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Two	
  descrip?ons	
  of	
  black	
  holes	
  

•  Unitary:	
  	
  From	
  infinity,	
  microstates	
  

•  Local:	
  Infalling	
  observer,	
  general	
  covariance,	
  
interior.	
  	
  

•  	
  à	
  we	
  should	
  make	
  them	
  consistent!	
  

It	
  will	
  probably	
  require	
  all	
  of	
  your	
  ideas…	
  



•  Does	
  gravity	
  emerge	
  as	
  a	
  result	
  of	
  an	
  
approxima?on?	
  

•  Why	
  does	
  this	
  approxima?on	
  sacrifice	
  
unitarity	
  ?	
  



Emergence	
  of	
  space?me	
  

	
  
•  New	
  proper?es	
  of	
  maSer	
  due	
  to	
  collec?ve	
  
behavior.	
  	
  

•  Wilson	
  à	
  Universality.	
  	
  



Geometry	
  for	
  the	
  ground	
  state	
  of	
  field	
  
theories	
  

•  Wilson	
  à	
  Usual	
  RG	
  picture.	
  	
  
•  Condensed	
  maSer	
  theorists	
  found	
  a	
  
convenient	
  quantum	
  mechanical,	
  real	
  ?me	
  
descrip?on	
  of	
  the	
  statesà	
  Tensor	
  networks.	
  	
  



Ψ(s1, · · · , sn) = Tr[T1,s1T2,s2 · · ·Tn,sn ]

s1 s2

si

Ts1 Ts2 Tsi



Special	
  wavefunc?ons.	
  	
  L	
  sites.	
  	
  	
  

dim(H) = 2L

dim(Space of Tensors) = LD2

Of	
  course,	
  if	
  we	
  do	
  arbitrary	
  superposi?ons	
  of	
  tensor	
  networks,	
  
	
  we	
  get	
  a	
  much	
  bigger	
  space:	
  	
  

dim(Superposition of Tensors) = 2LD2

This	
  representa?on	
  works	
  well	
  for	
  states	
  with	
  a	
  mass	
  gap.	
  If	
  we	
  choose	
  	
  

Log(D) � Sent



Scale	
  invariant	
  wavefunc?ons	
  

Each	
  vertex	
  is	
  a	
  five	
  index	
  tensor.	
  	
  	
  Each	
  line	
  is	
  an	
  index	
  contrac?on.	
  	
  

Indices	
  à	
  not	
  ``real’’	
  states.	
  	
   Vidal	
  



This	
  is	
  similar	
  to	
  the	
  geometry	
  of	
  AdS	
  	
  

Think	
  of	
  the	
  tensors	
  as	
  represen?ng	
  
	
  the	
  AdS	
  vacuum	
  wavefunc?on.	
  	
  
	
  
Tensor	
  index	
  contrac?ons	
  à	
  entanglement	
  

Swingle	
  



Entanglement	
  &	
  structure	
  of	
  space	
  

Ryu-­‐Takayanagi	
  	
  
Minimal	
  surface	
  



Conformal	
  invariant	
  system	
  in	
  a	
  state	
  
with	
  a	
  mass	
  gap.	
  	
  

	
  
eg:	
  AdS	
  space	
  with	
  an	
  end	
  of	
  the	
  world	
  

brane	
  in	
  the	
  IR	
  



Bulk	
  effec?ve	
  field	
  theory	
  

Start	
  with	
  a	
  wavefunc?on	
  given	
  by	
  a	
  tensor	
  network.	
  
	
  
This	
  is	
  the	
  bulk	
  vacuum.	
  	
  	
  
	
  
Find	
  new	
  states	
  as	
  ``small’’	
  deforma?ons	
  of	
  the	
  tensors.	
  
These	
  are	
  par?cles	
  on	
  top	
  of	
  the	
  bulk	
  vacuum.	
  	
  
	
  
	
  	
  	
   TT δTTT ; TT δTTT δTT..

Local	
  degrees	
  of	
  freedom	
  	
  	
  à	
  	
  indices	
  of	
  the	
  tensor..	
  



•  If	
  we	
  consider	
  superposi?ons	
  of	
  these	
  
networks	
  we	
  get	
  a	
  ``semiclassical’’	
  fock	
  space.	
  	
  

•  It	
  is	
  an	
  overcomplete	
  space.	
  The	
  projec?on	
  on	
  
to	
  the	
  correct	
  space	
  is	
  obtained	
  by	
  evalua?ng	
  
the	
  wavefunc?on	
  from	
  the	
  network.	
  	
  



Time	
  dependence	
  

I	
  

Start	
  with	
  a	
  state	
  with	
  a	
  gap	
  and	
  evolve	
  it.	
  	
  
Eg.	
  Brane	
  in	
  Ads	
  that	
  falls	
  into	
  a	
  black	
  hole	
  

Penrose	
  
diagram	
  

brane	
  

boundary	
  
horizon	
   t=0	
  



I	
  

brane	
  

boundary	
  

Penrose	
  
diagram	
   t>0	
  

Time	
  evolu?on	
  produces	
  a	
  wavefunc?on	
  that	
  can	
  be	
  represented	
  as	
  	
  a	
  geometry	
  which	
  	
  
Is	
  simply	
  longer.	
  	
  

Hartman	
  &	
  JM	
  



I	
  

brane	
  

boundary	
  
t>0	
  



Field	
  theory	
  picture.	
  (focus	
  on	
  IR)	
  

Network	
  =	
  	
  history	
  of	
  the	
  state.	
  	
  
	
  
	
  	
  à	
  	
  geometry	
  captures	
  the	
  history	
  ?	
  	
  



I	
  

Start	
  with	
  basis	
  of	
  localized,	
  unentangled	
  states	
  
Is	
  a	
  complete	
  basis.	
  	
  
	
  



I	
  

Each	
  member	
  evolves	
  as:	
  	
  



I	
  



I	
  I	
  

Producing	
  a	
  more	
  generic	
  state	
  

Over	
  complete	
  set	
  of	
  states	
  in	
  the	
  interior.	
  	
  Many	
  changes	
  produce	
  same	
  boundary	
  state.	
  



Tensor	
  networks	
  for	
  generic	
  states	
  ?	
  

|Ψ� =
�

n

e−βEn/2|n̄�|n�

Produce	
  a	
  generic	
  state	
  for	
  the	
  first	
  system	
  by	
  considering	
  a	
  
	
  	
  
state	
  entangled	
  with	
  a	
  second	
  system.	
  	
  

We	
  find	
  a	
  smooth	
  geometry	
  !	
  
Israel,	
  JM,…	
  



Spa?al	
  direc?on	
  along	
  horizon	
  	
  





We	
  could	
  also	
  have	
  represented	
  it	
  in	
  this	
  way…	
  	
  



Captures	
  beSer	
  the	
  entanglement	
  patern.	
  	
  
	
  Seems	
  more	
  similar	
  to	
  the	
  ``nice	
  slices’’,	
  which	
  expand.	
  The	
  two	
  horizons	
  moving	
  away…	
  
	
  



	
  Eternal	
  AdS	
  black	
  hole	
  
two interior regions. It is important not to confuse the future interior with the left exterior.

Sometimes the left exterior is referred colloquially as the “interior” of the right black hole,

but we think it is important not to do that. Note that no signal from the future interior

can travel to either of the two exteriors.

Interior
Future

Past 
Interior

L R

Left

Exterior
Right

Exterior

Figure 1: Penrose diagram of the eternal black hole in AdS. 1 and 2, or Left and Right,
denote the two boundaries and the two CFT’s that the system is dual to.

The system is described by two identical uncoupled CFTs defined on disconnected

boundary spheres. We’ll call them the Left and Right sectors. The energy levels of the

QFT’s En are discrete. The corresponding eigenstates are denoted |n�L, |n�R. To simplify

the notation the tensor product state |n�L ⊗ |m�R will be called |n, m�.
The eternal black hole is described by the entangled state,

|Ψ� =
�

n

e
−βEn/2|n, n� (2.1)

where β is the inverse temperature of the black hole. The density matrix of each side is a

pure thermal density matrix.

This state can be interpreted in two ways. The first is that it represents the thermofield

description of a single black hole in thermal equilibrium [6]. In this context the evolution of

the state is usually defined by a fictitious thermofield Hamiltonian which is the difference

of Hamiltonians of the two CFTs.

Htf = HR −HL. (2.2)

The thermofield hamiltonian (2.2) generates boosts which are translations of the usual

hyperbolic angle ω. One can think of the boost as propagating upward on the right side

4

Entangled	
  state	
  in	
  	
  
two	
  non-­‐interac?ng	
  	
  
CFT’s.	
  	
  

|Ψ� =
�

n

e−βEn/2|En�CPT
L × |En�R



ER	
  =	
  EPR	
  

•  Wormhole	
  =	
  EPR	
  pair	
  of	
  two	
  black	
  holes	
  in	
  a	
  
par?cular	
  entangled	
  state.	
  	
  

•  Large	
  amounts	
  of	
  entanglement	
  can	
  give	
  rise	
  
to	
  a	
  geometric	
  connec?on.	
  	
  

•  Geometry	
  is	
  a	
  way	
  to	
  codify,	
  or	
  generate	
  the	
  
entanglement	
  between	
  the	
  two	
  systems.	
  	
  



Some	
  Lessons	
  
•  Do	
  not	
  confuse	
  leh	
  exterior	
  with	
  interior.	
  
•  To	
  describe	
  this	
  interior	
  the	
  microstates	
  of	
  one	
  black	
  hole	
  is	
  not	
  

enough.	
  One	
  CFT	
  is	
  not	
  enough,	
  we	
  need	
  the	
  second.	
  	
  
•  This	
  is	
  not	
  A	
  =RB	
  	
  .	
  We	
  are	
  not	
  	
  iden?fying	
  the	
  interior	
  with	
  the	
  leh	
  

exterior.	
  
•  The	
  interior	
  is	
  constructed	
  in	
  a	
  subtle	
  way	
  from	
  both	
  the	
  leh	
  and	
  

right	
  exterior	
  its	
  structure	
  depends	
  on	
  the	
  paSern	
  of	
  entanglement.	
  	
  
•  The	
  observer	
  in	
  the	
  interior	
  can	
  receive	
  signals	
  from	
  both,	
  but	
  

cannot	
  send	
  arbitrary	
  signals	
  to	
  either	
  of	
  the	
  two	
  exteriors.	
  	
  
•  We	
  cannot	
  say	
  that	
  A	
  is	
  some	
  operator	
  in	
  the	
  leh	
  Hilbert	
  space.	
  If	
  

there	
  were	
  so,	
  an	
  infalling	
  Right-­‐person	
  could	
  send	
  a	
  signal	
  to	
  a	
  
Leh-­‐person	
  by	
  changing	
  A.	
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where β is the inverse temperature of the black hole. The density matrix of each side is a

pure thermal density matrix.

This state can be interpreted in two ways. The first is that it represents the thermofield

description of a single black hole in thermal equilibrium [6]. In this context the evolution of

the state is usually defined by a fictitious thermofield Hamiltonian which is the difference
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4

A	
  



Should	
  the	
  leh	
  and	
  right	
  horizons	
  
touch	
  ?	
  

•  Only	
  for	
  special	
  states.	
  	
  

Shenker	
  Stanford	
  



Not	
  all	
  entangled	
  states	
  have	
  a	
  
smooth	
  geometry	
  

|Ψ� =
�

n

e−βEn/2|n�|n�|n�|n�
GHZ	
  –like	
  state:	
  

S(A) = S(A ∪B) = S(A ∪B ∪ C)

States	
  connected	
  by	
  a	
  smooth	
  geometry	
  obey	
  the	
  following	
  inequality	
  for	
  the	
  triple	
  mutual	
  
Informa?on	
  	
  

Here	
  we	
  have:	
  

I = S(A ∪B ∪ C)− S(A ∪B)− S(A ∪ C)− S(B ∪ C) + S(A) + S(B) + S(C) ≤ 0

I > 0

(	
  Hayden,	
  Maloney)	
  
Gharibyan,	
  Penna	
  



Changing	
  the	
  entangled	
  state	
  
•  Time	
  evolu?on	
  à	
  Different	
  slicingsà	
  phases	
  
	
   |Ψ� =

�

n

e−2iEnte−βEn/2|En�CPT
L × |En�R

There is a standard projector operator P0 = |Ψ0��Ψ0| that tests whether the system is the

entangled state |Ψ0�, and a different one that tests whether it is in the other state.

We claim that we should think of the bridges associated to these two states as being

different. In fact, we can see this clearly in the case of the eternal black hole. In this case,

we can consider the following family of Schrodinger picture states

|Ψt� ∼
�

n

e
−βEn/2e

−2iEnt|n, n� (2.6)

Two states with different values of t are related by forward time evolution on the two sides.

However, consider them as possible alternative states at the same instant of time and view

t in (2.6) as a parameter labeling alternative states at a common instant of time. All these

states have “maximal” entanglement and the same density matrix on each side. There is a

projection operator Pt into each of these states. However, there is no projection operator

onto the whole family, since considering linear combinations such as
�
dte

2iE0t|Ψt� projects
us into a particular state |n0, n0�, which is the one having the energy E0. This state is not

maximally entangled.

B
A

(c)

B
A

(b)(a)

Figure 5: (a) The yellow shaded region corresponds to the Einstein Rosen bridge associated
to the entangled state |Ψt=0� in (2.6) (for an AdS3/CFT2 situation). One can draw different
spatial sections in the geometry. The physics in these slices is related by the bulk Wheeler
deWitt equation. (b) Here we see the bridge corresponding to the entangled state |Ψt�,
for r > 0. (c) This is a different presentation of the same bridge as in (b), related by the
action of a boost HR − HL. Even though the states (a) and (c) are different, they both
contain regions A and B which look the same.

Now, we claim that the precise bridge associated to each state in the family (2.6)

10

Each	
  ?me:	
  Whole	
  yellow	
  region,	
  slices	
  related	
  by	
  the	
  Wheeler	
  de	
  Wit	
  equa?on.	
  	
  

	
  Heemskerk,	
  Marolf,	
  Polchinski,	
  	
  Sully	
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10

Note	
  that	
  region	
  A	
  is	
  common	
  	
  
to	
  more	
  than	
  one	
  state.	
  	
  



such a way that we create a state with finite Minkowski energy. We can ask what this

operation corresponds to in the AdS example. For simple
13

unitary operators such states

are expected to add additional particles on top of the Hartle-Hawking vacuum, as discussed

in section 2.5.

A
A

tA A

t

(b)

(d)(c) 

(a)

Figure 21: (a) Minkowski vacuum in terms of the Rindler modes along the left and right

Rindler spatial slices. Along these slices, the state (5.3) is regular and but (5.5) is singular.

(b) We boosted the left slice. Now the state (5.5) is regular. In (c) we consider the usual

thermofield state (2.1). In (d) we consider the result of adding a left time translation to

the thermofield state (2.4). We get a regular state.

Let us study the gravitational back reaction in one very particular case. Imagine that

what we do is to add the phase θ(ω) = −ωt so that we consider the particular state

Uθ|0�M = exp

��
dωe−βω/2e−iωtb†L,ωb

†
R,ω

�
|0�R (5.5)

This is a state with infinite Minkowski energy.

However, this state, (5.5), can also be viewed as the expression for the Minkowski

vacuum but quantized along a different spatial slice, a slice with a kink as in figure 21(b).

Thus the state (5.5) is very singular if we view it as quantized along the slice in figure

21(a), but non-singular along the slice 21(b). Now, if we take this second point of view,

13We are not making any statement about “generic” unitary operators.
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Singular	
  in	
  flat	
  space	
  QFT	
  

|Ψ� =
�

n

e−iEnte−βEn/2|En�CPT
L × |En�R Non-­‐singular	
  in	
  gravity	
  



Other	
  states	
  

of the copies of the field theory. Depending on the precise unitary transformation we will

get states with different particles. These are further examples of different entangled states

corresponding to different bridges between the two sides.

(a) (b)

t=0 t=0

Figure 6: (a) Construction of the entangled Hartle Hawking state from Euclidean evo-
lution. This creates very particular entangled bulk and boundary states. (b) We can
add particles on top of the Hartle Hawking vacuum by adding operators on the boundary
theory.

Of course, we can also consider bridges, as in figure 6(b), with an arbitrary configuration

of bulk particles. These are all different bridges corresponding to different entangled states,

though they are not all maximally entangled.

2.6 Bridges for less than maximal entanglement

In the Penrose diagrams we have discussed the Left and Right horizons touch each other.

It is also possible to have configurations where they do not touch each other. A simple

way to generate them is to start from two eternal black holes and add some matter to each

side. These configurations can also be prepared by considering Euclidean evolution with

a time dependent Hamiltonian, see [23] for some explicit solutions7. The Penrose diagram

of such configurations is given in figure 7.

7The solutions in [23] are based on Janus solutions. Their boundary in Euclidean space has the form
S1×Σ where Σ is a quotient of hyperbolic space. The S1 is divided in two equal parts and the dilaton has
a different value on each part. The Lorentzian continuation is obtained by continuing across the moment
with a time reflection symmetry. The two boundaries different values for the dilaton. These values are
constant in time. The bulk smoothly interpolates between the two.

12

Adding	
  par?cles	
  to	
  the	
  Hartle-­‐Hawking	
  state.	
  	
  
Precise	
  transla?on	
  between	
  states	
  in	
  the	
  CFT	
  and	
  	
  
states	
  in	
  the	
  bulk.	
  	
  



Comments	
  

•  Entangled	
  states	
  can	
  be	
  connected	
  by	
  a	
  smooth	
  
geometry.	
  	
  

•  Each	
  entangled	
  state	
  corresponds	
  to	
  a	
  whole	
  
region	
  of	
  the	
  bulk,	
  with	
  slices	
  related	
  by	
  the	
  
WdW	
  equa?on.	
  	
  

•  Different	
  entangled	
  states	
  correspond	
  to	
  
different	
  geometries,	
  or	
  the	
  same	
  geometry	
  plus	
  
extra	
  par?cles.	
  	
  

•  We	
  did	
  not	
  make	
  a	
  statement	
  about	
  the	
  generic	
  
entangled	
  state.	
  	
  



•  We	
  can	
  view	
  the	
  leh	
  side	
  as	
  ``processed’’	
  
radia?on.	
  	
  

•  What	
  we	
  do	
  to	
  the	
  radia?on	
  maSers	
  for	
  what	
  an	
  
infalling	
  observer	
  sees.	
  	
  

•  The	
  AMPS	
  paradox	
  is	
  real	
  (if	
  we	
  ignore	
  
computa?onal	
  constraints).	
  	
  

•  Some	
  states	
  are	
  not	
  smooth.	
  	
  
•  What	
  happens	
  if	
  we	
  do	
  nothing	
  ?.	
  What	
  is	
  the	
  
par?cular	
  entangled	
  state	
  produced	
  by	
  the	
  
``natural’’	
  evolu?on	
  of	
  an	
  evapora?ng	
  black	
  
hole	
  ?	
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the stretched-horizon and zone of the black hole. Whether or not they were initially

scrambled, after a time of order M logM they will become scrambled and therefore highly

entangled in all combinations. It seems reasonable to expect the nucleus of figure 12 will

evolve into the interior of the black hole. In other words after the scrambling time (but long

before the Page time) the interior of the black hole is the Einstein-Rosen bridge system

that connects the massively entangled near-horizon system of a black hole.

3.6 Hawking Radiation

The Hawking radiation of a black hole is a scrambled cloud of radiation entangled with

the black hole. The obvious configuration of the Einstein-Rosen bridge would resemble

the standard two-black-hole case except that Alice’s black hole would be replaced by the

Hawking radiation. We can draw a very impressionistic cartoon of the black hole connected

to the radiation by a Einstein-Rosen bridge with many exits, see figure 13.

Black holeBlack hole

.

Hawking radiationBlack hole

Figure 13: Sketch of the entanglement pattern between the black hole and the Hawking
radiation. We expect that this entanglement leads to the interior geometry of the black
hole.

Another representation is shown in figure 14. This figure shows only the geometrical

Einstein-Rosen bridge part of space. On the far left the interior of a young, one-sided black

hole is shown. The black circle represents the horizon which should be identified with the

horizon as seen from the exterior side. In the beginning there is no Hawking radiation.

As we move to the right Hawking quanta are emitted, and since they are entangled with

the black hole, they have to be connected to the bridge. The red dots represent the places

where the Hawking quanta connect to the main body of the bridge. The earlier quanta

are to the right of the later quanta. The green circles represent slices through the bridge

that divide the system into two parts. To the right of the circle the quanta were emitted
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(b)(a)

Figure 15: (a) A possible diagram for the bridge connecting an old evaporating black hole

to the radiation. The radiation little wormhole mouths would join along the thick black

line. When we look at an old black hole we are looking at the upper corner of the Penrose

diagram of the original black hole. When we do a time translation (or boost) to focus

on the late time region we squeeze the trajectories of the early radiation along the past

horizon. (b) The diagram in the firewall scenario, where the smooth geometry stops right

behind the horizon. (These diagrams do not take into account the complete evaporation

of the black hole).

[12]. In the language of qubits the simplicity of an operator represents the number of

computational qubits that are involved in its definition. In the black hole radiation the

concept of a computational qubit is replaced by the local modes of the radiation field. If

we ignore states with more than one quantum in a mode then the localized modes can

be replaced by computational qubits. The simple operators in this context are made of a

single radiation mode. They are easy to measure or to encode in another system.

By contrast, the operators RB in [32] are extremely complex. These are the operators

that Harlow and Hayden [19] identify as computationally difficult to access. They are

non-locally distributed over the at least half the total number of radiation modes. If the

initial entropy of the black hole is S then complex operators involve of order S radiation

modes.

In our ADS/CFT-based model we will work in the Schrodinger picture. The simple

units which are easily accessed are the local single-trace operators in the boundary CFT.

The most complex operators are very non-local expressions in the gauge theory. They

may involve large-scale Wilson loops and even more complicated objects. Experience has

shown that the deeper one probes into the interior of AdS, the more complex the probes

have to be. An example is the precursor operators in [39].
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Conclusions	
  

•  We	
  gave	
  an	
  EPR	
  interpreta?on	
  to	
  the	
  ER	
  bridge.	
  	
  
•  The	
  topology	
  of	
  space	
  can	
  be	
  modified	
  by	
  
massive	
  amounts	
  of	
  entanglement.	
  	
  

•  A	
  black	
  hole	
  entangled	
  with	
  radia?on	
  could	
  
produce	
  a	
  similar	
  geometric	
  bridge.	
  Its	
  interior	
  
could	
  depend	
  on	
  what	
  we	
  do	
  with	
  the	
  radia?on.	
  	
  	
  

•  	
  We	
  discussed	
  some	
  qualita?ve	
  similari?es	
  
between	
  the	
  tensor	
  network	
  descrip?on	
  of	
  
quantum	
  states	
  and	
  the	
  space?me	
  descrip?on.	
  	
  


