An Infalling Observer and the Black Hole Information Paradox in AdS-CFT

Suvrat Raju

International Centre for Theoretical Sciences

Complementarity, Fuzz or Fire 26 August 2013

Based on arXiv:1211.6767 (with Kyriakos Papadodimas)

Overview

- Construction of local operators outside the Black Hole.
- Construction of local operators behind the horizon.
- Complementarity and State Dependence.
- Addressing various counter-arguments:
 - Suppressing commutators by system size. (AMPSS)
 - 2 Lack of a Left Inverse (AMPSS)

 - Restoring unitarity with small corrections. (Mathur)
 - Unfreezing the vacuum. (Bousso, van Raamsdonk)

Generalized Free Fields

- The boundary theory has generalized free fields, $\mathcal{O}(t,x)$ of low dimension.
- Correlators of these fields factorize:

$$\begin{split} &\langle \mathcal{O}(t_1,x_1)\dots\mathcal{O}(t_{2n},x_{2n})\rangle \\ =&\langle \mathcal{O}(t_1,x_1)\mathcal{O}(t_2,x_2)\rangle\dots\langle\mathcal{O}(t_{2n-1},x_{2n-1})\mathcal{O}(t_{2n},x_{2n})\rangle \\ &+ \mathsf{permutations} + \frac{1}{N}\dots, \end{split}$$

•

$$\langle 0|\mathcal{O}(t,x),\mathcal{O}(0,0)|0\rangle = \left(\frac{-1}{t^2-x^2-i\epsilon t}\right)^{\Delta} = \left(\frac{-1}{(t-i\epsilon)^2-x^2}\right)^{\Delta}.$$

• However, \mathcal{O} does not obey an equation of motion.

Local Observables in empty AdS

 \bullet We can recast dynamics of ${\mathcal O}$ using a one-to-one map to another operator $\phi_{\rm CFT}$

[Banks et. al., Bena, Kabat et al., 1998–2012]

$$\mathcal{O} \Leftrightarrow \phi_{\mathsf{CFT}}$$

• The precise definition is:

$$\phi_{\mathsf{CFT}}^{\mathsf{vac}}(t,x,z) = \int_{\omega>0} \frac{d\omega d^{d-1}k}{(2\pi)^d} \left[\mathcal{O}_{\omega,k} \xi_{\omega,k}(t,x,z) + \mathsf{h.c.} \right]$$

where ξ are appropriately chosen functions.

• $\phi^{\text{vac}}_{\text{CFT}}$ behaves like a free-field in AdS. For example:

$$[\phi_{\mathsf{CFT}}^{\mathsf{vac}}(t,x,z),\dot{\phi}_{\mathsf{CFT}}^{\mathsf{vac}}(t,x',z')] = \frac{i}{(2\pi)^d} \delta^{d-1}(x-x') \delta(z-z') z^{d-1}.$$

Emergent AdS

- This is the clearest way to understand the emergence of the bulk from the CFT.
- If we did not know AdS/CFT, this map would look miraculous.
- For example, no normalizable modes in the bulk with spacelike momenta. Correspondingly, the spacelike modes of generalized free-fields can be discarded at large N.
- So, the map is quite constrained even at infinite N.

Local Observables outside a Black Hole

- Consider the CFT in a pure state $|\Psi\rangle$ that is "close" to a thermal state.
- The same generalized free-fields $\mathcal O$ have different correlators in the state $|\Psi\rangle$.
- However, we can still construct perturbative local fields

$$\phi_{\mathsf{CFT}}^{\beta}(t,x,z) = \int_{\omega>0} \frac{d\omega d^{d-1}k}{(2\pi)^d} \left[\mathcal{O}_{\omega,k} f_{\omega,k}(t,x,z) + \mathsf{h.c.} \right]$$

More on Operators in front of the horizon

 This is even more miraculous and constrained. For example, at large-spacelike momenta, we require:

$$\mathcal{O}_{\omega,k} o oldsymbol{e}^{rac{-eta|k|}{4}}$$

for spacelike momenta: $k >> \omega$. True because of general properties of thermal CFT correlators.

[Papadodimas, S.R., 2012]

 Moreover, the CFT-bulk map is state dependent. Expected, because we do not expect to formulate local observables in a background-independent way.

More on State Dependence

- This is not a modification of quantum mechanics: in different states, it is convenient to use different integral transforms of operators.
- What if we took the state $\frac{1}{\sqrt{2}}\left(|\Omega\rangle+|\Psi\rangle\right)$? Both $\phi_{\text{CFT}}^{\text{vac}}$ and $\phi_{\text{CFT}}^{\beta}$ are well-defined, but neither has a good interpretation as a bulk perturbative field.
- If we take $\sum_{E} c_{E} |E\rangle$, with the right c_{E} , ϕ_{CFT}^{β} , but not ϕ_{CFT}^{vac} , has a good bulk interpretation.
- The CFT-bulk kernel depends on more than the energy. Eg. for a unstable gas, before it collapses to a black hole, the kernel is different.

Operators behind the black hole

- To construct local operators behind the horizon, we need additional operators from an operator \(\widetilde{O}(t, x) \) in the CFT.
- This operator should almost commute with the original GFF:

$$[\widetilde{\mathcal{O}}(t_1,x_1),\mathcal{O}(t_2,x_2)]\sim\epsilon$$

- Results of measurements of \mathcal{O} and $\widetilde{\mathcal{O}}$ are correlated
- i.e. we want a generic equilibriated CFT state to look like

$$|\Psi
angle = rac{1}{\mathcal{Z}} \sum e^{rac{-eta\omega}{2}} |\omega, \mathbf{k}
angle \otimes | ilde{\omega}, ilde{\mathbf{k}}
angle$$

Local operators Behind the Horizon

 If we can find such operators in the CFT, local operators behind the horizon are

$$\begin{split} \phi^{\mathrm{II}}_{\mathsf{CFT}}(t,\mathsf{x},\mathsf{z}) &= \int_{\omega>0} \frac{d\omega d^{d-1}k}{(2\pi)^d} \left[\mathcal{O}_{\omega,k} \, g^{(1)}_{\omega,k}(t,\mathsf{x},\mathsf{z}) \right. \\ &+ \left. \widetilde{\mathcal{O}}_{\omega,k} \, g^{(2)}_{\omega,k}(t,\mathsf{x},\mathsf{z}) + \mathrm{h.c.} \right], \end{split}$$

where we can explicitly compute $g^{(1)}$ and $g^{(2)}$.

[Papadodimas, S.R., 2012]

So, the issue of whether or not we can describe the interior in AdS/CFT is an issue of finding such operators.

Resolving Various Puzzles

- ullet If the ${\mathcal O}$ and $\widetilde{{\mathcal O}}$ operators are an overcomplete basis for the same space, then we can resolve the strong subadditivity puzzle
- Such a construction would also evade Mathur theorem on small corrections, which tacitly does not allow for this possibility of complementarity.
- AMPSS and MP have given several recent arguments in favour of firewalls.
- Later, we will discuss how many of these arguments are very naturally evaded if we allow the operators to be state dependent.
- The proposal is strong, precisely where these arguments meet it!

The Generic Commutator

- But first, let us address the following issue: can we ensure that \mathcal{O} operators live in the same space as the \mathcal{O} operators and have a small commutator with them.
- We take a basis of operators \mathcal{O}_n in a large Hilbert space. eg. imagine the spin operators of a spin chain.
- We now scramble it with a generic unitary matrix U to form $\widetilde{\mathcal{O}}_n = U \mathcal{O}_n U^{-1}$.
- Typically, the commutator $[\widetilde{\mathcal{O}}_m, \mathcal{O}_n]$ has O(1) eigenvalues Bad for locality.

A more realistic example

 We would like to see if these arguments hold true, in a more realistic case.

Imagine an evaporating black-hole as a system coupled to a radiation field.

• The real puzzle is to find the operators $\tilde{\mathcal{O}}$ when most of the energy is in the radiation field, so that \mathcal{O} and $\widetilde{\mathcal{O}}$ are acting on the same space.

Dual operators in a radiation field

- Consider a one-dimensional field, living in a very long box of length $I = \frac{3}{2M_{Pl}} \left(\frac{M}{M_{Pl}}\right)^3$.
- The frequencies are quantized in units of $\omega_{IR} = \frac{2}{3} M_{\rm pl} \left(\frac{M_{\rm pl}}{M} \right)^3$.
- Consider putting an energy M into this box.
- Amusingly, the total entropy of this configuration can be calculated by Cardy's formula and is $S = \pi M^2$.
- We can think of this as the Hawking gas of s-waves emitted by an old-black hole, living in a box of the size of the Page time.

The natural observable

The natural observable is the field

$$\phi(t,r) = \sum_{n} \frac{1}{\sqrt{n}} a_n e^{n\omega_{IR}(t-r)} + \text{h.c} + \text{left-movers}$$

• And we are interested in correlators $\langle \phi(r_1, t_1) \phi(r_2, t_2) \dots \phi(r_p, t_p) \rangle$, where the number of points p does not scale with N

Coarse Graining the Field

- Consider an observer, with limited resolving power: cannot distinguish the frequency $p\omega_{IB}$ from $(p+1)\omega_{IB}$.
- Define the following linear combination of oscillators, where m can be any O(1) number.

$$\alpha_{p} = \frac{1}{\sqrt{m}} \sum_{i=1}^{m} a_{mp+i}, \quad \beta_{p}^{j} = \frac{1}{\sqrt{m}} \sum_{i=1}^{m} \chi_{i}^{j} a_{mp+i},$$

• The only relevant property of the χ^j_i coefficients is that

$$\sum_{i} (\chi_{i}^{j_{2}})^{*} \chi_{i}^{j_{1}} = \delta^{j_{1}j_{2}}; \quad \sum_{i} \chi_{i}^{j} = 0, \forall j,$$

so that the β_p^I oscillators are orthogonal to each other and to the α_p oscillators.

Coarse and Fine Spaces

- The physical idea is that the coarse observer sees effectively the space of excitations of the α_p , but there are fine-grained degrees of freedom in the β_{p}^{j} that he cannot access easily.
- Divide the full Hilbert space into

$$\mathcal{H} = \mathcal{H}_{c} \otimes \mathcal{H}_{f}$$

where \mathcal{H}_c consists of excitations of the α_p oscillators and \mathcal{H}_f consists of excitations of the β_n^j oscillators.

 If we fix the total energy, then obviously we are restricted to certain entangled states in this product space.

Entanglement between coarse and fine d.o.f.

Any state in the CFT can be written

$$|\Psi
angle = \sum_{i,j} lpha_{ij} |\Psi^{c}_{i}
angle \otimes |\Psi^{f}_{j}
angle,$$

where i runs over an orthonormal basis in \mathcal{H}_c and j over an orthonormal basis in \mathcal{H}_f .

• We can perform a singular value decomposition of the matrix α

$$\alpha_{ij} = \sum_{m} U_{im} D_{mm} V_{mj}$$

where D is a rectangular diagonal matrix

$$D = \begin{pmatrix} D_{11} & 0 & 0 & 0 & \dots \\ 0 & D_{22} & 0 & 0 & \dots \\ 0 & 0 & D_{33} & 0 & \dots \end{pmatrix}$$

Mirrored Operators

In this basis, the state becomes

$$|\Psi
angle = \sum_{i} D_{ii} |\hat{\Psi}^{c}_{i}
angle \otimes |\hat{\Psi}^{f}_{i}
angle$$

• For some matrix elements ω_{i_1,i_2} :

$$\alpha_{p} = \sum_{i_{1}, i_{2}} \omega_{i_{1}i_{2}} |\hat{\Psi}_{i_{1}}^{c}\rangle \langle \hat{\Psi}_{i_{2}}^{c}|.$$

Define a mirrored operator on the fine-grained space:

$$\widetilde{\alpha_{p}} = \sum_{i_1, i_2} \omega_{i_1 i_2}^* |\hat{\Psi}_{i_1}^f\rangle \langle \hat{\Psi}_{i_2}^f|,$$

Mirrored Field

We can construct a mirrored field

$$\widetilde{\phi}(t,x) = \sum_{n} \frac{1}{\sqrt{nm}} \widetilde{\alpha}_{n} \sum_{j=1}^{m} e^{i\omega_{IR}(mn+j)(r-t)} + \text{h.c}$$

This field commutes up to small corrections with the original field

$$\begin{split} &\langle \phi(\textit{r}_{1},\textit{t}_{1})\phi(\textit{r}_{2},\textit{t}_{2})[\phi(\textit{r}_{3},\textit{t}_{3}),\widetilde{\phi}(0,0)]\rangle \\ &\approx \langle \phi(\textit{r}_{1},\textit{t}_{1})\phi(\textit{r}_{2},\textit{t}_{2})[\phi^{\textit{c}}(\textit{r}_{3},\textit{t}_{3}),\widetilde{\phi}(0,0)]\rangle + O\left((\textit{t}_{3}-\textit{r}_{3})\frac{\textit{M}_{\text{pl}}}{\textit{S}^{\frac{3}{2}}}\right) \\ &= 0 + O\left((\textit{t}_{3}-\textit{r}_{3})\frac{\textit{M}_{\text{pl}}}{\textit{S}^{\frac{3}{2}}}\right) \end{split}$$

 In fact, with a little more work, we can argue that only the square of the commutator is observable, so the smallest non-local effect is suppressed by $\frac{1}{63}$

No Left Inverse Argument

- So, this provides an explicit example of a model of the interior that can preserve unitarity, with small violations of locality, and small corrections to semi-classical correlators outside and inside the B.H.
- Consider, some other arguments for why the interior operators cannot exist.
- $\widetilde{a}_{\omega,k}^{\dagger}$ lowers the energy and has a left inverse.
- These is no such operator in the field theory.

[AMPSS, 13]

 But, we have an explicit construction of such operators in this toy model. What gives?

State dependence resolves left inverse argument

Toy model:

coarse space

- $|0\rangle$, with energy = 0
- $|1\rangle$, with energy = 1

fine space

- $|0\rangle, \quad \text{with energy} = 0$
- $|1\rangle, |2\rangle, ... |n\rangle,$ with energy = 1
- Consider some state with total energy = 1:

$$|\Psi\rangle = |0\rangle_{\mathsf{coarse}} \otimes (\sum_{j=1}^n) c_j |j\rangle_{\mathsf{fine}} + |1\rangle_{\mathsf{coarse}} \otimes |0\rangle_{\mathsf{fine}}$$

• The mirror of the coarse operator $a^{\dagger}=|1\rangle_{\rm coarse}\langle 0|_{\rm coarse}$ is $\widetilde{a}^{\dagger}=c_{i}|0\rangle_{\rm fine}\langle j|_{\rm fine}$

State Dependent Operators are Sparse

State Dependent Operators are Sparse!: No contradiction with linear algebra!

Union of all constructions?

Can we use the "union" of all constructions to obtain a contradiction?

Union of all constructions?

- Can we use the "union" of all constructions to obtain a contradiction?
- NO!
- The explicit construction shows that if we try and cover \mathcal{H}_F using different states $|\Psi\rangle_m$ with different structures of entanglement, we over-cover $\mathcal{H}_{F-\omega}$, as one would expect.

$\langle N_a \rangle \neq 0$ Argument

- Let N_b measure the occupation number of some b-mode outside the horizon.
- Marolf-Polchinski: If N_b is some fixed operator in the CFT, then we would expect that a generic state at fixed energy does not look like $|N_b, N_b\rangle$ and so has $N_a \neq 0$.
- Compute the microcanonical expectation value $\langle N_a \rangle$ by going to the N_h basis: generically expect this to be non-zero.
- What is the contradiction with our explicit construction, where $\langle N_a \rangle = 0$?

State dependence resolves the $N_a \neq 0$ argument

- The operator N_a depends on N_b and N_b .
- So, in taking the expectation value $\sum_{\Psi} \langle \Psi | N_a | \Psi \rangle$, the precise operator N_a varies as we change $|\Psi\rangle$
- In fact, by construction, for generic states:

$$|\Psi
angle = \sum_{N_b} e^{-rac{1}{2}eta N_b \omega_b + ...} |N_b, \widetilde{N}_b, \ldots
angle$$

So,
$$N_a |\Psi\rangle = 0$$
.

 So, the Marolf-Polchinski argument should be interpreted as a strong argument in favour of state-dependence of the interior operator.

Frozen Vacuum?

 Another counter-argument (specific to this construction): If the interior operator is always defined to be the one chosen by entanglement, then the vacuum is always feature-less (or frozen).

[Bousso, van Raamsdonk, 13]

- The rule is not that the interior operator is chosen by entanglement.
- Rather it is that the interior operator is chosen to be the one that gives perturbative local correlators.
- For a generic equilibrium state, the two rules coincide.

Interior Operators for a Non-Equilibrium State

- For a slightly out of equilibrium state $\mathcal{O}(x,t)|\Psi\rangle$, where $|\Psi\rangle$ is an equilibrium state, the rule is that we define the operators \mathcal{O} with respect to $|\Psi\rangle$, and then do not change them.
- It would be nice to prove that this rule is uniquely fixed by the criterion that we should get local operators.
- This rule does give local operators with the correct behaviour and no frozen vacuum. So, we conjecture that it is correct.

Small Corrections

 How do have a unitary model of evaporation, with only small corrections to correlators?

[Mathur, 2009-13]

If we look at the full wave-function, it appears to evolve as

$$\begin{split} |\Psi\rangle &\to \frac{1}{\sqrt{2}} |\Psi'\rangle \otimes \left(|0\rangle_c |0\rangle_b + |1\rangle_c |1\rangle_b\right) \\ &\to \frac{1}{2} |\Psi''\rangle \otimes \left(|0\rangle_{c_1} |0\rangle_{b_1} + |1\rangle_{c_1} |1\rangle_{b_1}\right) \otimes \left(|0\rangle_{c_2} |0\rangle_{b_2} + |1\rangle_{c_2} |1\rangle_{b_2}\right) \end{split}$$

- The excitations b_1 , c_1 , b_2 , c_2 are all excitations of the same collective modes. They are not independent excitations
- This is what allows us to evade the theorem, and obtain unitary evolution with small corrections.

Summary

- We want to reorganize boundary correlators in terms of perturbative fields propagating on a spacetime with an extra dimension.
- Our construction suggests that, to leading order in $\frac{1}{N}$, this successfully describes both the interior and the exterior of the black hole.
- The operators, both outside and inside are state-dependent. (At leading order, the exterior operators depend only on the energy, while interior operators seem to have stronger state dependence.)
- This seems to resolve several arguments raised against the existence of such operators.

Open question 1: size of non-local effects

- The current model has power-law (in entropy) suppression for commutators. It is difficult to extend this to exponential suppression, without making the black-hole too long lived.
- On the other hand, even for points r_{out} outside the black-hole:

$$[h_{00}(t,\infty),\phi(t,r_{\mathrm{out}})]=\mathrm{O}\left(\frac{1}{N}\right)$$

because the asymptotic metric can measure the energy inside.

 So, we need to understand which operators (if any) should have exponentially suppressed commutators.

Open questions 2: $\frac{1}{N}$ corrections

- We have made a guess for interior operators. How we know that this is correct?
- Again, the same question exists for exterior operators.
- We conjecture that a careful study of $\frac{1}{N}$ corrections should allow us to better fix both interior and exterior operators.

Open guestions 3: Bulk Interpretation

- It seems clear that the bulk theory will require some (preferably exponentially small) degree of non-locality to resolve the information paradox.
- If we formulate the theory using a path integral, we should expect such corrections since the semi-classical spacetime ceases to make sense at this level of accuracy.
- But, can we find some explicit non-perturbative effect that produces the non-local corrections required to restore unitarity?