CLASSIFICATION OF TOPOLOGICAL INSULATORS AND SUPERCONDUCTORS, RESPONSES AND QUANTUM ANOMALIES

ANDREAS W.W. LUDWIG (UC-Santa Barbara)

work done in collaboration with:

- Shinsei Ryu (UC-Berkeley)
- Andreas Schnyder (Max-Planck Stuttgart)
- Akira Furusaki (RIKEN, Japan)
 - -PRB 78, 195125 (2008),
 - -PRL 102, 196804 (2009).
 - -Landau Memorial Conference, Landau Institute, AIP Conf. Proc. 1134, 10 (2009) [http://landau100.itp.ac.ru/Talk/ludwig.pdf],
 - -New Journal of Physics 12, 065010 (2010).
- Shinsei Ryu +Joel Moore (UC-Berkeley)
 - arXiv: 1010.0936

TOPOLOGICAL INSULATOR: typical example

"Band Insulator"

•PREVIOUSLY KNOWN: ONE TOPOLOGICAL INSULATOR - spin-orbit ("Symmetry Class All") (Fu,Kane, Mele, Moore, Balents, Zhang, Qi, ...)

•CLASSIFICATION: There are <u>FIVE</u> Topological Insulators (superconductors) in every dimension

THE ADDITIONAL ONES INCLUDE (in d=3):

- * Helium 3B
- * Superconductors with spin-orbit interactions

* Singlet Superconductors

"DIII"

"CI"

THREE METHODS OF CLASSIFICATION:

--: ANDERSON LOCALIZATION

[Ryu,Schnyder,Furusaki,Ludwig]

--: TOPOLOGY (K-THEORY)

[Kitaev]

--: QUANTUM ANOMALIES (ALSO: INTERACTIONS)

[Ryu, Moore, Ludwig]

ONE METHOD OF CLASSIFICATION:

Classification of topological properties of bulk insulators (or: superconductors) by looking at their boundaries

The defining characteristic of the topological properties of the bulk is the appearance of extended, gapless boundary degrees of freedom:

^{*} topologically protected against any perturbation [respecting the `symmetries of the system' (more specific later)]

^{*} including disorder

Topological Insulator (Superconductor):

- Bulk (electrical or thermal) insulator
- Boundary conducts (electricity or heat) similar to a metal

Because of the presence of the **bulk gap**, bulk phases are **robust against the addition of disorder**.

→ Thus, one is led to seek a classification of ground states of (in general) gapped random Hamiltonians.

→ There are only 10 classes of random Hamiltonians!

This underlies the well known classification of random matrices, and universality classes of Anderson localization transitions.

[Zirnbauer (1996), Altland+Zirnbauer (1997), Heinzner+Huckleberry+Zirnbauer (2004); Bernard+LeClair (2001)]

BRIEF REVIEW: CLASSIFICATION OF RANDOM FERMION HAMILTONIANS -- THE 10-FOLD WAY

• In classifying random Hamiltonians one must consider only the most generic symmetries,

time reversal (T)

and

charge-conjugation (particle-hole) (C).

• There are only 10 possible behaviors of a Hamiltonian under ${f T}$ and ${f C}$. (10 "symmetry classes")

H = second quantized hamiltonian = $= \psi_A^{\dagger} \mathcal{H}_{A,B} \psi_B$

The basic idea is simple: $\mathcal{H} = 1st$ quantized Hamiltonian

$${f T}$$
 is antiunitary : ${f T}=U_T\cdot K$

$$\mathbf{T}: \qquad U_T \; \mathcal{H}^* \; U_T^{\dagger} \; = \; \mathcal{H}$$

$$\Gamma = \begin{cases} 0, & \text{no time reversal invariance} \\ +1 & \text{time reversal invariance and } \mathbf{T}^2 = +1 \\ -1 & \text{time reversal invariance and } \mathbf{T}^2 = -1 \end{cases}$$

$$\mathbf{C}$$
 is antiunitary: $\mathbf{C} = U_C \cdot K$

$$\mathbf{C}: \qquad U_C \; \mathcal{H}^* \; U_C^{\dagger} \; = \; - \; \mathcal{H}$$

C =
$$\begin{cases} 0, & \text{no particle} - \text{hole symmetry} \\ +1 & \text{particle} - \text{hole symmetry and } \mathbf{C}^2 = +1 \\ -1 & \text{particle} - \text{hole symmetry and } \mathbf{C}^2 = -1 \end{cases}$$

- *There are $3 \times 3 = 9$ choices for $T \times C$
- *For 8 of these choices the value of $S:=\mathbf{T}\cdot\mathbf{C}$ is uniquely fixed : these are all except for "A" and "AIII".

*For "A" and "AIII":
$$\frac{T C}{0 0}$$

free to choose S=0 or S=1, yielding "A" and "AIII"

- Total of 10 choices -

		TAI	BLE -	"Ten Fold Way" [`CART	[AN Classes']		Examples
Name (Cartan)	Т	C	S= T C	Time evolution operator $\mathcal{U}(t) = \exp\{it\mathcal{H}\}$	NI SM Manifold G/H	SU(2) spin con- served	Some Examples of Systems
A (unitary)	0	0	0	U(N)	U(2n)/U(n)xU(n)	yes/ no	IQHE Anderson
AI (orthogonal)	+1	0	0	U(N)/O(N)	Sp(4n) /Sp(2n)xSp(2n)	yes	Anderson
All (symplectic)	-1	0	0	U(2N)/Sp(2N)	SO(2n)/SO(n)xSO(n)	no	Quantum spin Hall Z2Top.Ins. Anderson(spinorbit)
AIII (chiral unitary)	0	0	1	U(N+M)/U(N)xU(M)	U(n)	yes/ no	Random Flux Gade SC
BDI (chiral orth.)	+1	+1	1	SO(N+M)/SO(N)xSO(M)	U(2n)/Sp(2n)	yes/ no	Bipartite Hopping Gade
CII (chiral sympl.)	-1	-1	1	Sp(2N+2M) /Sp(2N)xSp(2M)	U(n)/O(n)	no	Bipartite Hopping Gade
D	0	+1	0	O(N)	O(2n)/U(2n)	no	(px+ipy)-wave 2D SC w/spin-orbit TQHE
С	0	-1	0	Sp(2N)	Sp(2n)/U(2n)	yes	Singlet SC +mag.field (d+id)-wave SQHE
DIII	-1	+1	1	O(2N)/U(2N)	O(n)	no	SC w/ spin-orbit He-3 B
CI	+1	-1	1	Sp(2N)/U(2N)	Sp(2n)	yes	Singlet SC

EXAMPLE: Symmetry class AI (time-reversal with ${f T}^2=+{f 1}$)

$$\mathcal{H} = \frac{\mathcal{H} + \mathcal{H}^t}{2} + \frac{\mathcal{H} - \mathcal{H}^t}{2}$$
$$= \mathcal{H}_s + \mathcal{H}_A$$

Note:
$$e^{it\mathcal{H}_A} \in O(N)$$

Thus:
$$\mathcal{H}_s \in Lie[U(N)] - Lie[O(N)]$$

CLASSIFICATION FROM ANDERSON LOCALIZATION:

Non-linear Sigma Model (NLSM) at the \bar{d} -dimensional boundary of the d= (\bar{d} +1)-dimensional Topological Insulator:

$$S = \frac{1}{g} \int d^{\bar{d}}r \ Tr \left(\partial_{\mu} \Phi(r) \partial_{\mu} \Phi(r) \right) + S_{top}.$$

 $\Phi(r)$ = matrix field = element of symmetric space G/H

[e.g.
$$G/H = U(2n)/[U(n) \times U(n)] = \{"target space"\}]$$

Topological Insulator (Superconductor):

- Bulk (electrical or thermal) insulator
- Boundary conducts (electricity or heat) similar to a metal

→ A Topological Insulator (Superconductor) exists in a given symmetry class in $d = (\overline{d}+1)$ dimensions

if and only if

a term of topological origin can be added to the NLSM at the d-dimensional boundary, which prevents Anderson localization (top. term without tuneable parameter).

→ This is possible, if and only if the target space G/H of the NLSM allows for:

(a): a
$$\mathbf{Z}_2$$
 top. term $\Leftrightarrow \pi_{\bar{d}}(\mathsf{G}/\mathsf{H}) = \pi_{d-1}(\mathsf{G}/\mathsf{H}) = \mathbf{Z}_2$

or:

(b): a Wess – Zumino – Witten term $\Leftrightarrow \pi_d(G/H) = \pi_{\bar{d}+1}(G/H) = \mathbf{Z}$

Table of homotopy groups $\pi_{\bar{d}}(G/H)$:

 $\pi_{\bar{d}}(\mathsf{G}/\mathsf{H}) = \mathbf{Z}_2$

 $d=(\bar{d}+1)$ dimensional top.insulator $\left(\bar{d}=\right.$ dimension of boundary)

(b): There is a $(\bar{d}+1)$ -dimensional ${\bf Z}$ topological insulator, whenever $\pi_{\bar{d}+1}({\sf G}/{\sf H})={\bf Z}$

(a): There is a $(\bar{d}+1)$ -dimensional \mathbb{Z}_2 topological insulator, whenever

This yields the following

TABLE OF TOPOLOGICAL INSULATORS (SUPERCONDUCTORS):

and the same of th	-												
							d						
Cartan	0	1	2	3	4	5	6	7	8	9	10	11	
Complex case:													
A	\mathbb{Z}	0											
AIII	0	\mathbb{Z}											
Real case:													
AI	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
BDI	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
D	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	
DIII	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
AII	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	
CII	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	
C	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	
CI	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	

ORIGIN OF TOPOLOGY --- TRANSLATIONALLY INVARIANT CASE

Translational invariance →

Ground states of non-interacting Fermions (=band insulators) are filled Fermi seas in the Brillouin Zone:

$$\mathcal{H}(k) |u_a(k)\rangle = E_a(k) |u_a(k)\rangle$$

"SPECTRAL PROJECTOR":

$$\mathbf{P}(k) := \sum_{a}^{filled} |u_a(k)\rangle \langle u_a(k)|$$

Define:
$$Q(k) := 1 - 2P(k)$$

$$\left[\begin{array}{cc} \mathbf{Q}^{\dagger} = \mathbf{Q}, & \mathbf{Q}^2 = \mathbf{1}, & tr\mathbf{Q} = m - n \end{array}\right]$$

$${f Q}$$
 = Hamiltonian where $E_a(k) = {f egin{array}{ccc} & -1 & {
m fille} \ & +1 & {
m em} \ & & \end{array}}$

("flattened spectrum")

Consider the case of a Hamiltonian without any symmetry conditions (for simplicity): class A

class A: the Hamiltonian \mathcal{H} is a general (m+n) x (m+n)-Hermitian matrix

- -: set of eigenvectors = arbitrary unitary matrix ∈ U(m+n)
- -: gauge symmetry: $U(m) \times U(n) = relabeling filled and empty states$

$$\rightarrow$$
: Q(k) \in U(m+n)/[U(m) \times U(n)] = `Grassmannian'

The Quantum ground state is a map from the Brillouin Zone into the Grassmannian.

Note: an element of the "Grassmanian" can be written as

$$Q = U^\dagger \cdot \Lambda \cdot U$$
 $\Lambda = \begin{pmatrix} \mathbf{1}_m & \mathbf{0} \\ \mathbf{0} & -\mathbf{1}_n \end{pmatrix}, \quad U \in U(m+n)$
eigenvalues eigenvectors of Q

 How many inequivalent (= not deformable into each other) ground states (= maps) are there?

This is answered by the Homotopy Group:

In d=2:
$$\pi_2 [U(m+n)/[U(m) \times U(n)]] = \mathbf{Z} =$$

= counts the number of edge states of d=2 integer Quantum Hall states.

In d=3:
$$\pi_3 [U(m+n)/[U(m) \times U(n)]] = 1$$

There are no topological insulators in d=3 dimensions in symmetry class A.

GENERAL SYMMETRY CLASSES:

$$G_{m,n}(\mathbf{C}) := U(n+n)/[U(m) \times U(n)] =$$
 "Grassmanian"

	Space of projectors
AZ class	in momentum space
A	$\{Q(k)\in G_{m,m+n}(\mathbb{C})\}$
AI	$\{Q(k) \in G_{m,m+n}(\mathbb{C}) \mid Q(k)^* = Q(-k)\}$
AII	$\{Q(k) \in G_{2m,2(m+n)}(\mathbb{C}) (i\sigma_y)Q(k)^*(-i\sigma_y) = Q(-k)\}$
AIII	$\{q(k) \in \mathrm{U}(m)\}$
BDI	$\{q(k) \in \mathrm{U}(m) q(k)^* = q(-k)\}$
CII	$\{q(k) \in \mathrm{U}(2m) (i\sigma_y)q(k)^*(-i\sigma_y) = q(-k)\}$
D	${Q(k) \in G_{m,2m}(\mathbb{C}) \mid \tau_x Q(k)^* \tau_x = -Q(-k)}$
C	$\{Q(k) \in G_{m,2m}(\mathbb{C}) \mid \tau_y Q(k)^* \tau_y = -Q(-k)\}$
DIII	$\{q(k) \in \mathrm{U}(2m) \big q(k)^T = -q(-k) \}$
CI	$\{q(k) \in \mathrm{U}(m) q(k)^T = q(-k)\}$

from: Schnyder, Ryu, Furusaki, Ludwig [PRB78, 19512 (2008) – Table III]

Comment:

In the presence of "chiral" symmetry (S=1), Q can brought in the form

$$Q = \begin{pmatrix} 0 & q \\ q^{\dagger} & 0 \end{pmatrix}, \qquad q = \text{ unitary}$$

- When momentum (and position-) space is d=0 dimensional, or at points in momentum space where k = (-k):
 - → The spaces of the projectors are again the 10 Cartan symmetric spaces.
 - → These are the "Classifying Spaces" of K-Theory.

THREE OCCURRANCES OF TEN CARTAN SPACES:

Cartan label	Time evolution operator $\exp\{it\mathcal{H}\}$	Fermionic replica NLσM target space	Classifying space
A	$U(N) \times U(N)/U(N)$	$U(2n)/U(n) \times U(n)$	$U(N + M)/U(N) \times U(M) = C_0$
AIII	$U(N+M)/U(N) \times U(M)$	$U(n) \times U(n)/U(n)$	$U(N) \times U(N)/U(N) = C_1$
AI	U(N)/O(N)	$Sp(2n)/Sp(n) \times Sp(n)$	$O(N + M)/O(N) \times O(M) = R_0$
BDI	$O(N+M)/O(N) \times O(M)$	U(2n)/Sp(2n)	$O(N) \times O(N)/O(N) = R_1$
D DIII	$O(N + M)/O(N) \times O(M)$ $O(N) \times O(N)/O(N)$ SO(2N)/U(N)	O(2n)/O(n) $O(n) \times O(n)/O(n)$	$O(2N)/U(N) = R_2$ $U(2N)/Sp(2N) = R_3$
AII CII	U(2N)/Sp(2N) $Sp(N+M)/Sp(N) \times Sp(M)$	$O(n) \times O(n)/O(n)$ $O(2n)/O(n) \times O(n)$ U(n)/O(n)	$Sp(N+M)/Sp(N) \times Sp(M) = R_4$ $Sp(N) \times Sp(N)/Sp(N) = R_5$
C	$Sp(2N) \times Sp(2N)/Sp(2N)$	$\operatorname{Sp}(2n)/\operatorname{U}(n)$	$Sp(2N)/U(N) = R_6$ $U(N)/O(N) = R_7$
CI	Sp(2N)/U(N)	$\operatorname{Sp}(2n) \times \operatorname{Sp}(2n)/\operatorname{Sp}(2n)$	

$$\pi(\bar{\mathbf{T}}_{,}^{\mathsf{d}}R_{q}) = \pi_{0}(R_{q-d}) \oplus \bigoplus_{s=0}^{d-1} \binom{d}{s} \pi_{0}(R_{q-s})$$

weak top. insulators

where: $\pi(pt, R_q) := \pi_0(R_q)$

and similarly: $R_q
ightarrow C_q$

[A. Kitaev (2009)]

This yields the following

TABLE OF TOPOLOGICAL INSULATORS (SUPERCONDUCTORS):

Entra China	-												
							d						
Cartan	0	1	2	3	4	5	6	7	8	9	10	11	
Complex case:													
A	\mathbb{Z}	0											
AIII	0	\mathbb{Z}	0	\mathbb{Z}	O	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	
Real case:													
AI	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
BDI	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
D	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	
DIII	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
AII	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	
CII	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	
C	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	
CI	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	

 R_{4-p}

THREE OCCURRANCES OF TEN CARTAN SPACES:

Cartan	Time evolution operator	Fermionic replica	
label	$\exp\{it\mathcal{H}\}$	NLσM target space	Classifying space
A	$U(N) \times U(N)/U(N)$	$U(2n)/U(n) \times U(n)$	$= C_0 \ \mathrm{U}(N+M)/\mathrm{U}(N) \times \mathrm{U}(M) = C_0$
AIII	$U(N+M)/U(N) \times U(M)$	$U(n) \times U(n)/U(n)$	$= C_1 \ \mathrm{U}(N) \times \mathrm{U}(N) / \mathrm{U}(N) = C_1$
AI	U(N)/O(N)	$\operatorname{Sp}(2n)/\operatorname{Sp}(n)\times\operatorname{Sp}(n)$	$= R_4 \operatorname{O}(N+M)/\operatorname{O}(N) \times \operatorname{O}(M) = R_0$
BDI	$O(N+M)/O(N) \times O(M)$	U(2n)/Sp(2n)	$= R_3 \ \mathrm{O}(N) \times \mathrm{O}(N) / \mathrm{O}(N) = R_1$
D	$O(N) \times O(N)/O(N)$	O(2n)/U(n)	$= R_2 \ \mathrm{O}(2N)/\mathrm{U}(N) = R_2$
DIII	SO(2N)/U(N)	$O(n) \times O(n)/O(n)$	$= R_1 \ \mathrm{U}(2N)/\mathrm{Sp}(2N) = R_3$
AII	U(2N)/Sp(2N)	$O(2n)/O(n) \times O(n)$	$= R_0 \operatorname{Sp}(N+M)/\operatorname{Sp}(N) \times \operatorname{Sp}(M) = R_4$
CII	$\operatorname{Sp}(N+M)/\operatorname{Sp}(N) \times \operatorname{Sp}(M)$	U(n)/O(n)	$= R_7 \operatorname{Sp}(N) \times \operatorname{Sp}(N)/\operatorname{Sp}(N) = R_5$
C	$\operatorname{Sp}(2N) \times \operatorname{Sp}(2N)/\operatorname{Sp}(2N)$	Sp(2n)/U(n)	$= R_6 \operatorname{Sp}(2N)/\operatorname{U}(N) = R_6$
CI	$\mathrm{Sp}(2N)/\mathrm{U}(N)$	$\operatorname{Sp}(2n) \times \operatorname{Sp}(2n)/\operatorname{Sp}(2n)$	$l = R_5 \mathrm{U}(N)/\mathrm{O}(N) = R_7$

CLASSIFICATION OF TOPOL. INSUL. (SUPERCOND.) FROM QUANTUM ANOMALIES

⇒ WELL DEFINED IN PRESENCE OF INTERACTIONS

Anomaly: Loss of a symmetry of a Quantum (Field) Theory due to quantum effects

- HERE: Every Topological Insulator (Superconductor) Phase, in any dimension, has a massive Dirac Hamiltonian representative in the same topological class [Ryu, Schnyder, Furusaki, Ludwig, NJPhys 12 (2010)].
 - Since only interested in **topological features**, we are free to consider the **Dirac Hamiltonian representative**
 - Couple the Dirac Hamiltonian representative to a suitable space-time dependent background fields [gauge, gravitational (="thermal")].
 - Integrate out the massive Dirac Fermions (in space-time). Obtain effective space-time action for the background fields.

TWO OCCURRANCES OF AN ANOMALY: TYPE (i) and TYPE (ii)

Example for TYPE (i): Integer Quantum Hall Effect in d=2

- *Charge conservation at the boundary (=edge) is spoiled by Quantum Mechanics: `Charge can leak into the bulk'.
- * A characteristic of the Quantum Hall Effect
- * This indicates that the boundary doesn't exist in isolation, but is the boundary of a topological insulator in one dimension higher.

Example for TYPE (ii): Chiral Anomaly

Applies for systems with Chiral Symmetry: $S\mathcal{H}S^{\dagger}=-\mathcal{H}$

Then, in some basis: $\mathcal{H}=\left(egin{array}{ccc} 0 & h \\ h^{\dagger} & 0 \end{array} \right), \ \ {\rm and} \ \ S=\left(egin{array}{ccc} 1 & 0 \\ 0 & -1 \end{array} \right)$

Massive Dirac Fermion Representative:

Action: $\mathcal{S} = \int d^D x \ \mathcal{L}$ (D = (d+1) Eulidean Space-Time dim's)

$$\mathcal{L} = \bar{\psi} (\nabla_{\mu} \gamma_{\mu} + m) \psi = \bar{\psi}' (\nabla_{\mu} \gamma_{\mu} + m'(\alpha)) \psi'$$

where $\psi = e^{i\alpha\gamma_5/2} \ \psi'$

and: $m'(\alpha) = me^{i\alpha\gamma_5} = m[\cos(\alpha) + i\gamma_5\sin(\alpha)]$

$$m'(\alpha=0)=m, \qquad m'(\alpha=\pi)=-m$$
 (topologically trivial) (topologically non-trivial)

- Euclidean Effective Action (for space-time dependent "background fields"):

$$e^{-W_{eff}} := \int \mathcal{D}[\bar{\psi}, \psi] e^{-S[\bar{\psi}, \psi]}$$

-consider case where α not constant: $\alpha(x)$

$$i \text{ Im } W_{eff} = i \text{ Im } \int d^D x \frac{1}{2} \alpha(x) D_{\mu} J_5^{\mu}(x)$$

$$D_{\mu}J_{5}^{\mu}(x) = 2i \ m \ \bar{\psi}\gamma_{5}\psi + 2i \ \mathcal{A}_{D}(x)$$

In general:

$$\Omega_D(x) := \mathcal{A}_D(x) d^D x = d\Omega_{D-1}^{(0)}$$

= is a total derivative (= exact differential form)

Integral over the interface: general version of Chern-Simons term

$$i \text{ Im } W_{eff} = i \int_{x_1 \equiv 0} d^{D-1}x \Omega_{D-1}^{(0)}(x)$$

Example: Symmetry Class AIII/ U(1) gauge theory in D=4 space-time dimensions

$$\mathcal{A}_{D=4}(x) = \frac{(-1)}{16\pi} \frac{1}{2\pi} \epsilon^{\mu\nu\kappa\lambda} F_{\mu\nu}F_{\kappa\lambda}$$
$$= \frac{(-1)}{16\pi} \frac{1}{2\pi} 4\partial_{\sigma} (\epsilon^{\mu\nu\rho\sigma}A_{\mu}\partial_{\nu}A_{\rho})$$

$$i \text{ Im}W_{eff} =$$

(This idea was first used by Qi, Hughes, Zhang for E+M responses in symmetry class All.)

$$= i \frac{(-1)}{16\pi} \frac{1}{2} \int d^4x \frac{\alpha(x_1)}{\pi} \epsilon^{\mu\nu\kappa\lambda} F_{\mu\nu} F_{\kappa\lambda} =$$

$$= i \frac{(-1)}{16\pi} \frac{4}{2} \left[\int dx_1 \frac{\partial}{\partial x_1} \left(\frac{\alpha(x_1)}{\pi} \right) \right] \int d^3x \, \epsilon^{1\mu\nu\rho} \, A_\mu \partial_\nu A_\rho$$

$$\rightarrow i \frac{(-1)}{4\pi} \sigma_{xy} \int d^3x \; \epsilon^{1\mu\nu\rho} \; A_\mu \partial_\nu A_\rho \; , \; \sigma_{xy} = \begin{bmatrix} +1/2 & \dots \\ -1/2 & \dots \\ \end{bmatrix}$$

Slab of Top. Insulator:

edge state

conductance: $G = 2 \times \sigma_{xy}$ (units of e^2/h)

(Chiral) Anomaly - General Properties:

(D space-time dimensions)

$$D_{\mu}J_5^{\mu}(x) = 2im\bar{\psi}\gamma_{D+1}\psi + 2iA_D(x)$$

- Closed form expressions = Generating Functions:

$$\mathcal{F} := \frac{1}{2} F_{\mu\nu} \, dx^{\mu} \wedge dx^{\nu}; \quad ch(\mathcal{F}) := r + (\frac{i}{2\pi}) tr \mathcal{F} + \frac{1}{2!} (\frac{i}{2\pi})^2 tr \mathcal{F}^2 + \dots \quad \text{(Chern-Character)}$$

$$\mathcal{R}_{\mu}{}^{\nu} := \frac{1}{2} \, R_{\alpha\beta\mu}{}^{\nu} \, dx^{\alpha} \wedge dx^{\beta};$$

$$\hat{A}(\mathcal{R}) := 1 + \frac{1}{(4\pi)^2} \, \frac{1}{12} tr \mathcal{R}^2 + \frac{1}{(4\pi)^2} \left[\frac{1}{288} \left(tr \mathcal{R}^2 \right)^2 + \frac{1}{360} tr \mathcal{R}^4 \right] + \dots \quad \text{(Dirac Genus)}$$

and
$$\Omega_D := \mathcal{A}_D(x) \ d^Dx$$

$$\Omega_D := ch(\mathcal{F})_{|_D}; \qquad := \widehat{A}(\mathcal{R})_{|_D}; \qquad := \left(ch(\mathcal{F}) \ \widehat{A}(\mathcal{R})\right)_{|_D}$$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$[\ \textbf{U(1)-}; \qquad \text{gravitational-}; \qquad \text{mixed-}$$

anomaly

Descent Relations:

$$\Omega_D = d\Omega_{D-1}^{(0)}, \quad \delta_v \Omega_{D-1}^{(0)} = d\Omega_{D-2}^{(1)}$$

(infinitesimal) gauge transformation

These imply:

 Boundary ["TYPE (ii)"]:

Chern-Simons term" D-dimensional space-time manifold with boundary
$$\int_{M_D} A_D \, d^dx = \int_{M_D} \Omega_D = \int_{M_D} d\Omega_{D-1}^{(0)} = \int_{\partial M_D} \Omega_{D-1}^{(0)}$$

 Bulk Chern-Simons term ["TYPE (i)"]

$$\delta_v \int_{M_{D-1}} \Omega_{D-1}^{(0)} = \int_{M_{D-1}} d\Omega_{D-2}^{(1)} = \int_{\partial M_{D-1}} \Omega_{D-2}^{(1)}$$

Another Example: Symmetry Class DIII in D=4 space-time dimensions

- * d=3: a.) superconductors with spin-orbit interactions (Zahid Hasan expt's); b.) He3-B.
- * No conservation laws besides energy/momentum ->
 - -> can only couple to gravitational background. (Physically: heat transport <-> later.)

$$\Omega_D = d\Omega_{D-1}^{(0)} \qquad \left[\begin{array}{c} \mathcal{A}_{D=4}(x) \ = \ \frac{1}{2} \ \frac{1}{4^2 \times 12 \times 2^2 \times \pi^2} \ \epsilon^{cdef} \ R^a{}_{bcd} R^b{}_{aef} = \\ = \ \frac{1}{2} \ \frac{1}{4^2 \times 12 \times 2^2 \times \pi^2} \ 4 \ \epsilon^{\mu\nu\rho\lambda} \partial_\mu \left[tr \left(\omega_\nu \partial_\rho \omega_\lambda + \frac{2}{3} \omega_\nu \omega_\rho \omega_\lambda \right) \right] \right] \tag{"spin connection"}$$

$$i \operatorname{Im} W_{eff} = i \int d^4 x \sqrt{g} \alpha(x_1) \mathcal{A}_4(x) \rightarrow$$

$$\epsilon \downarrow 0^+ \qquad \rightarrow -i \frac{1}{4\pi} \frac{\sigma_{xy}^{(T)}}{T} \frac{c}{24} \int d^3 x \, \epsilon^{1\nu\rho\lambda} \operatorname{tr} \left(\omega_{\nu} \partial_{\rho} \omega_{\lambda} + \frac{2}{3} \omega_{\nu} \omega_{\rho} \omega_{\lambda} \right)$$

(Gravitational Chern-Simons term)

(see also: Qi,Zhang, arXiv Nov. 2010)

where
$$c = 1/2$$
, and $\frac{1}{T}\sigma_{xy}^{(T)} = \begin{bmatrix} +1/2 & -1/2 \\ -1/2 & \end{bmatrix}$

thermal – conductance :
$$\frac{1}{T}G^T = 2 \times \frac{1}{T}\sigma_{xy}^T$$
 (units of $\frac{1}{6}\frac{(\pi k_B)^2}{h}$)

PHYSICAL MEANING:

A Temperature gradient in the x-direction

produces

a heat-current in the y-direction:

$$j_y^T = \sigma_{xy}^T \left(-\partial_x T \right)$$

$\operatorname{Cartan}\backslash d$	0	1	2	3	4	5	6	7	8	9	10	11	
A	Z	0	Z	0	\mathbf{Z}	0	Z	0	Z	0	\mathbf{Z}	0	
AIII	0	\mathbf{Z}											
AI	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
BDI	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
D	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	
DIII	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
AII	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	
CII	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	
C	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	
CI	0	0	0	$2\mathbf{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	

Classification:

Symmetry Classes A and AllI:

TYPE (ii): Chiral Anomaly in U(1) gauge background

$$\mathcal{A}_D(x) \neq 0$$
 when $D = 2k \ (k \in \mathbf{N})$

Top. Insulators in **class AIII** exsist in D= 2+ 2k space-time dimensions d= 1+2k spatial dimensions

TYPE (i): U(1) Chern-Simons term

Use Descent Relation : $\Omega_{2k} = \mathcal{A}_{2k} d^D x = d\Omega_{2k-1}^{(0)}$

Exists U(1)-Chern Simons term in D = 2k-1 space-time dimensions

(Chern-Simons form)

Top. Insulators in **class A** exsist in

D= 1+ 2k space-time dimensions

d= 0 + 2k spatial dimensions

RECALL:

(Chiral) Anomaly - General Properties:

(D space-time dimensions)

$$D_{\mu}J_5^{\mu}(x) = 2im\bar{\psi}\gamma_{D+1}\psi + 2iA_D(x)$$

- Closed form expressions = Generating Functions:

$$\mathcal{F} := \frac{1}{2} F_{\mu\nu} \, dx^{\mu} \wedge dx^{\nu}; \quad ch(\mathcal{F}) := r + (\frac{i}{2\pi}) tr \mathcal{F} + \frac{1}{2!} (\frac{i}{2\pi})^2 tr \mathcal{F}^2 + \dots$$

$$\mathcal{R}_{\mu}{}^{\nu} := \frac{1}{2} \, R_{\alpha\beta\mu}{}^{\nu} \, dx^{\alpha} \wedge dx^{\beta};$$

$$\hat{A}(\mathcal{R}) := 1 + \frac{1}{(4\pi)^2} \, \frac{1}{12} tr \mathcal{R}^2 + \frac{1}{(4\pi)^2} \left[\frac{1}{288} \left(tr \mathcal{R}^2 \right)^2 + \frac{1}{360} tr \mathcal{R}^4 \right] + \dots \quad \text{(Dirac Genus)}$$

and
$$\Omega_D := \mathcal{A}_D(x) \ d^Dx$$

$$\Omega_D := ch(\mathcal{F})_{|_D}; \qquad := \widehat{A}(\mathcal{R})_{|_D}; \qquad := \left(ch(\mathcal{F}) \ \widehat{A}(\mathcal{R})\right)_{|_D}; \qquad \downarrow$$

$$\left[\ \mathbf{U(1)} \ ; \ \ \mathbf{gravitational}; \ \ \mathbf{mixed} \ \right]$$

$\operatorname{Cartan}\backslash d$	0	1	2	3	4	5	6	7	8	9	10	11	
A	Z	0	Z	0	\mathbf{Z}	0	Z	0	Z	0	\mathbf{Z}	0	
AIII	0	\mathbf{Z}											
AI	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
BDI	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
D	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	
DIII	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
AII	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	
CII	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	
C	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	
CI	0	0	0	$2\mathbf{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	

Symmetry Classes D, DIII, C, CI:

(No natural U(1) symmetry -> gravitational anomaly)

TYPE (ii): Chiral Anomaly in gravitational background

$$\mathcal{A}_D(x) \neq 0 \quad \text{when} \quad D = 4k \ (k \in \mathbf{N})$$
 (equivalently: D=4+8k, D=8+8k)

 \Rightarrow

Top. Insulators in **class DIII** exsist in D= 4+ 8k space-time dimensions

d= 3 +8k spatial dimensions

and

Top. Insulators in class CI exsist in D= 8+ 8k space-time dimensions d= 7 +8k spatial dimensions

TYPE (i): Gravitational Chern-Simons term

(Chern-Simons form)

Use Descent Relation :
$$\Omega_{4k} = \mathcal{A}_{4k} d^D x = d\Omega_{4k-1}^{(0)}$$

Exists gravitational Chern-Simons term in D = 4k-1 space-time dimensions (i.e. in D=3+8k, D=7+8k).

Top. Insulators in **class D** exsist in D= 3+ 8k space-time dimensions d= 2 +8k spatial dimensions

and

Top. Insulators in class C exsist in D= 7+ 8k space-time dimensions d= 6 +8k spatial dimensions

(Chiral) Anomaly - General Properties:

(D space-time dimensions)

$$D_{\mu}J_5^{\mu}(x) = 2im\bar{\psi}\gamma_{D+1}\psi + 2iA_D(x)$$

Closed form expressions = Generating Functions:

$$\mathcal{F} := \frac{1}{2} F_{\mu\nu} \, dx^{\mu} \wedge dx^{\nu}; \quad ch(\mathcal{F}) := r + (\frac{i}{2\pi}) tr \mathcal{F} + \frac{1}{2!} (\frac{i}{2\pi})^2 tr \mathcal{F}^2 + \dots \quad \text{(Chern-Character)}$$

$$\mathcal{R}_{\mu}{}^{\nu} := \frac{1}{2} \, R_{\alpha\beta\mu}{}^{\nu} \, dx^{\alpha} \wedge dx^{\beta};$$

$$\widehat{A}(\mathcal{R}) := 1 + \frac{1}{(4\pi)^2} \, \frac{1}{12} tr \mathcal{R}^2 + \frac{1}{(4\pi)^2} \left[\frac{1}{288} \left(tr \mathcal{R}^2 \right)^2 + \frac{1}{360} tr \mathcal{R}^4 \right] + \dots \quad \text{(Dirac Genus)}$$

- where
$$\Omega_D := \mathcal{A}_D(x) \ d^D x$$

and
$$\Omega_D:=ch(\mathcal{F})_{|_D};$$

$$\Omega_D := ch(\mathcal{F})_{|_D}; \qquad := \left. \widehat{A}(\mathcal{R})_{|_D}; \right. \\ \left. \downarrow \right. \qquad \left. \downarrow \right. \\ \left[\text{ U(1)} ; \right. \qquad \text{gravitational;} \right. \qquad := \left. \left(ch(\mathcal{F}) \, \widehat{A}(\mathcal{R}) \right)_{|_D} \right. \\ \left. \left. \downarrow \right. \qquad \left. \downarrow \right. \right. \\ \left. \left. \downarrow \right. \qquad \left. \downarrow \right. \right. \\ \left. \left. \downarrow \right. \qquad \left. \downarrow \right. \right. \\ \left. \left. \downarrow \right. \qquad \left. \downarrow \right. \right. \\ \left. \left. \downarrow \right. \qquad \left. \downarrow \right. \right. \\ \left. \left. \downarrow \right. \qquad \left. \downarrow \right. \\ \left. \left. \downarrow \right. \right. \\ \left. \left. \downarrow \right. \right. \\ \left. \left. \downarrow \right. \\ \left. \left. \downarrow \right. \right. \\ \left. \left. \downarrow \right. \\ \left. \left. \left. \left. \right. \right. \\ \left. \left. \left. \left. \left. \left. \right. \right. \\ \left. \left. \left. \left. \left. \right. \right. \\ \left. \left. \left. \left. \left. \left. \right. \right. \\ \left. \left. \left. \left. \left. \left. \right. \right. \\ \left. \left. \left. \left. \left. \left. \right. \right. \\ \left. \left. \left. \left. \left. \left. \right. \right. \\ \left. \left. \left. \left. \left. \left. \left. \right. \right. \\ \left. \left. \left. \left. \left. \left. \left. \right. \right. \right. \\ \left. \left. \left. \left. \left. \left. \left. \left. \left. \right. \right. \right. \right. \\ \left. \right. \right] \right. \right] \right. \right]$$

$$:= \left(ch(\mathcal{F}) \ \widehat{A}(\mathcal{R}) \right)_{|_{D}}$$

$$\uparrow$$

$$\mathsf{mixed} \]$$

$\operatorname{Cartan}\backslash d$	0	1	2	3	4	5	6	7	8	9	10	11	
A	Z	0	Z	0	\mathbf{Z}	0	Z	0	Z	0	\mathbf{Z}	0	
AIII	0	\mathbf{Z}											
AI	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
BDI	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
D	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	
DIII	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
AII	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	
CII	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	
C	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	
CI	0	0	0	$2\mathbf{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	

Symmetry Classes Al, All, Cll, BDI:

(Have natural U(1) symmetry -> mixed anomaly)

TYPE (ii): Chiral Anomaly in 'mixed' background

$$\mathcal{A}_D(x) \neq 0$$
 when $D = 4k + 2 \ (k \in \mathbb{N})$ (equiv

(equivalently: D=2+8k, D=6+8k)

 \Longrightarrow

Top. Insulators in **class BDI** exsist in D= 2+ 8k space-time dimensions d= 1+8k spatial dimensions

and

Top. Insulators in **class CII** exsist in D= 6+ 8k space-time dimensions d= 5 +8k spatial dimensions

TYPE (i): 'Mixed' Chern-Simons term

(Chern-Simons form)

Use Descent Relation : $\Omega_{4k+2} = \mathcal{A}_{4k+2} d^D x = d\Omega_{4k+1}^{(0)}$

Exists 'mixed' Chern-Simons term in D = 4k + 1 space-time dimensions (i.e. in D=1+8k, D=5+8k).

 \Rightarrow

Top. Insulators in **class AI** exsist in D= 1+ 8k space-time dimensions d= 0 +8k spatial dimensions

and

Top. Insulators in **class All** exsist in D= 5+ 8k space-time dimensions d= 4+8k spatial dimensions

RECALL:

(Chiral) Anomaly - General Properties:

(D space-time dimensions)

$$D_{\mu}J_5^{\mu}(x) = 2im\bar{\psi}\gamma_{D+1}\psi + 2iA_D(x)$$

- Closed form expressions = Generating Functions:

$$\mathcal{F} := \frac{1}{2} F_{\mu\nu} \, dx^{\mu} \wedge dx^{\nu}; \quad ch(\mathcal{F}) := r + (\frac{i}{2\pi}) tr \mathcal{F} + \frac{1}{2!} (\frac{i}{2\pi})^2 tr \mathcal{F}^2 + \dots$$

$$\mathcal{R}_{\mu}{}^{\nu} := \frac{1}{2} \, R_{\alpha\beta\mu}{}^{\nu} \, dx^{\alpha} \wedge dx^{\beta};$$

$$\hat{A}(\mathcal{R}) := 1 + \frac{1}{(4\pi)^2} \, \frac{1}{12} tr \mathcal{R}^2 + \frac{1}{(4\pi)^2} \left[\frac{1}{288} \left(tr \mathcal{R}^2 \right)^2 + \frac{1}{360} tr \mathcal{R}^4 \right] + \dots \quad \text{(Dirac Genus)}$$

- where
$$\Omega_D \ := \ \mathcal{A}_D(x) \ d^D x$$

$\operatorname{Cartan}\backslash d$	0	1	2	3	4	5	6	7	8	9	10	11	
A	Z	0	Z	0	Z	0	Z	0	Z	0	Z	0	
AIII	0	\mathbf{Z}											
AI	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
BDI	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
D	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	
DIII	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
AII	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	
CII	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	
C	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	
CI	0	0	0	$2\mathbf{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	