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From 18th century problems
to exotic exoplanets

* The observational exoplanet
revolution

« How do we model the
gravitational interactions of
systems containing more than
two massive bodies?

- How can we use celestial
mechanics to gain new insight
into the mysteries of planet
formation?



https://en.wikipedia.org/wiki/Jean-Baptiste_Paulin_Gu%C3%A9rin

Our Solar System




Kepler Space Telescope
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Exoplanet Detection: Transits
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The Exoplanet Revolution






How do we extract meaning from all of this data®
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An end-to-end model for planet
formation is still out of reach.
We can make progress by trying to
model orbital evolution and dynamics
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m, =3m, The center of mass is where m,
the fulcrum of a balance must be.
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The two-body problem

There exists an analytic orbital
solution for any two massive bodies.

Given the positions and velocities at

any instant in time, we know the
future (and past) behavior
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Next step up: the restricted three body problem

- Three bodies, but we only

count the mass of two. The
\\\\\\ third is a so-called “test
particle”

close
approach

orbit of
comet

« Like the two body problem,
we can make some
statements about how the
objects orbit each other
with a few simple equation
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 Classic example is the Sun,
Jupiter and an asteroid,
moon, or comet



The circular restricted 3-body problem
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Credit: Zarmeen Shahzad

Planets are found at a

Many stars are in pairs range of distances and

(or triples!) masses in these systems




A modern example, planets in binaries

“Tatooines”

* R Planetary-Type

Satellite- Type




Planet stability requires well separated orbits

Ain << Aout Ain < Qout

Holman and Wiegert 1999, Mudryk & Wu 2007
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Stability is an issue even in systems with only 1 sun
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* Minimum planet spacing depends on distance from the sun and planet mass.

- More massive, or more tightly packed planets exert stronger gravitational tugs on
each other, readily causing instabilities

* When they are closer to the star, its gravity dominates more, making the planet tugs
less important
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artist conception:T. Pyle

Why study planets

N binaries?




The Planet Clock!

Planets form in the disks of gas
and dust out of which stars are
born

« These disks only survive for a
few Myr

Tatooine systems tell us that at
least some binary stars must
assume their current system
position within ~Myr

- This lets us rule out many
previous theories of binary
formation!

Tobin, Kratter et al, Nature 2016
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The Planet Clock!

Planets form in the disks of gas
and dust out of which stars are
born

« These disks only survive for a

least some B .

. X
assume their § f L
position within

Started at KITP workshop in 2007!

- This lets us rule o
previous theories of

formation!

Tobin, Kratter et al, Nature 2016



Binaries are fundamental to all of astrophysics

Type la supernovae / dark energy

GW signal Exoplanet characterization Reionization

Cumulative period shift (s)

Confirmed BH

GR confirmation

Mo Mo
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Binaries are fundamental to all of astrophysics

Type la supernovae / dark energy

Cumulative period shift (s)

Year

GR confirmation

- T

Nobel coming soon?!
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GW signal Exoplanet characterization Reionization
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Formation Extremes .

« Planets around binaries are
subject to extra kicks and tugs

- The properties of the natal disk
can be highly constrained

« Serve as excellent mode to
falsify planet formation models

HD 131399
Wagner, Apai, Kasper, Kratter et al, 2016, Science



Kepler 47: a (stable) Tatooine type system

Credit: R. Smullen
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Circumbinary planets are easier to find in “habitable

zone”

\

KEPLER-47¢
1 Diameter: 4.6 times Earth
Year: 503.2 Earth days
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In theory, this bodes well
for finding Tatooines.

So far, all of the
circumbinary planets are
massive gas giants.

Kepler 47 b,c
(Orosz et al. 2012)



Local Example: Pluto not a Planet ...
a Mini Circumbinary Multi-Planet System!

Pluto = July 7, 2012
HST WFC3/UVIS F350LP
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Reconnaissance at the Farthest Frontier

KBOs Pluto System Jupiter System
2016-2020 July 2015 Feb 2007

Launch
_— Jan 2006

New Horizons Mission



Local Example: Pluto not a Planet ...
a Mini Circumbinary Multi-Planet System!
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We can discern the properties of the system using
dynamical stability

0.1 Earth masses

Pluto = July 7, 2012
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Observing “Rocks” vs “Stars”

Light is absorbed / reflected by rocky bodies

Stars emit light

What we see depends on how
reflective it is, its ALBEDO



Observing “Rocks” vs “Stars”

M=1/10

M=1/2

he amount of reflected
light also depends on
the size, but not the
mass




We can conclude that Pluto’s moons are icy!

- Our dynamical estimates of the masses and albedos have been validated by
New Horizons

+ This shows the strength of this method for systems we can’t go visit

Nix and Hydra Albedo
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Youdin, Kratter, Kenyon, 2012



Dupuy, Kratter et al 2016

KEPLER 444: 5 SUB-EARTH PLANETS IN A
TRIPLE STAR SYSTEM

Another extreme system that constraints planet formation



Dupuy, Kratter et al 2016

PLANET FORMATION MUST BE VERY
EFFICIENT IN SOME SYSTEMS

=1-2 AU truncated disk
around a metal-poor star
gave rise to 5 planets at

0.04-0.08 AU
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