Some Phase Transitions Between Topological Phases

Steven H. Simon w/ Fiona J. Burnell

larXiv:1012.0317

and Joost Slingerland (NUI Maynooth)

In Celebration of Mike Freedman's Birthday

The Landau Paradigm:

Phases, and Phase Transitions Described by Local Order Parameters; Local Broken Symmetries

Normal Phase

$$\langle b^{\dagger} \rangle = 0$$

Condensed Phase: Broken U(1)

$$\langle b^{\dagger} \rangle = |\phi| e^{i\theta}$$

Ex.
$$b^{\dagger} = c^{\dagger}_{\uparrow} c^{\dagger}_{\downarrow}$$

Forcing Condensate Order

$$H = H_0 + \Delta b^{\dagger} + \Delta^* b$$

Boson Number Uncertainty in Condensed Phases

Transitions between Topological Phases?

Order is Nonlocal

 Can something condense to make a transition between two topological phases?

Algebraic structure of topological condensation transitions:

- de Wild Propitius (PhD Thesis '95); with Bais
- Bais and Slingerland PRB 79, 045316 ('09)
- Kitaev, Unpublished

. . .

Our Objective

- Realize these transitions in an (almost) solvable lattice model.
- Examine the critical theory.
- Relevance to "experiments"?

First Example: Phase Transition in Perturbed Toric Code

Prior Work By...

```
A. Kitaev, Ann. Phys. 303 ('03) 2
Fradkin and Shenker PRD 19, 3682 ('79)
Trebst et. al. PRL 98, 070602 ('07)
C. Castelnovo and C. Chamon PRB 78 155120 ('08)
Vidal PRB 79, 033109 ('09)
etc.
```


Ground state = equal superposition of all loop configurations

Edges: electric flux $\sigma_z = \pm 1$

$$H_{\text{Toric}} - \sum_{V} \epsilon_{e} \prod_{i} \sigma_{z}(i) - \sum_{P} \epsilon_{m} \prod_{i} \sigma_{x}(i)$$

electric defect e

enforces $\nabla \times \mathbf{B} = 0$ flips all + \Leftrightarrow - around a plaquette

Ground state = equal superposition of all loop configurations

Edges: electric flux $\sigma_z = \pm 1$

$$H_{\text{Toric}} - \sum_{V} \epsilon_{e} \prod_{i} \sigma_{z}(i) - \sum_{P} \epsilon_{m} \prod_{i} \sigma_{x}(i)$$

electric defect e

enforces $\nabla \times \mathbf{B} = 0$ flips all + \Leftrightarrow - around a plaquette violation is magnetic defect m

Ground state = equal superposition of all loop configurations

$$H_{\text{Toric}} - \sum_{V} \epsilon_{e} \prod_{i} \sigma_{z}(i) - \sum_{P} \epsilon_{m} \prod_{i} \sigma_{x}(i)$$

Edges: electric flux $\sigma_z = \pm 1$

m is a Z_2 boson : Can we condense it? (trivial self braiding and $m \times m = 1$)

enforces $\nabla \times \mathbf{B} = 0$ flips all + \Leftrightarrow - around a plaquette violation is magnetic defect m

Want:

$$H = H_{\text{Toric}} + \Delta m^{\dagger} + h.c.$$
 but no local operator creates single m .

$$H_{\text{Toric}} - \sum_{V} \epsilon_{e} \prod_{I} \sigma_{z}(i) - \sum_{P} \epsilon_{m} \prod_{I} \sigma_{x}(i)$$

Edges: electric flux $\sigma_z = \pm 1$

m is a Z_2 boson : Can we condense it? (trivial self braiding and $m \times m = 1$)

enforces $\nabla \times \mathbf{B} = 0$ flips all + \Leftrightarrow - around a plaquette violation is magnetic defect m

Want:

$$H = H_{\text{Toric}} + \Delta m^{\dagger} + h.c.$$
 but no local operator creates single m .

Instead

$$H = H_{\text{Toric}} - \Delta m_i^{\dagger} m_j^{\dagger} + h.c. \quad \text{Creates/annihilates/hops } m \text{ bosons}$$
 (i,j neighbors)

Commutes with electric term. Never creates *e* defects Can work in reduced Hilbert Space

$$H_{\text{Toric}} - \sum_{V} \epsilon_{e} \prod_{\sigma_{z}(i)} \sigma_{z}(i) - \sum_{P} \epsilon_{m} \prod_{\sigma_{x}(i)} \sigma_{x}(i)$$

Edges: electric flux $\sigma_z = \pm 1$

Plaquettes: m violation vs none $\rightarrow \tau_z = \pm 1$

$$H_{\text{eff}} = \epsilon_m \sum_{i \in P} \tau_z^i - \Delta \sum_{\langle i,j \rangle \in P} \tau_x^i \tau_x^j$$

Exact mapping to Transverse Field Ising Model

enforces
$$\nabla \times \mathbf{B} = 0$$
 flips all + \Leftrightarrow - around a plaquette violation is magnetic defect m

$$H = H_{\rm Toric} - \Delta \, m_i^\dagger m_j^\dagger + h.c. \quad {\rm Creates/annihilates/hops} \, {\it m} \, \, {\rm bosons} \, \, \\ {\it (i,j \, neighbors)}$$

Commutes with electric term. Never creates *e* defects. Can work in reduced Hilbert Space

$$H_{\text{Toric}} - \sum_{V} \epsilon_{e} \prod_{I} \sigma_{z}(i) - \sum_{P} \epsilon_{m} \prod_{I} \sigma_{x}(i)$$

Edges: electric flux $\sigma_z = \pm 1$

Plaquettes: m violation vs none $\rightarrow \tau_z = \pm 1$

$$H_{\text{eff}} = \epsilon_m \sum_{i \in P} \tau_z^i - \Delta \sum_{\langle i,j \rangle \in P} \tau_x^i \tau_x^j$$

Exact mapping to Transverse Field Ising Model

enforces $\nabla \times \mathbf{B} = 0$ flips all + \Leftrightarrow - around a plaquette violation is magnetic defect m

Operate with σ_z on edge creates m on two adjacent plaquettes

$$H_{\text{Toric}} - \sum_{V} \epsilon_{e} \prod_{i} \sigma_{z}(i) - \sum_{P} \epsilon_{m} \prod_{i} \sigma_{x}(i)$$

Edges: electric flux $\sigma_z = \pm 1$

Plaquettes: m violation vs none $\rightarrow \tau_z = \pm 1$

$$H_{\text{eff}} = \epsilon_m \sum_{i \in P} \tau_z^i - \Delta \sum_{\langle i,j \rangle \in P} \tau_x^i \tau_x^j$$

Exact mapping to Transverse Field Ising Model

enforces $\nabla \times \mathbf{B} = 0$ flips all + \Leftrightarrow - around a plaquette violation is magnetic defect m

$$H = H_{\text{Toric}} - \Delta \sum_{edge\ i} \sigma_z(i)$$

String tension for loops

Operate with σ_z on edge creates m on two adjacent plaquettes

Plaquettes: m violation vs none $\rightarrow \tau_z = \pm 1$

$$H_{\text{eff}} = \epsilon_m \sum_{i \in P} \tau_z^i - \Delta \sum_{\langle i,j \rangle \in P} \tau_x^i \tau_x^j$$

Exact mapping to Transverse Field Ising Model

No Loops

τ spins
 in x direction
 = (1 + m)
 maximum
 uncertainty
 of # of bosons:

$$H = H_{ ext{Toric}} - \Delta \sum_{edge\ i} \sigma_z(i)$$
 String tension for loops

Operate with σ_z on edge creates m on two adjacent plaquettes

Transitions between two topologically nontrivial phases: Much the same physics applies! (with some twists)

1. Start with Levin-Wen Lattice Model

Levin and Wen PRB 71, 045110 ('05) Provides description of Uncondensed Phase

- 2. Find a Z_N "plaquette boson" (no vertex defect; trivial self braiding ; $b \times b ... \times b = 1$)

 N times
- 3. Add condensation term to H_{Levin-Wen}
- 4. Exact mapping to "transverse field" Z_N spin model
 ⇒ confinement transition for certain "loops"

Provides "solvable" realizations of (some) transitions proposed by Bais and Slingerland PRB 79, 045316 ('09)

Hilbert space: Edge labels: $1, \sigma, \psi$

$$H_{LW} = -\sum_{V} \epsilon_{V} \, \delta_{E_{1}, E_{2}, E_{3}} - \sum_{P} \epsilon_{m} \operatorname{Proj}_{0}(P)$$

Enforces " $\nabla \cdot \mathbf{E} = 0$ " where allowed vertices are

(note: σ forms closed loops)

enforces $\nabla \times \mathbf{B} = 0$ flips edge variables around a plaquette violation is "magnetic" defect

Ground state = weighted superposition of string net configurations

Spectrum: both vertex and plaquette defects = $lsing_{\mathbf{R}} \times lsing_{\mathbf{L}}$ Particles = $(1, \sigma, \psi)_{\mathbf{R}} \times (1, \sigma, \psi)_{\mathbf{L}}$

Particle Type	Statistics
1	Identity
ψ_R	\mathbb{Z}_2 Fermion
ψ_L	\mathbb{Z}_2 Fermion
σ_R	Chiral Anyon
σ_L	Chiral Anyon
$\psi_R imes {\color{red}\sigma_L}$	Chiral Anyon
$\sigma_R imes \psi_L$	Chiral Anyon
$\sigma_R \times \sigma_L$	Boson
$b = \psi_R \times \psi_L$	\mathbb{Z}_2 Boson

condense this boson b

Equivalent to bilayer

$$p_x + ip_y/p_x - ip_y$$
 superconductor

Read and Green PRB 61, 10267 ('00)

Particle Type	Statistics
1	Identity
ψ_R	\mathbb{Z}_2 Fermion
ψ_L	\mathbb{Z}_2 Fermion
σ_R	Chiral Anyon
σ_L	Chiral Anyon
$\psi_R imes {\color{red}\sigma_L}$	Chiral Anyon
$\sigma_R imes \psi_L$	Chiral Anyon
$\sigma_R \times \sigma_L$	Boson
$b = \psi_R imes \psi_L$	\mathbb{Z}_2 Boson

condense this boson b

Particle Type	Statistics
1	Identity
ψ_R	\mathbb{Z}_2 Fermion
ψ_L	\mathbb{Z}_2 Fermion
σ_R	Chiral Anyon
σ_L	Chiral Anyon
$\psi_R imes {\color{red}\sigma_L}$	Chiral Anyon
$\sigma_R imes \psi_L$	Chiral Anyon
$\sigma_R \times \sigma_L$	Boson
$b = \psi_R imes \psi_L$	\mathbb{Z}_2 Boson

 $^{\it b}$ is equivalent to a ψ flux through a plaquette

condense this boson b

$$H=H_{LW}$$
 $-\Delta b_i^{\dagger} b_j^{\dagger} + h.c.$ creates/annihilates/hops b^{\prime} s

Creates only this one type of defect

 b is equivalent to a ψ flux through a plaquette

Plaquettes: b boson present or not $\to \tau_z = \pm 1$

$$H_{\text{eff}} = \epsilon_m \sum_{i \in P} \tau_z^i - \Delta \sum_{\langle i, i \rangle \in P} \tau_x^i \tau_x^j$$

$$H=H_{LW}$$
 ($\Delta b_i^\dagger b_j^\dagger$) $h.c.$ creates/annihilates/hops b^\prime s

Creates only this one type of defect

b is equivalent to a ψ flux through a plaquette

Plaquettes: b boson present or not $\to \tau_z = \pm 1$

$$H_{\text{eff}} = \epsilon_m \sum_{i \in P} \tau_z^i - \Delta \sum_{\langle i, i \rangle \in P} \tau_x^i \tau_x^j$$

$$H = H_{LW} \left(-\Delta b_i^{\dagger} b_j^{\dagger} + h.c. \right)$$

 $(-1)^{n_\sigma}$ on edge creates $^{\it b}$ on two adjacent plaquettes String tension for $^{\it c}$ loops!

Plaquettes: b boson present or not $\to \tau_z = \pm 1$

$$H_{\text{eff}} = \epsilon_m \sum_{i \in P} \tau_z^i - \Delta \sum_{\langle i,j \rangle \in P} \tau_x^i \tau_x^j$$

Pure Ising_R x Ising_L

String tension for or loops!

Edges labeled With 1 or ψ only

⇒Toric Code

Plaquettes: b boson present or not $\to \tau_z = \pm 1$

$$H_{\text{eff}} = \epsilon_m \sum_{i \in P} \tau_z^i - \Delta \sum_{\langle i, j \rangle \in P} \tau_x^i \tau_x^j$$

Equivalent to bilayer

$$p_x + ip_y/p_x - ip_y$$
 superconductor

Read and Green PRB 61, 10267 ('00)

In superconductor - language

$$\delta H = \psi_L^{\dagger} \psi_R^{\dagger} \ \psi_L \psi_R$$

Turns on interlayer s-pairing

Particle Type	Statistics
1	Identity
ψ_R	\mathbb{Z}_2 Fermion
ψ_L	\mathbb{Z}_2 Fermion
σ_R	Chiral Anyon
σ_L	Chiral Anyon
$\psi_R imes {\color{red}\sigma_L}$	Chiral Anyon
$\sigma_R imes \psi_L$	Chiral Anyon
$\sigma_R \times \sigma_L$	Boson
$b = \psi_R imes \psi_L$	\mathbb{Z}_2 Boson

Equivalent to bilayer

$$p_x + ip_y/p_x - ip_y$$
 superconductor

Read and Green PRB 61, 10267 ('00)

Excitations:

$$\psi_L \equiv \psi_R$$
 Fermion

$$(\sigma_L \times \sigma_R)_1$$
 Boson

$$(\sigma_L \times \sigma_R)_{\psi}$$
 Boson

In superconductor - language

$$\delta H = \psi_L^{\dagger} \psi_R^{\dagger} \; \psi_L \psi_R$$

Turns on interlayer s-pairing

General Structure:

- Start with (chiral) Chern-Simons theory (or any MTC)
- Choose a Z_{N} simple current ψ
- Double CS theory (Levin Wen Lattice Model)
- Add term to condense $b = \psi_L imes \psi_R$
- Maps to Z_N spin model
- Condensed phase is *Drinfeld Double* of the subcategory of particles from the original CS theory which braid trivially with ψ .

Some Phase Transitions Between Topological Phases

Steven H. Simon w/ Fiona J. Burnell

larXiv:1012.0317

and Joost Slingerland (NUI Maynooth)

In Celebration of Mike Freedman's Birthday

