} \tau_{c} \mathcal{Z}(c) \end{aligned}$$

$$\tau_c = (-1)^{N_h^{\downarrow}(c)} \times (-1)^{N_h^{h}(c)}$$

Mott physics =

+ new statistical signs (nonintegrable phase factor)

Trivial limits of phase string effect

$$Z_{t-J} = \sum_{c} \tau_{c} \mathcal{Z}[c]$$

$$t_{c} = 1$$

no sign problem $N_h(c) = 0$ antiferromagnetic ground state

Nagaoka state (J=0)

$$N_h(c) = 0$$

 $t_c = 1$

no sign problem

Long-range entanglement between charge and spin!

electron fractionalization

ODLROs for sub-systems (rigidity)

True ODLRO: sign structure/mutual statistics

Z.Y. Weng, New J. Phys. 13 (2011) 103039

Conclusion

 Nonintegral phase factor (sign structure) dictates (1-hole) doped Mott physics:

$$e^{i\frac{e}{\hbar c} \overset{B}{A}_{A} dx^{m}} \Longrightarrow (+1)^{(-1)^{(-1)^{(-1)^{(-1)}}}$$

mutual statistics (geometric/topological)

• Examples:

en

- 1) Half-filling: antiferromagnet (no sign problem)
- 2) One-hole (J=0): Nagaoka state (no sign problem)
- 3) One-hole (J finite): self-localization (DMRG)
- 4) One-dimensional case: Luttinger liquid (non-trivial signs)
- 5) 2D finite doping: origin of high- T_c superconductivity