Models of Accretion Flows in Kinetic Theory

(+ a wee bit of MHD)

Eliot Quataert (UC Berkeley)

Collaborators: Prateek Sharma, Greg Hammett, Bill Dorland, Jim Stone Josh Goldston, Karin Sandstrom

The (In)Applicability of MHD?

Observed Plasma (~ 1" ~ R_{Bondi} ~ 10⁵ R_S)

T ~ few keV $n \sim 100 \text{ cm}^{-3}$ e-p thermalization time ~ 2000 yrs

inflow time ~ R_{Bondi}/c_s ~ 100 yrs

T_{electron} measured by X-rays need not equal T_{proton} (complicates inference of R_{Bondi})

The (In)Applicability of MHD?

Estimated Conditions Near the BH $T_{p} \sim 10^{12} \text{ K}$ $T_{e} \sim 10^{11} \text{ K}$ $n \sim 10^{6} \text{ cm}^{-3}$

proton mfp ~ kpc >>> R_s

We need to understand accretion of a magnetized collisionless plasma

The MRI in a Collisionless Plasma

angular momentum transport via anisotropic pressure (viscosity!) in addition to magnetic stresses

Quataert, Dorland, Hammett 2002; also Sharma et al. 2003; Balbus 2004

Collisionless Convection

(Balbus 2000; Karin Sandstrom & EQ 200N)

- Convection (Buoyancy) May be Dynamically Impt in Hot, Thick Disks
- Schwarzschild Criterion for Instability in Hydro & MHD ($\beta >> 1$): ds/dr < 0

Hydro & MHD Simulations Do Not Capture the Correct Physics of Dynamical Instabilities in Hot Collisionless RIAFs (neither MRI nor Convection)

Goal: Kinetic Simulations

Kinetic-MHD

(e.g., Kulsrud 1983)

- Large-scale Dynamics of collisionless plasmas: expand Vlasov equation retaining "slow timescale" & "large lengthscale" assumptions of MHD
- Particles efficiently transport heat and momentum along field-lines

$$\begin{split} &\frac{\partial\rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = 0, \\ &\rho \frac{\partial \mathbf{V}}{\partial t} + \rho \left(\mathbf{V} \cdot \nabla \right) \mathbf{V} = \frac{(\nabla \times \mathbf{B}) \times \mathbf{B}}{4\pi} - \nabla \cdot \mathbf{P} + \mathbf{F_g}, \\ &\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \left(\mathbf{V} \times \mathbf{B} \right), \\ &\mathbf{P} = p_{\perp} \mathbf{I} + \left(p_{\parallel} - p_{\perp} \right) \mathbf{\hat{b}}\mathbf{\hat{b}}, \end{split}$$

Evolution of the Pressure Tensor

$$\rho B \frac{d}{dt} \left(\frac{p_{\perp}}{\rho B} \right) = -\nabla \cdot (\hat{\mathbf{b}} q_{\perp}) - q_{\perp} \nabla \cdot \hat{\mathbf{b}}$$

adiabatic invariance of $\mu \sim mv_{\perp}^2/B \sim T_{\perp}/B$

$$\frac{\rho^3}{B^2} \frac{d}{dt} \left(\frac{p_{||} B^2}{\rho^3} \right) = -\nabla \cdot (\hat{\mathbf{b}} q_{||}) + 2q_{\perp} \nabla \cdot \hat{\mathbf{b}},$$

$$q \approx \frac{n v_{th}}{|k_{\parallel}|} \nabla_{\parallel} T$$

Closure Models (Approximations) for the Heat Flux (temp gradients along fields wiped out on ~ a crossing time)

Local Simulations of the Kinetic MRI

Non-linear Evolution Depends Critically On Isotropization Of Pressure Tensor via small-scale Kinetic Instabilities

Sharma et al. in prep

Angular Momentum Transport

Anisotropic Stress ~ Maxwell Stress

Local Rate of Angular Momentum Transport Enhanced (by factor ~ 2)

Global Dynamics In Collisionless Limit Remains to Be Explored

Sharma et al. in prep

Connecting Simulations To Observations

Synchrotron Emission in Global MHD Sims of RIAFs

1mm/300 GHz (thermal; optically thin)

At high (optically thin) frequencies, factors of ~ few-5 variability on ~ hour timescales (~ orbital period near BH)

How Quantitative Can we Be?

- IR & X-ray 'Flaring' Depends on e- DF: Plasma Physics Weather?
- Electron Heating & Acceleration Remain Poorly Understood
- electron conduction time << inflow time, electron cooling time
- \Rightarrow conduction strongly influences T_e & thus the radiation we see
- (maybe submm better bec. ~ thermal population of e⁻s?)

Summary

- Accretion Flow onto Sgr A* is Collisionless: $mfp/R_s \sim 10^{9}!$
- Instabilities that Determine Accretion Flow Dynamics Qualitatively Different in Collisionless Plasmas (MRI, Convection)
- Local Simulations of Kinetic MRI Similar to MHD with Enhanced Transport due to Anisotropic Pressure Stresses
- Radiation from MHD Simulations Similar to Observations of SgrA*
 - Caution Required Re. Quantitative Comparisons (Electron DF?)