

From Stars to Galaxies

Charlie Conroy (Harvard)

I. What do we think we know about galaxies*?

*Ignoring kinematics, lensing, explosions, gas (mostly), morphology, high energy radiation, black holes, large scale structure, and essentially all "raw" observed properties

Evolution of the Stellar Mass Function

Moustakas et al. 2013

Star formation history; SF "main sequence"

Dust scaling relations

Draine et al. 2007

Stellar Abundances, Metallicities

Gallazzi et al. 2005; Thomas et al. 2005

Connecting Galaxies To the Cosmic Web

II. *How* do we know what we think we know?

Stellar Population Synthesis Models

- Long history
 - Tinsley 1968, Searle et al. 1973, Tinsley & Gunn 1976, Bruzual 1983, Charlot & Bruzual 1993, Worthey 1994, Bressan et al. 1994, Fioc & Rocca-Volmerange 1997, Leitherer et al. 1999, Vazdekis 1999, Maraston 2005, Conroy et al. 2009, etc. etc.
- Necessary *both* for converting observations into physical quantities and for converting models/simulations into observables
- We know little about the physical properties of galaxies that does not depend on stellar evolution, stellar atmospheres, and stellar spectra

• Simple Stellar Populations

$$f_{\rm SSP}(t, Z) = \int_{m_{\rm lo}}^{m_{\rm up}(t)} f_{\rm star}[T_{\rm eff}(M), \log g(M)|t, Z] \Phi(M) \, \mathrm{d}M$$

IMF x spectra(stellar mass)

Complex Stellar Populations

$$f_{\rm CSP}(t) = \int_{t'=0}^{t'=t} \int_{Z=0}^{Z_{\rm max}} \left({\rm SFR}(t-t') P(Z,t-t') f_{\rm SSP}(t',Z) e^{-\tau_d(t')} + A f_{\rm dust}(t',Z) \right) \, \mathrm{d}t' \, \mathrm{d}Z_{\rm st}$$

SFR x SSP x dust + dust emission

III. Information Content (in the most ideal world)

Where is the Light Coming From?

Where is the Light Coming From?

The Initial Mass Function

Measuring Abundance Patterns In Galaxies

Element Fingerprints

Element Fingerprints

Element Fingerprints

Measuring Dust Properties

In Principle*, We Should be Able to Measure:

- 1. Non-parametric star formation histories in 5-10 age bins
- 2. Metallicity history and/or metallicity distribution function
- 3. Stellar abundances of at least 15 elements, including light, alpha, Fe-peak, and neutron capture elements
- 4. The stellar (initial) mass function in 2-3 mass bins
 - Hence measure the "true" stellar mass
- 5. Temperature, density, and elemental abundances for the "mean" HII region
- 6. Temperature, mass and rough grain size distribution of dust
- 7. Star-dust geometry

* For R=2,000 spectra with S/N>10³ from FUV-FIR, and perfect models

IV. Why is this hard?

Uncertainties in Stellar Evolution

Uncertainties in Stellar Evolution

Colors of star clusters in LMC provide constraints on models

Uncertainties in Modeling Massive Stars

Levesque et al. 2012

Incomplete Empirical Spectral Libraries

Empirical stellar libraries have sparse coverage in logg/logT/Z

Inconsistent Empirical Spectral Libraries

Uncertainties in Modeling Stellar Spectra

Model stellar atmospheres and spectra are uncertain: line lists, corona, B fields, NLTE, 3D, rotation, etc.

Courtesy of R. Kurucz

Uncertainties in Modeling Stellar Spectra

The Challenge of Model Calibration

V. OK, so why should you believe anything from Part I?

Stellar Masses are Remarkably Robust

Moustakas et al. 2013

So are SFRs (more or less)

Salim et al. 2007 Brinchmann et al. 2004

Spectral fitting an integrated light spectrum of clusters

Hayward & Smith 2014

Johnson et al. 2013

Constraining Stellar Evolution with Galaxies?

