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The Landau Paradigm:

Phases, and Phase Transitions Described by
Local Order Parameters; Local Broken Symmetries

Ex: Boson Condensation

Normal Phase Condensed Phase: Broken U(1)

o1y =0 o) = |le"

Ex. b' = 01(:1
Forcing Condensate Order

H=Hy+ Ab + A*

Boson Number Uncertainty in Condensed Phases



Transitions between Topological Phases?

Order is Nonlocal

« Can something condense to make a transition between
two topological phases?

Algebraic structure of topological condensation transitions:
 de Wild Propitius (PhD Thesis '95); with Bais

° Bais and Slingerland PRB 79, 045316 ('09)
° Kitaev, Unpublished

OQOur Objective

» Realize these transitions in an (almost) solvable lattice model.
« Examine the critical theory.
* Relevance to “experiments” ?



First Example: Phase Transition in Perturbed Toric Code

Prior Work By...

A. Kitaev, Ann. Phys. 303 ('03) 2
Fradkin and Shenker PRD 19, 3682 ('79)

Trebst et. al. PRL 98, 070602 ('07)
C. Castelnovo and C. Chamon PRB 78 155120 ('08 )

Vidal PRB 79, 033109 ('09)

etc.
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Toric Code (z, gauge) HTOE _ Z €e H o(1) — Z €m H ox(1)
PN O

enforces
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around a plaquette
m is a Z,boson : Can we condense it? violation is
(trivial self braiding and m x m = 1) \magnetic defect m /

Want:
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Toric Code (z, gauge) HTOE _ Z €e H o(1) — Z €m H ox(1)
P
O

enforces
VxB=0
Edges: electric flux o, = £1 flips all + < -
around a plaquette
m is a Z,boson : Can we condense it? violation is
(trivial self braiding and m x m = 1) \magnetic defect m /

Want:
H=H +Am'+h.c but no local operator creates single m.

Toric

Instead

H=H

Tor|c

Am! mT + h.c. Creates/annihilates/hops m bosons

H_JJ (i, neighbors)

Commutes with electric term. Never creates e defects
Can work in reduced Hilbert Space



Toric Code (z, gauge) HT.: B Z ‘. H o (i) — Z - H o (i)
oric V /k P O
enforces
VxB=0

flips all + <= -

Edges: electric flux o, = £1 around a plaquette

/Plaquettes: m violation vs none — 7, = +£1 "\ violation is

@agnetic defect ny
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Commutes with electric term. Never creates e defects.
Can work in reduced Hilbert Space

h.c. Creates/annihilates/hops m bosons
(i,j neighbors)

H=H

Toric
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Toric Code (z, gauge) H— _ Z ‘. H o (i) — Z - H o (i)
Toric
V /k P O
enforces

VxB=0

flips all + <= -
around a plaquette

/Plaquettes: m violation vs none — 7, = +£1 "\ violation is

@agnetic defect ny
Heg = emZTg — A Z TiTd

1€ P <v,3>€P

Edges: electric flux o, = £1

Gxact mapping to Transverse Field Ising Mod@

H=H_— A Z o, (1) String tension for loops

Operate with 0, on edge creates m on two adjacent plaquettes



Pure Toric Code

l Deconfined loops Confined loops
Frustrated = Toric Code Phase | = Topologically trivial
AL Paramagnetic , | Ferromagnetic f
A = o0
No Loops
/Plaquettes: m violation vs none — 7, = *£1 )
T spins
- o in x direction
Hyg=en S ri—A S rird X dree
1€ P <t,j>€EP maximum
. _ . uncertainty
\Exact mapping to Transverse Field Ising Mode/l of # of bosons;
H = HToriC— A E o z(@) String tension for loops

Operate with 0, on edge creates m on two adjacent plaquettes



Transitions between two topologically nontrivial phases:
Much the same physics applies! (with some twists)

1. Start with Levin-Wen Lattice Model

Levin and Wen PRB 71, 045110 ('05)
Provides description of Uncondensed Phase

2. Find a Z, "plaquette boson”

(no vertex defect; trivial self braiding ; bxb..xb =1)
Y

N times

3. Add condensation term to H, .,i-wen

4. Exact mapping to “transverse field” Z, spin model
= confinement transition for certain “loops”

Provides “solvable” realizations of (some) transitions proposed by
Bais and Slingerland PRB 79, 045316 ('09)



Levin and Wen model of Isingg x Ising,
Hilbert space: Edge labels: 1, o, 1

Huw = =3 ev 00y sy — 3 enProfo(P)

J 1% P
Enforces 'V -E =0 " where allowed vertices are ver;‘olrgc e:s 0
flips edge variables
around a plaquette
violation is
(1,1,1) (1,2,2) (0,0,7) (0,0, 1 K“magnetic” defectj

(note: o forms closed Ioops

Ground state = weighted superposition of string net configurations

Spectrum: both vertex and plaquette defects = Isingg x Ising,
Particles = (]_q o, "())R X (]_, o, l/’ )L



Levin and Wen model of Isingg x Ising,
Hilbert space: Edge labels: 1, o, 1

Hrw = — Z €V OB, By, By — Z €mPr0jo(P)
1% P

Particle Type Statistics

1 Identity
VR Zio Fermion
U Z5 Fermion
OR Chiral Anyon
or Chiral Anyon

VYR X O, Chiral Anyon

ORr X UYL, Chiral Anyon

Op X O, Boson
b=1r x¥r | 7 Boson | <@ condense this boson b




Levin and Wen model of Isingg x Isingg

orL

VL

\

/<§

L /Equivalent to bilayer
P T+ ipy/pa; — 1Py

/.

¥R M
Particle Type Statistics
1 Identity
VR Zio Fermion
U Z,5 Fermion
OR Chiral Anyon
or Chiral Anyon
VR X O, Chiral Anyon
OR X Y[, Chiral Anyon
Op X O, Boson
b=vr XYL, Zo Boson

<"j_/ R __superconductor P
Read and Green PRB 61, 10267 ('00)

4= condense this boson b



Levin and Wen model of Isingg x Isingg

Particle Type Statistics
1 Identity
VR Zio Fermion
U Z5 Fermion
OR Chiral Anyon
or Chiral Anyon
VR X O, Chiral Anyon
ORr X UYL, Chiral Anyon
Op X O, Boson
b=vr XYL, Zi5 Boson

b is equivalent to a ¥
flux through a plaquette

4= condense this boson b



Levin and Wen model of Isingg x Isingg

_ TpT o ‘
H = HLW — A b,L- bj + h.c. creates/annihilates/hops b's

Hr_l

Creates only this one type of defect

b is equivalent to a ¥
flux through a plaquette

/Plaquettes: b boson present or not — 7, = +1)

HeffzemE :Tz_A E, Ta:ng

i€P <i,j>€P

@xact mapping to Transverse Field Ising Model -




Levin and Wen model of Isingg x Isingg

H=H,w h.c.  creates/annihilates/nops b's

Creates only this one type of defect

b is equivalent to a ¥
flux through a plaquette

/Plaquettes: b boson present or not — 7, = +1)

eff—Emg TP — A g T, T

1€P <t,7>€P

@xact mapping to Transverse Field Ising Model -




Levin and Wen model of Isingg x Isingg

H = HLW h.C.

(— 1)”" on edge creates b on two adjacent plaquettes

String tension for O loops!

/Plaquettes: b boson present or not — 7, = +1)

HeffzemE :Tz_A E, Ta:ng

i€P <i,j>€P

@xact mapping to Transverse Field Ising Model -




Pure Isingg X Ising,

Deconfined o loops _
= Isingg X Ising, Phase | Confined O loops

| s
. > A
A |: 0 Paramagnetic A, L - Ferromagnetic /‘

Frustrated

A = o0
H=Hrw % h.c. No O loops

Edges labeled
With 1 or ) only

=Toric Code

String tension for O loops!

/Plaquettes: b boson present or not — 7, = +1)

HeffzemE :Tz_A E, Ta:ng

i€P <i,j>€P

@xact mapping to Transverse Field Ising Model -




Levin and Wen model of Isingg x Isingg

\

L /Equivalent to bilayer
Px _|_ ipy/px o ipy

oL VL
= -
O
YR oR
Particle Type Statistics
1 Identity
VR Zio Fermion
U Z,5 Fermion
OR Chiral Anyon
or Chiral Anyon
VR X O, Chiral Anyon
OR X UL, Chiral Anyon
Op X O, Boson
b=vr XYL, Zo Boson

<’.?_/ R __superconductor P
Read and Green PRB 61, 10267 ('00)

In superconductor - language

SH =iyl drip

Turns on interlayer s-pairing

4= condense this boson b



Levin and Wen model of Isingg x Isingg

\

-
(.\ o H L Equivalent to bilayer

Dz + ipy/pa; — Z.py

- )y/ R __superconductor P

Excitations:
wL — ¢R Fermion
(OL X 03)1 Boson
(o % UR)zp Boson
b=vr XYL, Zo Boson

Read and Green PRB 61, 10267 ('00)

In superconductor - language

SH =iyl drip

Turns on interlayer s-pairing

€@ condense this boson b



General Structure:

 Start with (chiral) Chern-Simons theory (or any MTC)

Choose a Z, simple current w

Double CS theory (Levin Wen Lattice Model)

Add term to condense b = V1, X ¥

Maps to Z, spin model

Condensed phase is Drinfeld Double of the subcategory

of particles from the original CS theory which braid trivially
with ).
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