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Many body physics   

•  Everything	on	Earth	is	governed	by	known	laws	of	physics	

• World	is	complicated	–	1023	interacting	degrees	of	freedom	in	
macroscopic	object	

•  Two	body	problem:	solved	in	undergraduate	mechanics	
•  Three	body	problem	–	unsolved	
•  1023	body	problem?	

	



Enter statistical physics 

•  1023	degrees	of	freedom	are	easier	to	describe	than	3	

• Abandon	attempt	to	describe	what	individual	`particles’	are	doing	–	
develop	statistical	description	

•  Statistical	physics	and	condensed	matter	physics	



On the centrality of emergence   

•  `More	is	different’	–	PW	Anderson,	(1972)	

•  Emergent	phenomenon:	`a	collective	effect	of	huge	numbers	of	
particles	that	cannot	be	deduced	from	the	microscopic	equations	of	
motion	in	a	rigorous	way	and	that	disappears	completely	when	the	
system	is	taken	apart.’	–	Laughlin,	Nobel	lecture	(1998)	

	
•  Examples:	superconductors,	magnets,	crystals…	



The ergodic assumption 

•  20th	century	statistical	physics	assumes	ergodicity	–	everything	that	can	happen,	
does	happen	(and	is	equally	likely	to	happen)	

•  Characterize	system	not	be	detailed	configuration	(microstate)	but	by	small	
number	of	macroscopic	properties	(e.g.	temperature)	-	`macrostate’	

•  Notion	of	thermal	equilibrium	as	detailed	balance	over	microstates	

•  Equilibrium	statistical	mechanics	has	a	century	worth	of	triumphs	to	it’s	credit	–	
but	does	it	describe	everything?		



Dynamics as the next frontier 

• Care	not	just	about	what	equilibrium	state	is,	but	also	about	whether,	
how,	and	how	fast	we	approach	it	

• A	much	harder	problem!	(and	the	key	focus	of	this	workshop)	

•  This	talk:	a	subset	of	questions	pertaining	to	dynamics	



Glass 

• Are	there	systems	that	violate	ergodic	hypothesis?	Which	never	come	
to	equilibrium	

•  Yes:	e.g.	window	glass	

•  This	is	not	a	talk	about	window	glass	

•  This	is	a	talk	about	its	quantum	analogs	-	`quantum	glass’	



Quantum glass 

•  The	problem:	a	many	body	quantum	system	which	violates	ergodic	
hypothesis	and	does	not	come	to	equilibrium	even	at	infinite	times	

•  Two	examples	(discussed	in	this	talk)	

• Many	body	localization	(glassiness	from	randomness)	

•  Fractons	(glassiness	from	constraints)	



Many body localization 
 
(subject of KITP program, 2015) 



Foundations of quantum statistical mechanics Motivation 

Old New 
FIG. 2: (a) Conventional quantum statistical mechanics assumes that the system of interest is

coupled to a reservoir (or bath), with which it can exchange energy and particles. (b) Here we

are interested in the statistical mechanics of a closed quantum system undergoing unitary time

evolution. There is no external reservoir. (c) It can be useful to partition the closed quantum

system into a subsystem (A) and ‘everything else’ (B). If the system quantum thermalizes, then

the region (B) is able to act as a bath for the subsystem (A).

since in fact it is, with the reservoir being the remainder of our closed system (Fig. 2). It

is this ability of quantum systems to act as reservoirs for their subsystems that underpins

equilibrium quantum statistical mechanics.

We now provide a somewhat more precise description of quantum thermalization. To

keep the discussion as simple as possible, we consider a closed system that does not have

any extensive conserved quantities other than energy, so that if it thermalizes, the thermal

state is described by one parameter, the temperature. A generalization to systems with a

few more conserved quantities does not need substantial additional concepts that are not

present in this simpler case. The interactions in the system’s Hamiltonian must ‘connect’ all

of its degrees of freedom, so the system does not contain any subsystems that are themselves

isolated closed subsystems not in contact with the remainder of the system. We partition

the full quantum system into a subsystem A and its ‘environment’ B, which contains all the

degrees of freedom not in A. We will need to take the thermodynamic limit on the number

of degrees of freedom in B, such that in this limit the fraction of the full system’s degrees of

freedom that are in A goes to zero. Any choice of subsystem A is acceptable, as long as the

degrees of freedom within A are defined by k-local operators with finite k. A concrete case

can be that A is a fixed compact subregion (in real space). However, di↵erent choices, such
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Equilibrates	at	long	times	
	
Memory	of	initial	conditions	is	`lost’	



Statistical mechanics of isolated quantum 
many particle systems? 
• An	important	fundamental	question	
• Relevant	for	ongoing	experiments	

•  Cold	atoms	
•  Trapped	ions	
•  Cold	circuits	
•  Solid	state	
•  …	

	

• Quantum	information	storage	and	quantum	computation	
	



Quantum mechanics never forgets 

• Does	the	many	body	dynamics	bring	the	system	to	equilibrium	in	the	
limit	of	long	times?		
•  Unitarity:	Schrodinger	equation	preserves	all	information	about	initial	
conditions	at	all	times.		

•  Information	can	be	rendered	inaccessible	by	`hiding’	it	in	global	
operators.		

• Do	accessible	(`local’)	measurements	see	thermal	equilibrium	at	long	
times?	
	
	



Quantum thermalization 
•  Quantum	thermalization	is	thermalization	of	subsystems	

•  Can	B	act	as	a	reservoir	for	A?	
•  Strong	numerical	evidence	that	SOME	isolated	quantum	systems	do	thermalize	in	
this	way.		



Do ALL systems quantum thermalize? 

• No!	
	
•  Localized	systems	have	no	internal	reservoir	(Anderson	1958	–	Nobel	
Prize	1977)	

•  Failure	of	quantum	thermalization	

• Memory	of	the	initial	conditions	preserved	in	local	observables	for	
infinite	times.		



Many body localization: basic idea 

• Particles	live	in	a	very	non-uniform	energy	landscape	(randomness)	

• Hopping	particles	changes	the	energy	of	the	system	

•  Energy	must	be	conserved	–	so	hopping	cannot	happen	

• Particles	must	remain	forever	`stuck’	near	where	they	began.		



Many body localization 
• Conjecture	and	one	body	proof:	Anderson	(1958)	(Nobel	Prize	1977)	
•  Lowest	order	perturbation	theory:	Fleishman	and	Anderson	(1980)	
• All	orders	in	perturbation	theory:	Gornyi	Mirlin	Polyakov	(2005)	and	
Basko	Aleiner	Altshuler	(2006)	
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The many-body localization phase transition

Arijeet Pal1 and David A. Huse1

1Physics Department, Princeton University, Princeton, NJ 08544, USA

We use exact diagonalization to explore the many-body localization transition in a random-field
spin-1/2 chain. We examine the correlations within each many-body eigenstate, looking at all
high-energy states and thus effectively working at infinite temperature. For weak random field the
eigenstates are thermal, as expected in this nonlocalized, “ergodic” phase. For strong random field
the eigenstates are localized, with only short-range entanglement. We roughly locate the localization
transition and examine some of its finite-size scaling, finding that this quantum phase transition at
nonzero temperature might be showing infinite-randomness scaling with a dynamic critical exponent
z → ∞.

PACS numbers: 72.15.Rn, 05.30.Rt, 37.10.Jk

I. INTRODUCTION

As originally proposed in Anderson’s seminal paper [1],
an isolated quantum system of many interacting degrees
of freedom with quenched disorder may be localized, and
thus generically fail to approach local thermal equilib-
rium, even in the limits of long time and large systems,
and for energy densities well above the system’s ground
state. In the same paper, Anderson also treated the lo-
calization of a single particle-like quantum degree of free-
dom, and it is this single-particle localization, without
interactions, that has received most of the attention in
the half-century since then. Much more recently, Basko,
et al. [2] have presented a very thorough study of many-
body localization with interactions at nonzero tempera-
ture, and the topic is now receiving more attention; see
e.g. [3–13].

Many-body localization at nonzero temperature is a
quantum phase transition that is of very fundamental
interest to both many-body quantum physics and sta-
tistical mechanics: it is a quantum “glass transition”
where equilibrium quantum statistical mechanics breaks
down. In the localized phase the system fails to ther-
mally equilibrate. These fundamental questions about
the dynamics of isolated quantum many-body systems
are now relevant to experiments, since such systems can
be produced and studied with strongly-interacting ultra-
cold atoms [14]. And they may become relevant for cer-
tain systems designed for quantum information process-
ing [15]. Also, many-body localization may be underlying
some highly nonlinear low-temperature current-voltage
characteristics measured in certain thin films [16].

II. THE MODEL

Many-body localization appears to occur for a wide va-
riety of particle, spin or q-bit models. Anderson’s origi-
nal proposal was for a spin system [1]; the specific simple
model we study here is also a spin model, namely the
Heisenberg spin-1/2 chain with random fields along the

z-direction [5]:

H =
L
∑

i=1

[hiŜ
z
i + J ˆ⃗Si ·

ˆ⃗Si+1] , (1)

where the static random fields hi are independent ran-
dom variables at each site i, each with a probability dis-
tribution that is uniform in [−h, h]. Except when stated
otherwise, we take J = 1. The chains are of length
L with periodic boundary conditions. This is one of
the simpler models that shows a many-body localization
transition. Since we will be studying the system’s be-
havior by exact diagonalization, working with this one-
dimensional model that has only two states per site al-
lows us to probe longer length scales than would be pos-
sible for models on higher-dimensional lattices or with
more states per site. We present evidence that at infinite
temperature, β = 1/T = 0, and in the thermodynamic
limit, L → ∞, the many-body localization transition at
h = hc

∼= 3.5 ± 1.0 does occur in this model. The usual
arguments that forbid phase transitions at nonzero tem-
perature in one dimension do not apply here, since they
rely on equilibrium statistical mechanics, which is ex-
actly what is failing at the localization transition. We
also present indications that this phase transition might
be in an infinite-randomness universality class with an
infinite dynamical critical exponent z → ∞.
Our model has two global conservation laws: total en-

ergy, which is conserved for any isolated quantum sys-
tem with a time-independent Hamiltonian; and total Ŝz.
The latter conservation law is not essential for localiza-
tion, and its presence may affect the universality class
of the phase transition. For convenience, we restrict our
attention to states with zero total Ŝz.
For simplicity, we consider infinite temperature, where

all states are equally probable (and where the sign of the
interaction J does not matter). The many-body local-
ization transition also occurs at finite temperature; by
working at infinite temperature we remove one parame-
ter from the problem, and use all the eigenstates from the
exact diagonalization (within the zero total Ŝz sector) of
each realization of our Hamiltonian. We see no reason
to expect that the nature of the localization transition

•  Zero	conductivity	at	non-zero	energy	density	(`finite	temperature’)		

• Numerical	verification	Huse,	Oganesyan,	Pal	(2007,	2010)	(and	many	others	
thereafter)	–	spin	chains	

• Mathematical	Proof	(Imbrie	2014)	



Table	from:	RN	and	Huse,	Annual	Reviews	of	Condensed	Matter	Physics	(2015)	

Thermal phase Single-particle localized Many-body localized

Memory of initial conditions Some memory of local initial Some memory of local initial

‘hidden’ in global operators conditions preserved in local conditions preserved in local

at long times observables at long times observables at long times.

ETH true ETH false ETH false

Non-zero DC conductivity Zero DC transport Zero DC transport

Transport di↵usive (or faster)

Continuous local spectrum Discrete local spectrum Discrete local spectrum

Eigenstates with Eigenstates with Eigenstates with

volume-law entanglement area-law entanglement area-law entanglement

Ballistic spreading of entanglement No spreading of entanglement Logarithmic spreading of entanglement

from non-entangled initial condition from non-entangled initial condition

Dephasing and dissipation No dephasing, no dissipation Dephasing but no dissipation

TABLE I: A list of some properties of the many-body-localized phase, contrasted with properties

of the thermal and the single-particle-localized phases.

FIG. 1: The system of interest can be represented as a set of spins on a lattice (a). Each spin has

a two dimensional state space, which can be represented on a Bloch sphere (b). The many body

pure state space for the full system consists of the outer product of the pure state spaces of each

spin, as illustrated in (b).
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A new frontier for quantum stat mech 

•  Ergodic	hypothesis	fails	

•  `Traditional’	tools	of	equilibrium	statistical	mechanics	inapplicable	

•  Traditional	theorems	of	statistical	mechanics	inapplicable	

•  In	this	regime	there	can	exist	entirely	new	phases	of	quantum	matter	
(e.g.	gapless	topological	orders,	time	crystals)…	



Many body localization 

• Was	the	subject	of	a	KITP	program	in	2015	

• Anushya	Chandran	gave	chalk	talk	

•  So	far,	everything	I	have	said	could	also	have	been	in	her	talk	

• What’s	new?		



Many body localization (MBL) with long range 
interactions 
•  `Traditional’	analysis	was	for	idealized	systems	where	the	interactions	
between	degrees	of	freedom	were	short	ranged	in	real	space.		
•  `Real’	physics	contains	long	range	interactions	

•  E.g.	Gravitational	and	electrical	interactions	follow	`inverse	square	
law’	(Gauss	law	interactions)	

• Can	long	range	interacting	systems	be	MBL?		



Conventional wisdom: No   

•  Start	with	a	system	of	non-interacting	particles	(one	body	problem)	
•  Turn	on	a	weak	interaction	and	ask	what	changes	–	is	the	new	state	
of	the	system	`closely	connected’	to	the	state	in	the	non-interacting	
limit?	
•  This	is	the	strategy	that	was	successfully	used	to	establish	localization	
for	short	range	interacting	systems	
•  For	long	range	interacting	systems,	this	strategy	necessarily	fails,	even	
for	infinitesimally	weak	interactions	
• Burin	2006,	Yao	et	al	2014	
• Conclusion:	no	MBL	with	long	range	interactions	



Problems with conventional wisdom 

• Conventional	wisdom	simply	demonstrates	a	breakdown	in	
perturbation	theory	–	i.e.	we	cannot	calculate	what	happens	with	
standard	techniques	
•  Specifically,	it	demonstrates	that	interacting	system	is	not	in	any	way	
`close’	to	glassy	state	that	obtains	in	non-interacting	system	
• But	this	does	not	mean	localized	system	is	not	glassy!	



Recent realization: Long range interacting 
systems can be MBL 
• Basic	idea:	Start	from	strong	interactions,	treat	them	non-
perturbatively	
•  Interactions	drive	system	into	correlated	phase	best	described	in	
terms	of	emergent	excitations	
•  If	emergent	excitations	are	short	range	interacting,	can	MBL	
• Can	implement	this	program	for	`Gauss	law’	interactions	(i.e.	systems	
of	electric	charges)	in	d=1,2,3,	using	confinement	and/or	Higgs	
mechanism	
• RN	+	Sondhi,	Phys	Rev	X	2017	



Example 1: Schwinger model (QED1+1) 

•  Electric	charges	in	an	imaginary	one	dimensional	world	have	a	
`constant	force’	interaction	(instead	of	inverse	square)	
•  This	problem	can	be	solved	exactly	by	a	method	known	as	
`bosonization’		
• With	disorder,	obtain	a	localized	phase…which	can	be	shown	to	be	
stable	to	perturbations	



Intuition for localization in Schwinger model 

•  Free	charge	excitations	costs	infinite	energy	(confinement)	
•  Finite	energy	excitations	must	be	charge	neutral	
• Charge	neutral	excitations	do	not	have	long	range	interaction,	and	so	
must	be	localized.			



Numerical verification   

• Akhtar,	RN,	Sondhi,	Phys	Rev	B	2018	

8

FIG. 6. Spatial profile of density imbalance (Eq: 7) between ground state and first excited state for a system of N = 100 spins
and open boundary conditions treated using DMRG. Here x = 1.0,� = 0.2 and ✓ = 0, 0, 01, 0.05, 0.1 indicate the strength of
the kinetic, interaction, and disorder terms respectively. Note that the results are clearly indicative of the first excited state
(of a disordered system) containing a localized excitation, the localization length of which decreases as disorder strength is
increased. Note also that the localization length is too large to be accessible with exact diagonalization (consistent with analytic
predictions15) thus necessitating DMRG.

FIG. 7. Same as Fig.6 but with the symmetric regularization



2: Localized superconductors in three 
dimensions 
•  Need	a	way	to	`kill’	long	range	interaction	
•  Use	superconductivity	– perfectly	screens	charge	
•  There	can	exist	`localized	superconductors’	
•  Demonstration	relies	on	description	of	superconductor	as	a	`Higgs’	phase	
of	matter	
•  Superconductors	for	electric	charge	–	but	insulators	for	heat,	and	preserve	
forever	a	memory	of	the	initial	condition	in	local	observables.		
•  RN	and	Sondhi	Phys	Rev	X	2017,	Pretko	and	RN	Phys	Rev	B	2018	
•  (Weaker	versions	of	these	results	were	also	obtained	in	1990s	by	Matthew	
Fisher	and	collaborators…at	KITP).		



Conclusions to this part 

•  Long	range	interacting	systems	can	be	MBL	
• Key	ingredient:	strong	interactions,	which	drive	system	into	
correlated	phase	
• Demonstrated	for	two	examples	

•  QED1+1	–	a	confining	MBL	phase	(also	a	Mott	glass)	
•  Superconductors	(more	generally	Higgsed	phases	of	gauge	theories)	

•  SC	is	compatible	with	MBL;	MBL	could	even	stabilize	SC	to	energy	densities	where	it	
would	not	arise	in	thermal	eqm	



Many body localization summary 

•  Interplay	of	randomness	and	energy	conservation	can	give	rise	to	
phases	which	violate	ergodic	hypothesis,	never	equilibrate	– 
quantum	glass	
• Proven	for	systems	where	interactions	between	degrees	of	freedom	
are	short	range	in	real	space	
• Now	believe	it	can	occur	even	for	long	range	interacting	systems	(e.g.	
systems	of	electrical	charges).		
•  Is	many	body	localization	the	only	(generic)	way	to	get	quantum	
glass?		



Fractons 

• A	different	(generic)	way	to	get	ergodicity	breaking		

• Quantum	descendants	of	classical	models	first	proposed	to	describe	
window	glass	(!)		

	
• Defining	property:	excitations	exhibit	fractionalized	mobility,	being	
either	totally	immobile,	or	able	to	move	only	in	certain	directions	
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Fractons	

Topological	
Order	
(3D)	

Glassy	
Quantum	
Dynamics	

Quantum	
Information	

Gauge	
Theories	&	
Gravity	

Ideas	from	all	these	fields	inform	study	of	fractons,	and	insight	from	fractons	may	inform	all	these	fields	



Cubes	are	always	+1	or	-1	
Fracton	=	-1	e-value	of	Cubic	term	
• No	local	operator	can	create	
single	fractons.	
•  Isolated	fractons	created	at	ends	
of	membrane	operator.	
• Cannot	move	fractons	by	acting	
with	any	local	operator	(without	
creating	additional	excitations)	
•  Totally	immobile	excitations	
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X-Cube Model: Vijay Haah Fu PRB 2016 

=	σz	



Fracton lattice models   

•  Exactly	solvable	lattice	models	where	you	can	create	excitations	
which	cannot	be	moved	by	any	local	operation,	without	creating	
additional	excitations	(costs	energy)	
•  If	energy	is	conserved,	then	these	excitations	must	be	forever	stuck	
• Another	route	to	quantum	glass	
• Much	more	complicated	(fractal)	models	with	richer	behavior	also	
exist…	



A complementary perspective: gauge theories 

• Recall	that	in	familiar	gauge	theories	(e.g.	electromagnetism)	there	is	
a	Gauss	law	constraint 	 	 	`charges	produce	electric	field’	

•  This	constraint	implies	a	conservation	law	for	charge				

• Normal	gauge	theories	are	written	in	terms	of	vector	gauge	fields.	
What	if	we	wrote	down	a	gauge	theory	in	terms	of	higher	rank	
(tensor)	gauge	fields?		

PHYS 3210, Fall 2017

Problem Set 11

Due date: 12/01/17, 5:00 PM

Problem 1 (10 points)

Taylor, Problem 11.10. (You don’t have to re-solve the damped harmonic oscillator: use Taylor’s
results from Chapter 5. Be advised: you will need Mathematica for the last part here.)

Problem 2 (10 points)

Taylor, Problem 11.26. (Clarification: the whole system is under the influence of gravity, acting
vertically in the plane of the hoop.)

r · E = ⇢ (1)
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Z
dV ⇢ =

Z
dVr · E =

Z
dSE (1)
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Higher rank gauge theories 

•  Pretko	(2016)	
•  Antisymmetric	tensors	give	nothing	new	(dual	to	vectors)	
•  Consider	a	gauge	theory	involving	symmetric	tensor	fields,	of	rank	n	>	1	
(n=2	is	sufficient).	Work	in	the	continuum	for	now.	Let	there	be	a	U(1)	
symmetry,	with	a	conserved	charge	coupled	to	the	gauge	field.		
•  Generalized	Gauss	Law	constraint	e.g.	
•  Additional	conservation	law	

•  Only	processes	that	conserve	dipole	moment	are	allowed.		
•  Charges	are	immobile	(fractons).		

4

ent analogues of Gauss’s law which one can write down:
@iE

ij = 0, @i@jE
ij = 0, and E

i
i = 0, some of which

can be applied on top of each other. Furthermore, each
valid combination of Gauss’s laws will represent a stable
phase, as we will discuss.

To construct Hamiltonians for these theories, the au-
thors of Reference 10 considered the natural generaliza-
tion of the rank 1 compact U(1) Hamiltonian, Equation
4. The generalized E term and gauge constraint term
can be written down immediately, whereas the general-
ized B term requires a bit more cleverness. The struc-
ture of the B term depends on the gauge constraint, and
there can be di↵erent numbers of spatial derivatives in
B depending on the theory, leading to di↵erent disper-
sions for the gauge mode. We will delay discussion of the
magnetic tensor until a later section, since most of our
analysis will not need to make any use of the specifics
of these Hamiltonians, except for the U term enforcing
the generalized Gauss’s law. Almost all of the impor-
tant physics follows directly from the Gauss’s law. The
other terms in the Hamiltonian only serve to define the
dynamics of the gapless gauge mode and the structure of
the magnetic defects. We will, of course, need to check
later that these magnetic defects are not instantons, so
that the theory is stable. This will indeed be the case, so
that these phases will all have a stable deconfined phase
at small g (and obviously a trivial confined phase at large
g). As first shown in Reference 10, many of the models
considered in this paper will have an electric-magnetic
duality, so the behavior of the magnetic particles will of-
ten be the same as that of the electric particles, which
we focus on first. All we will need for the present discus-
sion is that the gauge field is not confining28 at small g,
so that particles exist as well-defined excitations in this
phase.

It is also worth noting that we expect such rank 2 sym-
metric tensor theories to have some relationship with the
theory of gravity, which is also described by a symmetric
tensor gauge field. There is actually a deep connection
between the models considered here and emergent grav-
ity, but this relationship will not be apparent at the level
of the analysis we will conduct here. The emergent grav-
itational behavior of these phases is a topic of its own
and is being treated in a separate work.?

A. Scalar Charge Theory

Let us first take the example of imposing only the con-
straint @i@jEij = 0, corresponding to the gauge transfor-
mation Aij ! Aij + @i@j� for arbitrary scalar function
�. Of course, the source-free gauge constraint applies
only to the low-energy subspace, achieved for example
via a term in the Hamiltonian of the form U(@i@jEij)2

for large U . States which violate the source-free Gauss’s
law must appear higher up in energy as particle states
of the theory in order to have a tensor product Hilbert
space, as is the situation in any condensed matter prob-

lem (see Reference 25 for further discussion of this issue).
For a general state, we can therefore write the general-
ized Gauss’s law as @i@jEij = ⇢, defining ⇢ as the scalar
charge density.

So what conservation laws do we have in this system?
Obviously we have charge neutrality, just as in the rank
1 case:

Z
⇢ =

Z
@i@jE

ij = 0 (5)

where the integrals are over three-dimensional space, and
we have integrated a total derivative term. (We choose
to work on a closed manifold for simplicity, so that the in-
tegral of the total derivative vanishes. Everything works
similarly on an open manifold.) This conservation law
leads to the usual constraint that the emergent charges
cannot be created or destroyed unless it is accompanied
by the creation/destruction of other charges in order to
preserve neutrality. Naively, one such allowed neutrality-
preserving operation is a local hop: a particle is de-
stroyed on one site and created on a neighboring site,
in accordance with our usual intuition of particle mobil-
ity.

However, interestingly, this rank 2 theory has an ad-
ditional dipolar conservation law:
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where we have integrated by parts in the middle step.29

(The choice of origin for ~x is arbitrary, since the sys-
tem is neutral.) In this theory, therefore, any cre-
ation/annihilation operation must not only respect the
neutrality of the system, but also the vanishing of its
dipole moment. As a concrete example, take the lat-
tice model discussed in Reference 27, where the diagonal
components (Exx, Eyy, and Ezz) live on the vertices of
a cubic lattice, and the o↵-diagonal components (Exy,
Exz, and Eyz) live on the faces, with all components
taking integer values. The basic creation and annihila-
tion operators can be found by examining the e↵ect of
changing one component of E at a single location by 1
unit. Doing so leads to two distinct types of creation
and annihilation operators, as shown in Figures 1 and 2.

The uniting feature of all such operators is that
they correspond to quadrupolar configurations of charge,
obeying both charge neutrality and vanishing dipole mo-
ment. In fact, it would seem that this quadrupolar prin-
ciple is the fundamental feature of this model which
would allow it to be generalized to other types of lat-
tices besides cubic. Putting rotors on the vertices and
faces of a cubic lattice allowed for the simplest lattice
regularization, since there were e↵ectively six degrees
of freedom at each location, corresponding to the six
degrees of freedom of a 3⇥3 symmetric tensor. Simi-
larly, the simplest lattice regularization of a rank 1 U(1)
gauge theory would be on the links of a cubic lattice, giv-
ing us three degrees of freedom per site. Nevertheless,
the rank 1 theory can be defined on any lattice, with
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preserve neutrality. Naively, one such allowed neutrality-
preserving operation is a local hop: a particle is de-
stroyed on one site and created on a neighboring site,
in accordance with our usual intuition of particle mobil-
ity.

However, interestingly, this rank 2 theory has an ad-
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(The choice of origin for ~x is arbitrary, since the sys-
tem is neutral.) In this theory, therefore, any cre-
ation/annihilation operation must not only respect the
neutrality of the system, but also the vanishing of its
dipole moment. As a concrete example, take the lat-
tice model discussed in Reference 27, where the diagonal
components (Exx, Eyy, and Ezz) live on the vertices of
a cubic lattice, and the o↵-diagonal components (Exy,
Exz, and Eyz) live on the faces, with all components
taking integer values. The basic creation and annihila-
tion operators can be found by examining the e↵ect of
changing one component of E at a single location by 1
unit. Doing so leads to two distinct types of creation
and annihilation operators, as shown in Figures 1 and 2.

The uniting feature of all such operators is that
they correspond to quadrupolar configurations of charge,
obeying both charge neutrality and vanishing dipole mo-
ment. In fact, it would seem that this quadrupolar prin-
ciple is the fundamental feature of this model which
would allow it to be generalized to other types of lat-
tices besides cubic. Putting rotors on the vertices and
faces of a cubic lattice allowed for the simplest lattice
regularization, since there were e↵ectively six degrees
of freedom at each location, corresponding to the six
degrees of freedom of a 3⇥3 symmetric tensor. Simi-
larly, the simplest lattice regularization of a rank 1 U(1)
gauge theory would be on the links of a cubic lattice, giv-
ing us three degrees of freedom per site. Nevertheless,
the rank 1 theory can be defined on any lattice, with



Fracton gauge theories 

• Offer	an	alternative	perspective	on	the	fracton	phenomenon	
• Where	else	in	physics	do	symmetric	tensors	appear?	

•  General	relativity	(metric	tensor)	
•  Elasticity	theory	(stress	and	strain)	

•  Tantalizing	connections,	still	being	explored	
• But	the	study	of	quantum	glass	may	also	have	some	relevance	for	
these	venerable	fields!	
• Also	ongoing	–	study	of	connections	between	fractons	and	MBL	



Summary 

• Complex	systems	of	many	interacting	particles	best	described	in	
statistical	terms	
•  Existing	statistical	descriptions	rely	on	notion	of	`equilibrium	state’	
which	the	system	will	reach	`in	the	long	run’	
• We	want	to	understand	whether,	how,	and	how	fast	a	system	gets	to	
equilibrium	
• Also	want	to	understand	whether	a	system	can	forever	evade	
equilibration	



Quantum glasses 

•  Forever	evade	equilibration,	and	preserve	a	memory	of	their	initial	
conditions	in	local	observables	for	infinite	times	
•  Two	known	(generic)	routes	
• Many	body	localization	

•  Randomness	plus	energy	conservation	
•  Originally	for	short	range	interacting	systems,	but	not	also	for	systems	of	
electric	charges.		

•  Fractons	
•  Constraints	plus	energy	conservation	
•  Tantalizing	connections	to	gauge	theory,	elasticity	theory,	gravity…	



Outlook 

•  This	workshop	is	exploring	quantum	glass	–	and	also	various	other	
problems	pertaining	to		quantum	dynamics	
•  Thanks	to	KITP	for	support!	


