# Characterizing homomorphism functions and the limit theory of graphs 

LÁSZLÓ LOVÁSZ

Eötvös Loránd University, Budapest

## Three questions

Mike Freedman: Which graph parameters are partition functions?

Jennifer Chayes: What is the limit of a randomly growing graph sequence like the internet?

Vera Sós: How to characterize generalized quasirandom graphs?

## Homomorphism functions

Homomorphism: adjacency-preserving map
$\operatorname{hom}(F, G):=\#$ of homomorphisms of $F$ into $G$
$t(F, G)=\frac{\operatorname{hom}(F, G)}{|V(G)|^{V(F) \mid}} \cdot \begin{gathered}\text { Probability that random map } \\ V(F) \text { 団 } V(G) \text { is a hom }\end{gathered}$
Weighted version:

$$
\begin{aligned}
& H=(V, E, \alpha, \beta), \quad \alpha: V \rightarrow \mathbf{i}+\quad \beta: E \rightarrow \mathbf{i} \\
& \operatorname{hom}(G, H):=\sum_{\varphi: V(G) \rightarrow V(H)} \prod_{i \in V(G)} \alpha_{\varphi(i)} \prod_{i j \in E(G)} \beta_{\varphi(i) \varphi(j)}
\end{aligned}
$$

## $k$-labeled graphs

$k$-labeled graph: $k$ nodes labeled $1, \ldots, k$, any number of unlabeled nodes

$G_{1}, G_{2}: k$-labeled graphs
$G_{1} G_{2}:=G_{1}$ Ѐ $G_{2}$, labeled nodes identified

## Graph parameter

## Graph parameter: isomorphism-invariant function $f$ on finite graphs

Example: hom(.,H)

## Connection matrices



## Which parameters are homomorphism functions?

$f=$ hom $(., H)$ for some weighted graph $H$畄
$M(f, k)$ is positive semidefinite for all $k$ and has rank [药 $c^{k}$

> Freedman - L - Schrijver

Difficult direction: $\longleftarrow \checkmark \begin{aligned} & \text { many applications in } \\ & \text { extremal graph theory }\end{aligned}$
Easy but useful direction:

## Generalizations, analogues and relaxations

Generalizations: directed graphs (Schrijver), hypergraphs, semigroups (L-Schrijver)

Analogues: edge coloring models (Szegedy), unweighted graphs (L-Schrijver), tensor algebras (Schrijver), categories

Which graph parameters have connection matrices

- positive semidefinite?
- finite rank?


## Locally finite categories

$\mathcal{K}$ : category, $\mathcal{K}(a, b)$ finite for any two objects
(other conditions: zero object, generator object, pushouts, epi-mono decompositions)


## Locally finite categories

f: objects 圈 reals
$M(f, a)$ : matrix indexed by morphisms from object a $M(f, a)_{\alpha \beta}=f(\alpha \wedge \beta)$
$f=|\mathcal{K}(., b)|$ for some object $b$
[図
$M(f, a)$ is positive semidefinite for every object a.
L - Schrijver

## Corollary for simple graphs

## $f=$ hom(.,G) for somes hardcore $f$ (with loops) <br> 鹵 model

$M^{*}(f, k)$ is positive semidefinite for every $k$.
L - Schrijver

Allow a node to have more than one labels

## Convergence and limit objects

## $\mathbf{W}_{0}=\left\{W:[0,1]^{2} ®[0,1]\right.$ symmetric, measurable $\}$

## (graphons)

## Graphs 网 Graphons



0010001100001001
0010010100000010
11001011111001011
0010101010101110
010010111000110101
10100101110111101
1111111001011110
001000110101011
00111000011110100
0000001110101010
1001111111101010111
0000101110101010
011100001110111101
10101101001010

## Convergence and limit objects

## $\mathbf{W}_{0}=\left\{W:[0,1]^{2} \circledR[0,1]\right.$ symmetric, measurable $\}$

## (graphons)

$$
\begin{aligned}
& t(F, W)=\underset{[0,1]^{V(F)}}{\mathbf{0}} \underset{i j \hat{\mathbf{1}}}{\mathbf{O}} \underset{E(F)}{\tilde{0}} W\left(x_{i}, x_{j}\right) d x \\
& t\left(F, W_{G}\right)=t(F, G)
\end{aligned}
$$

## Convergence and limit objects

$\left(G_{1}, G_{2}, \ldots\right)$ convergent: " $F t\left(F, G_{n}\right)$ is convergent
Borgs, Chayes, L, Sós, Vesztergombi
$G_{n} ® W: \quad$ "F $t\left(F, G_{n}\right) ® t(F, W)$

This is for dense graphs [団 mean field theory

## Convergence and limit objects

For every convergent graph sequence $\left(G_{n}\right)$ there is a graphon $W$ such that $G_{n}$ 災 $W$.

For every graphon $W$ there is a graph sequence $\left(G_{n}\right)$ such that $G_{n}$ 㽧W.
$W$ is essentially unique (up to measure-preserving transformation).

Borgs-Chayes-Lovasz

## Semidefinite connection matrices

## f: graph parameter

$f=t(., W)$ for some graphon $W$
圆
$M(f, k)$ is positive semidefinite for all $k, f($ 困 $)$
$=1$, and $f$ is multiplicative over components.

L - Szegedy

## Finite rank connection matrices

If $M(f, k)$ has finite rank, then $f(G)$ can be evaluated in polynomial time for graphs with tree-width at most $k$.

L- Welsh

## Finite rank connection matrices

$\mathrm{M}(\mathrm{f}, \mathrm{k})$ has finite rank for many parameters:
hom(.,H), hom(F..), \# of Hamilton cycles, max no. of independent nodes, $1_{\text {planar }}$,
$1_{\mathrm{P}}$ for any minor-closed property P .

> If $f$ can be defined by a monadic second order counting problem, then $M(f, k)$ has finite rank.

Godlin-Kotek-Makowski


## Computing with graphs

$k$-labeled quantum graph:

$$
x=\underset{G}{\mathbf{a}} x_{G} G \Leftarrow \begin{aligned}
& \text { finite formal sum of } \\
& k \text {-labeled graphs }
\end{aligned}
$$


$Q_{k}=\{k$-labeled quantum graphs $\}$
infinite dimensional linear space

## Computing with graphs


$Q_{k}$ is a commutative algebra with unit element

Inner product: $<x, y>=f(x y)$

## Computing with graphs

$$
N_{\mathrm{k}}(\mathrm{f})=\left\{x \text { 类 } Q_{k}:\langle x, y>=0 \text { 圈 } y\}\right.
$$

$Q_{k} / N_{k}(\mathrm{f})$ is a commutative algebra
$Q_{k} / N_{\mathrm{k}}(\mathrm{f})$ is finite dimensional iff $M(f, k)$ has finite rank
<.,.> is semidefinite iff $M(f, k)$ is positive semidefinite

## Computing with graphs

$p_{1}, \ldots, p_{q}$ ：idempotent basis in $Q_{k}$ nodes（states）
団 $=p_{1}+\ldots+p_{n}$
＜W，$p_{i}>$ nodeweights
＜困－困，$p_{i}$ 圆 $p_{j}$ dgeweights


