Wormholes and entangled states

Juan Maldacena

2013, KITP

Two descriptions of black holes

Unitary: From infinity, microstates

 Local: Infalling observer, general covariance, interior.

• \rightarrow we should make them consistent!

It will probably require all of your ideas...

Does gravity emerge as a result of an approximation?

 Why does this approximation sacrifice unitarity?

Emergence of spacetime

- New properties of matter due to collective behavior.
- Wilson → Universality.

Geometry for the ground state of field theories

- Wilson → Usual RG picture.
- Condensed matter theorists found a convenient quantum mechanical, real time description of the states Tensor networks.

$$\Psi(s_1, \dots, s_n) = Tr[T_{1,s_1} T_{2,s_2} \cdots T_{n,s_n}]$$

$$T_{s_1}$$
 T_{s_2} T_{s_i}

This representation works well for states with a mass gap. If we choose

$$Log(D) \gg S_{\rm ent}$$

Special wavefunctions. L sites.

$$dim(H) = 2^{L}$$

 $dim(Space of Tensors) = LD^{2}$

Of course, if we do arbitrary superpositions of tensor networks, we get a much bigger space:

$$\dim(\text{Superposition of Tensors}) = 2^{LD^2}$$

Scale invariant wavefunctions

Each vertex is a five index tensor. Each line is an index contraction.

Indices → not ``real'' states.

Vidal

This is similar to the geometry of AdS

Swingle

Think of the tensors as representing the AdS vacuum wavefunction.

Tensor index contractions → entanglement

Entanglement & structure of space

Conformal invariant system in a state with a mass gap.

eg: AdS space with an end of the world brane in the IR

Bulk effective field theory

Start with a wavefunction given by a tensor network.

This is the bulk vacuum.

Find new states as ``small'' deformations of the tensors. These are particles on top of the bulk vacuum.

$$TT\delta TTT;$$
 $TT\delta TTT\delta TT...$

Local degrees of freedom \rightarrow indices of the tensor..

- If we consider superpositions of these networks we get a ``semiclassical'' fock space.
- It is an overcomplete space. The projection on to the correct space is obtained by evaluating the wavefunction from the network.

Time dependence

Start with a state with a gap and evolve it. Eg. Brane in Ads that falls into a black hole

Time evolution produces a wavefunction that can be represented as a geometry which Is simply longer.

Field theory picture. (focus on IR)

Network = history of the state.

→ geometry captures the history?

Start with basis of localized, unentangled states Is a complete basis.

Each member evolves as:

Producing a more generic state

Over complete set of states in the interior. Many changes produce same boundary state.

Tensor networks for generic states?

Produce a generic state for the first system by considering a state entangled with a second system.

$$|\Psi\rangle = \sum_{n} e^{-\beta E_n/2} |\bar{n}\rangle |n\rangle$$

We find a smooth geometry!

Israel, JM,...

Spatial direction along horizon

We could also have represented it in this way...

Captures better the entanglement patern.

Seems more similar to the ``nice slices", which expand. The two horizons moving away...

Eternal AdS black hole

n

R Entangled state in two non-interacting CFT's.

$$|\Psi\rangle = \sum e^{-\beta E_n/2} |E_n\rangle_L^{CPT} \times |E_n\rangle_R$$

ER = EPR

 Wormhole = EPR pair of two black holes in a particular entangled state.

• Large amounts of entanglement <u>can</u> give rise to a geometric connection.

 Geometry is a way to codify, or generate the entanglement between the two systems.

Some Lessons

- Do not confuse left exterior with interior.
- To describe this interior the microstates of one black hole is not enough. One CFT is not enough, we need the second.
- This is not $A = R_B$. We are <u>not</u> identifying the interior with the left exterior.
- The interior is constructed in a subtle way from both the left and right exterior its structure depends on the pattern of entanglement.
- The observer in the interior can receive signals from both, but cannot send arbitrary signals to either of the two exteriors.
- We cannot say that A is some operator in the left Hilbert space. If there were so, an infalling Right-person could send a signal to a Left-person by changing A.

Future A

Exterior

Right

R

Exterior

Should the left and right horizons touch?

Only for special states.

Shenker Stanford

Not all entangled states have a smooth geometry

$$|\Psi\rangle = \sum_{n} e^{-\beta E_n/2} |n\rangle |n\rangle |n\rangle |n\rangle$$

GHZ -like state:

$$I = S(A \cup B \cup C) - S(A \cup B) - S(A \cup C) - S(B \cup C) + S(A) + S(B) + S(C) \le 0$$

States connected by a smooth geometry obey the following inequality for the triple mutual Information

$$S(A) = S(A \cup B) = S(A \cup B \cup C)$$

Here we have:

(Hayden, Maloney) Gharibyan, Penna

Changing the entangled state

Time evolution → Different slicings → phases

$$|\Psi\rangle = \sum_{n} e^{-2iE_n t} e^{-\beta E_n/2} |E_n\rangle_L^{CPT} \times |E_n\rangle_R$$

Each time: Whole yellow region, slices related by the Wheeler de Wit equation.

Note that region A is common to more than one state.

$$U_{\theta}|0\rangle_{M} = \exp\left\{\int d\omega e^{-\beta\omega/2} e^{-i\omega t} b_{L,\omega}^{\dagger} b_{R,\omega}^{\dagger}\right\}|0\rangle_{R} \longrightarrow$$

Singular in flat space QFT

$$|\Psi\rangle = \sum e^{-iE_n t} e^{-\beta E_n/2} |E_n\rangle_L^{CPT} \times |E_n\rangle_R$$

Non-singular in gravity

Other states

Adding particles to the Hartle-Hawking state. Precise translation between states in the CFT and states in the bulk.

Comments

- Entangled states can be connected by a smooth geometry.
- Each entangled state corresponds to a whole region of the bulk, with slices related by the WdW equation.
- Different entangled states correspond to different geometries, or the same geometry plus extra particles.
- We did not make a statement about the generic entangled state.

- We can view the left side as ``processed'' radiation.
- What we do to the radiation matters for what an infalling observer sees.
- The AMPS paradox is real (if we ignore computational constraints).

 Harlow Hayden
- Some states are not smooth.
- What happens if we do nothing?. What is the particular entangled state produced by the "natural" evolution of an evaporating black hole?

Black hole + radiation ?

Smooth horizon

Firewall

Conclusions

- We gave an EPR interpretation to the ER bridge.
- The topology of space can be modified by massive amounts of entanglement.
- A black hole entangled with radiation <u>could</u>
 produce a similar geometric bridge. Its interior
 could depend on what we do with the radiation.
- We discussed some qualitative similarities between the tensor network description of quantum states and the spacetime description.