

Gravitational wave sources and the hunt for their electromagnetic counterparts using the BlackGEM array

Steven Bloemen

and RU Nijmegen (NL) BlackGEM team: Paul Groot, Gijs Nelemans, Marc Klein-Wolt

Deformation of space-time by massive objects

Indirect proof of existence of GW

Hulse-Taylor pulsar (Nobel Prize 1993)

- Orbital period NS+NS: 7h45
- Reduces by 77 microseconds/yr
- Merger in 300 Myr

Indirect proof of existence of GW

3 yr Ultracam @ WHT

[Bloemen et al, in prep.]

SDSS J0651+2844 [Brown+2011, Hermes+2012]

- Eclipsing double white dwarf binary
- $P_{orb} = 12.75 \text{ min, merger in } 1 \text{ Myr}$
- Now more precise orbital decay measurement than GR prediction!

Direct detections: interferometers

Distance changes of order 10⁻²²

2016-2017: Advanced LIGO/VIRGO → 10x more sensitive

What will (hopefully) be detected by LIGO/Virgo?

Mergers (inspiral) of

GW freq. in range 10 Hz to few kHz

■ Neutron star + neutron star (13 known)

■ Neutron star + black hole (0 known)

■ Black hole + black hole (0 known)

We have to find the electromagnetic

counterparts...

Need for **identification** and **follow-up**

Gravitational Wave information

- Merger time T₀
- Chirp mass of components
- Inclination of the binary system
- Rough sky location (~100 sqd)
- Distance
- Neutron star internal structure
- Rates of BH/NS mergers

Electromagnetic Wave information

- Outflow velocities and energetics
- Delay times
- Nucleosynthesis in merger material
- Remnant geometry: information on mass ratio
- Accurate position (1")
- Redshift
- Position in/near a galaxy
- Correlation with stellar populations
- Magnetic field strength
- Previous evolution: mass ejection, binary evolution

Predicted electromagnetic signals (NS + NS \rightarrow BH)

- First < ls:
 gamma/X-ray; beamed
- Up to hours/days: optical and IR; kilonova due to decay of r-process elements in neutrino-driven wind + jet-ISM shock
- After weeks to months: radio; *ejecta-ISM shock*

Optical and IR are ideal:

- isotropically emitted
- immediately visible

How many sources are expected?

Unclear how many mergers will be detectable in GW+EM

Some realistic estimates for LIGO+VIRGO (Nissanke+ 2013):

Detection horizon: Typical expected event rate:

220-400 Mpc ~20/yr

350-600 Mpc ~3/yr

no expected EM signal

Optical counterparts

- Challenges:
 - Poor sky localization (~100 sqd)
 - Faint (21st-22nd mag at 200 Mpc)
 - False positives
 - Gone in hours/days

- What do we need?
 - Large field of view
 - Sensitivity
 - Colour information
 - Dedicated facility for rates

BlackGEM Array

- Phase-I: 4 telescopes
 Funded by Netherlands
 (NOVA, RU, FOM) and KU Leuven
- Phase-II: 15 telescopes
 Not yet funded

- Cassegrain camera, u'g'r'i'z' filters
- 2.7 sqd FOV
- Single 10k * 10k CCD per telescope
- Thanks to good site:

 ~22nd mag in 5 minutes in g'

BlackGEM site: La Silla

Re-use GPO building

Three phases in BlackGEM operations

Phase 1: (50% of year 1)

All Sky Survey

Full Southern Sky in u,g,r,i,z down to ~22nd mag

Phase 2: (50% yl + when no trigger) Survey Phase Rates: $N_{candidates}(l,b, \tau, mag, colour)$ (degr⁻² hr⁻¹ mag⁻¹)

- Number of fiducial fields: ~100 square degrees
- Cadence: once every 2 minutes, in 3 bands (g+r,r,i)
- . Time per field: 14 nights

Phase 3:

Trigger Phase

GW events

- Follow-up of Virgo/LIGO detections
- Cover the error boxes in a tiling pattern

Variability on times scales of minutes/hours is not well studied

Gravitational wave sources and rates, but also:

- Local Group Dwarf Galaxies
- Extragalactic globular clusters
- NS/BH binaries
- Eclipsing binaries
- Pulsating stars
- Tidal disruptions
- AGN variability
- Extragalactic science
- Supernovae
- GRBs
- CVs, Novae
- Asteroids/NEOs
- Hypervelocity stars
- White dwarfs
- Brown dwarfs
- Stellar populations and star clusters

www.blackgem.eu @BlackGEM_Array

+ Discussion

Many ongoing and upcoming time-resolved wide-field surveys

Gaia, iPTF, Skymapper, Pann-STARS, ZTF, BlackGEM, LSST,...

- → Different setups: cadence, depth, sky coverage, colours,...
- → 'Big data' era in astronomy

 Are we ready to find what we are looking for, as well as the unexpected?

Gravitational wave astrophysics

- → New window on the sky (LIGO/Virgo, eLISA,...)
- → Probing poorly known population of ultra-compact binaries (rates!)
- → Witness stellar merger events
- → Challenging multi-wavelength follow-up

Extra slides – only here for potential use during Q&A

Custom optical, mechanical design

- Cassegrain camera, u'g'r'i'z' filters
- Modified Dall-Kirkham design: 2.7 sqd FOV
- Single 10k * 10k CCD per telescope
- Thanks to good site: ~22nd mag in 5 minutes in g'

+What is available?

LSST

WRONG CADENCE, NOT DEDICATED, TOO LATE

Deformation of space-time by massive objects

Advanced LIGO and VIRGO

Shot noise (random photon emissions), photons shake the mirrors, earthquakes,...

Kilonovae (NS+NS): recent models

Gravitational waves

- a new window on the sky!

- Strong gravity physics (test for GR)
- Equation of state of ultradence, cold matter (neutron star)
- r-process elements
- NS, BH Merger rates, correlation with environment (galaxies, star forming regions)
- Massive star evolution
- Distance scale in cosmology

First 'kilonova' associated with short gamma-ray burst

- Tanvir et al. 2013, Nature
- Short GRB (SWIFT, ~0.2s)
- Afterglow:
 X-ray
 optical (WHT, HST)
 near IR (HST)
- IR-excess due to radioactive decay in ejected material
- Redshift z=0.356 (400 Mpc ~ z=0.1)

Optical signals are weak

Sensitivity needed to detect optical counterparts up to 400 Mpc is ~ 22 mag. → Background limited!

MeerLICHT

Single telescope of BlackGEM type in South Africa

Changing transient science to truly multi-wavelength

Pointing determined by MeerKAT radio telescope

In South Africa: bridge between SALT and SKA/MeerKAT

Nijmegen, NWO (NL); UCT, SAAO (SA); Oxford (UK)

