The All-Sky Automated Survey for SuperNovae (ASAS SN or "Assassin")

Benjamin J. Shappee^{1,2} on behalf of the entire ASAS-SN team

¹Hubble Fellow, ²Carnegie-Princecton Fellow

The Sky is Big!

How big?

 $A = 4\pi \times \text{steradian} = 41,250 \text{ deg}^2$ $= 5 \times 10^{11} \text{ arcsec}^2$

500 Gigapixels → 1 Terabyte/epoch (assuming 1 arcsec pixels)

The Sky is Variable!

- Supernovae
- **Stellar Flares**
- Active Galactic Nuclei
- Asteroids

Stellar Eruptions

ASAS SA Goals:

- Monitor of the entire sky every few nights in real-time.
 - V-band limiting magnitude $V \approx 17$
 - Use commercially available Telephoto lenses and CCDs
 - Find supernovae in a minimally biased search

Outline

Introduction to ASAS-SN

Discuss a few interesting discoveries

ASAS-SN Patrols (our data release strategy)

Future directions of ASAS-SN

Outline

Introduction to ASAS-SN

Discuss a few interesting discoveries

ASAS-SN Patrols (our data release strategy)

Future directions of ASAS-SN

ASAS SN Is a Global Partnership

PEKING

САР

LIVERPOOL

B. Shappee (Hubble Fellow; Carnegie-Princeton Fellow) C. S. Kochanek, K. Z. Stanek, T. W.-S. Holoien, A. B. Danilet, G. Simonian, U. Basu, N. Goss, J. F. Beacom, T. A. Thompson (Ohio State) J. L. Prieto (Diego Portales; MAS) D. Bersier (LJMU) Subo Dong (KIAA-PKU) P. R. Wozniak (LANL) E. Falco (CfA) J. Brimacombe (Coral Towers Observatory) D. Szczygiel, G. Pojmanski (Warsaw University Observatory)

ASAS SN Is a Global Partnership

CAP

CfA

B. Shappee (Hubble Fellow; Carnegie-Princeton Fellow)

C. S. Kochanek, K. Z. Stanek, T. W.-S. Holoien, A. B. Danilet, G. Simonian, U. Basu, N. Goss, J. F. Beacom, T. A. Thompson (Ohio State)

J. L. Prieto (Diego Portales; MAS)

D. Bersier (LJMU)

Subo Dong (KIAA-PKU)

P. R. Wozniak (LANL)

E. Falco (CfA)

J. Brimacombe (Coral Towers Observatory)

D. Szczygiel, G. Pojmanski (Warsaw University Observatory)

ASAS SN Is a Global Partnership

IVERPOOL

СfА

ORES

NÚCLEO DE

PEKING

ASTRONOMÍA **LICIN**

Aid in pipeline

Funding

Site support and Mounts

Follow up resources

Mount Haleakala, Maui, Hawaii

Faulkes Telescope North

Picture Courtesy of Mark Elphick

ASAS SN North "Brutus"

- 4 telescopes on a common mount
- 4 x 14cm lens
- 4 x FLI ProLine CCD cameras
- 4 x Fairchild Imaging 2k × 2k thinned CCD
- 4 x 4.47 × 4.47 degree field-ofview
- 7.8" pixel scale
- V-band filters
- limiting magnitude Vpprox 17
 - 10,000 square degrees per night

Picture Courtesy of Mark Elphick

ASAS SN North "Brutus"

- 4 telescopes on a common mount
- 4 x 14cm lens
- 4 x FLI ProLine CCD cameras
- 4 x Fairchild Imaging 2k × 2k thinned CCD
- 4 x 4.47 × 4.47 degree field-ofview
- 7.8" pixel scale
- V-band filters
- limiting magnitude Vpprox 17
 - 10,000 square degrees per night

Picture Courtesy of Mark Elphick

Brutus Data

LCOGT Aqawan Enclosure at Cerro Tololo

Picture Courtesy of Wayne Rosing

ASAS SN South "Cassius"

- First light on April 25, 2014
- 2 telescopes on a common mount
- 2 x 14cm lens
- 2 x FLI ProLine CCD cameras
- 2 x Fairchild Imaging 2k × 2k thinned CCD
- 2 x 4.47 × 4.47 degree field-of-view
- 7.8" pixel scale
- V-band filters
- limiting magnitude Vpprox 17
- 5,000 square degrees per night
- May 2015 we are doubling cameras — **10,000** square degrees per night

Picture Courtesy of Wayne Rosing

ASAS SN Cadence and Coverage

Thu Apr 2 11:14:43 2015

One Year of ASAS SN

Wed Apr 1 21:13:16 2015

Image Subtraction

Transient Detection Pipeline

- New sources are identified on the subtracted images by SExtractor
- Detections are dominated by false positives
- Many cuts are made (flux, S/N, point-like, dithered correlations, random forest classifier)
- Candidates are then scanned by eye where further cuts can be adjusted
- Transients discovered and announced typically in **hours**
- We will soon implement stacking over multiple night's images

- ATEL #6989
 - Fernandez et al. (inc. Shappee) 2015
- V~17.1 at 1st detection
- V~16.6 at 2nd detection
- No redshift to the host galaxy in NED
- z = 0.032 from SN spectrum

- ATEL #6989
 - Fernandez et al. (inc. Shappee) 2015
- V~17.1 at 1st detection
- V~16.6 at 2nd detection
- No redshift to the host galaxy in NED
- z = 0.032 from SN spectrum

- ATEL #6989
 - Fernandez et al. (inc. Shappee) 2015
- V~17.1 at 1st detection
- V~16.6 at 2nd detection
- No redshift to the host galaxy in NED
- z = 0.032 from SN spectrum

ASAS-SN Discovery of A Probable Supernova in SDSS J144455.21+243443.9

ATel #6989; J. M. Fernandez (Observatory Inmaculada del Molino), J. Brimacombe (Coral Towers Observatory), R. A. Koff (Antelope Hills Observatory), S. Kiyota (Variable Star Observers League in Japan), T. W.-S. Holoien, K. Z. Stanek, C. S. Kochanek, A. B. Danilet, G. Simonian, U. Basu, N. Goss, J. F. Beacom (Ohio State), B. J. Shappee (Hubble Fellow, Carnegie Observatories), J. L. Prieto (Diego Portales; MAS), D. Bersier (LJMU), Subo Dong (KIAA-PKU), P. R. Wozniak (LANL), D. Szczygiel, G. Pojmanski (Warsaw University Observatory), E. Conseil (Association Francaise des Observateurs d'Etoiles Variables), B. Nicholls (Mt. Vernon Obs., New Zealand)

on 25 Jan 2015; 18:29 UT Distributed as an Instant Email Notice Supernovae Credential Certification: Thomas Holoien (tholoien@astronomy.ohio-state.edu)

			×			-		-		- •	
		E	*	ε	w	τ. -ε	~	-ε	· · ·	E	, v
		• • •			•			-			.
ASASSN-13ar	70 Mpc	ASASSN-15ae	133 Mpc	ASASSN-14ay	131 Mpc	ASASSN-14kd	114 Mpc	ASASSN-14as	162 Mpc	ASASSN-14es	132 Mpc
20" N		20" 9.8 kpc		20") 10.4 kpc		20* 8.5 kpc		20" 14.2 kpc	N	20" 11.3 kpc	
		-		4 		- - -	12	+ -		- - -	
	w -	- E	· · ·		*	- t	w	-ε		- E	
									•	T	
ASASSN-13ch	70 Mpc	ASASSN-14bb	101 Mpc	ASASSN-13cu	107 Mpc	ASASSN-14lo	88 Mpc	ASASSN-15bk	146 Mpc	ASASSN-14lu	117 Mpc
20* N 6.9 kpc		20* 10.7 kpc		14.5 kpc		7.1 kpc		= 20" 9.0 kpc			
	· · ·									[· · · ·	
								-		-4.8	
	- w -	- E	w -	- E	×			- E		— Е —	
				· · · · ·	••	-					
45455N-1366	69 Mpc	ASASSN-14ad	110 Mpc	ASASSN-14em	151 Mpc	49455N-13av	73 Mpc	- ASASSN-14bd	93 Mpc	- ASASSN-13dd	54 Mpc
										#	
9.6 kpc		14.5 kpc		9.2 kpc		11.3 kpc		- 7.1 kpc		- 12.0 kpc	
							· · · · ·			-	
										T	
		-				-		-		-	
			•	-				-			
ASASSN-14ar	99 Mpc	ASASSN-15cd	150 Mpc	ASASSN-14dz	95 Mpc	ASASSN-15cq	117 Mpc	ASASSN-14iu	73 Mpc	ASASSN-14bt	124 Mpc
20* N 10.6 kpc		13.8 kpc		20" 177.0 kpc		20°	N	20" 11.9 kpc		20" 1.8 kpc	
					. 1						
		-		-				-		-	
	- w -	- E		- Е	· *	E	· ····	- E		E	
	·							-		-	
ASASSN-14eo	109 Mpc	ASASSN-14co	142 Mpc	ASASSN-15cb	475 Mpc	ASASSN-13cp	100 Mpc	ASASSN-15cz	123 Mpc	ASASSN-14lp	18 Mpc

12.8 kpc

20" 12.7 kpc

Nearby SNe

Bright (<17 Mag) SNe Discoveries May 1 - Nov. 1, 2014

Nearby SNe

Bright (<17 Mag) SNe Discoveries Dec. 1, 2014 - Apr. 1, 2015

Outline

Introduction to ASAS-SN

Discuss a few interesting discoveries

ASAS-SN Patrols (our data release strategy)

Future directions of ASAS-SN

ASAS SA Discoveries

- 131 SNe as of last night
- 150+ ATELs over first 2 years of the real-time survey
- 6 publications with 5 more in preparation
- 300+ new CVs
- ASASSN-14lp discovered <2 days after explosion (Shappee et al. 2015 in prep)
- Low-mass Young Stellar Object (YSO) in a strong $(\Delta V > 4 \text{ mag})$ outburst (Holoien et al. 2014a)
 - Many M dwarf flares
 - including two of the largest ever detected (Schmidt et al. 2014, Simonian et al. 2014)
 - The 2 Closest Tidal Disruption Event Discovered in the Optical (Holoien et al. 2014b, Holoien et al. 2015 in prep.)
 - Many AGN outbursts
 - Including a "Changing look" AGN (Shappee et al. 2014)

Shappee et al. 2015 in prep.

ASAS SN Discoveries

- 131 SNe as of last night
- 150+ ATELs over first 2 years of the real-time survey
- 6 publications with 5 more in preparation
- 300+ new CVs
- ASASSN-14lp discovered <2 days after explosion (Shappee et al. 2015 in prep)
- Low-mass Young Stellar Object (YSO) in a strong $(\Delta V > 4 \text{ mag})$ outburst (Holoien et al. 2014a)
- Many M dwarf flares
 - including two of the largest ever detected (Schmidt et al. 2014, Simonian et al. 2014)
- The 2 Closest Tidal Disruption Event Discovered in the Optical (Holoien et al. 2014b, Holoien et al. 2015 in prep.)
- Many AGN outbursts
 - Including a "Changing look" AGN (Shappee et al. 2014)

Shappee et al. 2015 in prep.

ASAS SN Discoveries

- 131 SNe as of last night
- 150+ ATELs over first 2 years of the real-time survey
- 6 publications with 5 more in preparation
- 300+ new CVs
- ASASSN-14lp discovered <2 days after explosion (Shappee et al. 2015 in prep)
- Low-mass Young Stellar Object (YSO) in a strong ($\Delta V > 4$ mag) outburst (Holoien et al. 2014a)
- Many M dwarf flares
 - including two of the largest ever detected (Schmidt
 - et al. 2014, Simonian et al. 2014)
- The 2 Closest Tidal Disruption Event Discovered in the Optical (Holoien et al. 2014b, Holoien et al. 2015 in prep.)
- Many AGN outbursts
 - Including a "Changing look" AGN (Shappee et al. 2014)

ASASSN-13db Holoien et al. (inc. Shappee) 2014

ASAS SA Discoveries

- 131 SNe as of last night
- 150+ ATELs over first 2 years of the real-time survey
- 6 publications with 5 more in preparation
- 300+ new CVs
- ASASSN-14lp discovered <2 days after explosion (Shappee et al. 2015 in prep)
- Low-mass Young Stellar Object (YSO) in a strong $(\Delta V > 4 \text{ mag})$ outburst (Holoien et al. 2014a)
- Many M dwarf flares
 - including two of the largest ever detected (Schmidt ot al. 2014, Simonian et al. 2014)
 - et al. 2014, Simonian et al. 2014)
- The 2 Closest Tidal Disruption Event Discovered in the Optical (Holoien et al. 2014b, Holoien et al. 2015 in prep.)
- Many AGN outbursts
 - Including a "Changing look" AGN (Shappee et al. 2014)

ASASSN-13db Holoien et al. (inc. Shappee) 2014

ASAS SN Discoveries

- 131 SNe as of last night
- 150+ ATELs over first 2 years of the real-time survey
- 6 publications with 5 more in preparation
- 300+ new CVs
- ASASSN-14lp discovered <2 days after explosion (Shappee et al. 2015 in prep)
- Low-mass Young Stellar Object (YSO) in a strong $(\Delta V > 4 \text{ mag})$ outburst (Holoien et al. 2014a)
- Many M dwarf flares
 - including two of the largest ever detected (Schmidt
 - et al. 2014, Simonian et al. 2014)
- The 2 Closest Tidal Disruption Event Discovered in the Optical (Holoien et al. 2014b, Holoien et al. 2015 in prep.)
- Many AGN outbursts
 - Including a "Changing look" AGN (Shappee et al. 2014)

ASASSN-13db Holoien et al. (inc. Shappee) 2014
ASAS SN Discoveries

- 131 SNe as of last night
- 150+ ATELs over first 2 years of the real-time survey
- 6 publications with 5 more in preparation
- 300+ new CVs
- ASASSN-14lp discovered <2 days after explosion (Shappee et al. 2015 in prep)
- Low-mass Young Stellar Object (YSO) in a strong $(\Delta V > 4 \text{ mag})$ outburst (Holoien et al. 2014a)
- Many M dwarf flares
 - including two of the largest ever detected (Schmidt
 - et al. 2014, Simonian et al. 2014)
- The 2 Closest Tidal Disruption Event Discovered in the Optical (Holoien et al. 2014b, Holoien et al. 2015 in prep.)
- Many AGN outbursts
 - Including a "Changing look" AGN (Shappee et al. 2014)

ASAS-SN CV Patrol Website

ASAS SA Discoveries

- 131 SNe as of last night
- 150+ ATELs over first 2 years of the real-time survey
- 6 publications with 5 more in preparation
- 300+ new CVs
- ASASSN-14lp discovered <2 days after explosion (Shappee et al. 2015 in prep)
- Low-mass Young Stellar Object (YSO) in a strong $(\Delta V > 4 \text{ mag})$ outburst (Holoien et al. 2014a)
 - Many M dwarf flares
 - including two of the largest ever detected (Schmidt et al. 2014, Simonian et al. 2014)
 - The 2 Closest Tidal Disruption Event Discovered in the Optical (Holoien et al. 2014b, Holoien et al. 2015 in prep.)
- Many AGN outbursts
 - Including a "Changing look" AGN (Shappee et al. 2014)

Schmidt et al. (inc. Shappee) 2014

ASAS SN Discoveries

- 131 SNe as of last night
- 150+ ATELs over first 2 years of the real-time survey
- 6 publications with 5 more in preparation
- 300+ new CVs
- ASASSN-14lp discovered <2 days after explosion (Shappee et al. 2015 in prep)
- Low-mass Young Stellar Object (YSO) in a strong $(\Delta V > 4 \text{ mag})$ outburst (Holoien et al. 2014a)
 - Many M dwarf flares
 - including two of the largest ever detected (Schmidt et al. 2014, Simonian et al. 2014)
 - The 2 Closest Tidal Disruption Event Discovered in the Optical (Holoien et al. 2014b, Holoien et al. 2015 in prep.)
- Many AGN outbursts
 - Including a "Changing look" AGN (Shappee et al. 2014)

Davenport et al. 2012

ASAS SN Discoveries

- 131 SNe as of last night
- 150+ ATELs over first 2 years of the real-time survey
- 6 publications with 5 more in preparation
- 300+ new CVs
- ASASSN-14lp discovered <2 days after explosion (Shappee et al. 2015 in prep)
- Low-mass Young Stellar Object (YSO) in a strong $(\Delta V > 4 \text{ mag})$ outburst (Holoien et al. 2014a)
 - Many M dwarf flares
 - including two of the largest ever detected (Schmidt et al. 2014, Simonian et al. 2014)
 - The 2 Closest Tidal Disruption Event Discovered in the Optical (Holoien et al. 2014b, Holoien et al. 2015 in prep.)
- Many AGN outbursts
 - Including a "Changing look" AGN (Shappee et al. 2014)

Davenport et al. 2012

ASAS SA Discoveries

- 131 SNe as of last night
- 150+ ATELs over first 2 years of the real-time survey
- 6 publications with 5 more in preparation
- 300+ new CVs
- ASASSN-14lp discovered <2 days after explosion (Shappee et al. 2015 in prep)
- Low-mass Young Stellar Object (YSO) in a strong $(\Delta V > 4 \text{ mag})$ outburst (Holoien et al. 2014a)
- Many M dwarf flares
 - including two of the largest ever detected (Schmidt
 - et al. 2014, Simonian et al. 2014)
- The 2 Closest Tidal Disruption Event Discovered in the Optical (Holoien et al. 2014b, Holoien et al. 2015 in prep.)
- Many AGN outbursts
 - Including a "Changing look" AGN (Shappee et a 2014)

Schmidt et al. (inc. Shappee) 2014

Tidal Disruption Events

Black holes eat whole stars.

The Center of the Milky Way Galaxy NASA / JPL-Caltech / S. Stolovy (Spitzer Science Center/Caltech) Spitzer Space Telescope • IRAC ssc2006-02a

Our own Galaxy

Black holes eat stars.

James Guillochon (Harvard)

Formation of a debris disk after the tidal disruption of a star by a supermassive black hole

Black holes eat stars.

Clement Bonnerot (Leiden)

Tidal Disruption Events in ASAS SN

- 2 events in just the past year!
- Only ~ 10 previously optical TDEs
- Brightest and best (or will be best) studied
- Appears that ASAS-SN **might** be finding more TDEs than previous rate estimates
 - Needs to be better quantified(!)
 - Holoien et al. 2015 in prep.
- Closer to theoretical rates
- Is ASAS-SN less bias than previous surveys (?)
 - Still small number statistics

Holoien et al. (inc. Shappee) 2015 in prep.

ASASSN-14li

Holoien et al. (inc. Shappee) 2015 in prep.

Active Galactic Nuclei

Unified Model of AGN

Unified Model of AGN

"Changing look" AGN

- 4 AGN with Vanishing broad-line components have been reported
- 5 AGN with appearing broad-line components have been reported
- Mrk 590 has done both

Denney et al. (inc. Shappee) 2014

"Changing look" AGN: NGC 2617

- ASAS-SN triggered on
 a 10% increase in flux
 from AGN + host
- Follow-up imaging showed AGN continued to brighten by 1.3 mag

"Changing look" AGN : NGC 2617

Follow-up spectroscopy showed that the AGN changed from a Seyfert type 1.8 to 1.0

•

- Applied for Swift TOO observations
- Announced in ATEL #5010

50,000.0

50,000.0

50,000.0

50,000.0

50,000.0

NGC 2617 Photometric Lags

NGC 2617 X-ray–NIR light curves

Shappee et al. 2014

What's next for NGC 2617?

- Current observations show that NGC 2617 is still active
- We completed a 3 month reverberation mapping campaign in 2014
 - Daily spectra
 - Daily swift X-ray, UV, and optical observations
- Results coming out later in 2015
- More theoretical work is needed!

Fausnaugh et al. (inc. Shappee) 2015

Outline

Introduction to ASAS-SN

Discuss a few interesting discoveries

• ASAS-SN Patrols (our data release strategy)

Future directions of ASAS-SN

ASAS SN Patrols

ASAS-SN data releases that are:

- Organized
- Focused
- Useful
- Fast Cadence (2-3 days)
- Base-line of years
- Real-time

First Patrols:

— CV

- M dwarfs
 - Quasar
- Blasars
- AGN
- Suggestions? (Please let us know!)

CV Patrol Demo

ASAS SIN AGN Patrol

- Inspired by NGC 2617
- Monitor ≈ 3000 AGN, Blazars and Quasars
- 2–3 day cadence
 - Light curves made public real time
- Characterize AGN Variability
- Detect and announce large flares like NGC 2617
 - Determine if X-rays driving an UV–NIR flare is unique or ubiquitous

Outline

Introduction to ASAS-SN

Discuss a few interesting discoveries

ASAS-SN Patrols (our data release strategy)

Future directions of ASAS-SN

- Expanding ASAS-SN South, "Cassius"
 - Next few months, camera purchased
 - Improve cadence, sky coverage, and gaps in data
 - 20,000 square degrees a night
- Start the south Galactic Plane
- Further Expansion (with funding) — With 4 sites and 16 cameras
 - → entire sky every night!
 - Variable Stars
 - Led by Andres Jordan Universidad Católica
 - All Public Data in a USEFUL WAY
 - Long term goal
 - What will YOU do with ASAS-SN?

- Expanding ASAS-SN South, "Cassius"
 - Next few months, camera purchased
 - Improve cadence, sky coverage, and gaps in data
 - 20,000 square degrees a night
- Start the south Galactic Plane
- Further Expansion (with funding)
 − With 4 sites and 16 cameras
 → entire sky every night!
 - Variable Stars
 - Led by Andres Jordan Universidad Católica
 - All Public Data in a USEFUL WAY
 - Long term goal
 - What will YOU do with ASAS-SN?

ASAS SN Cadence and Coverage

Thu Apr 2 11:14:43 2015

ASAS SN Cadence and Coverage

Sun Mar 8 15:15:02 2015

- Expanding ASAS-SN South, "Cassius"
 - Next few months, camera purchased
 - Improve cadence, sky coverage, and gaps in data
 - 20,000 square degrees a night
- Start the south Galactic Plane
- Further Expansion (with funding) — With 4 sites and 16 cameras
 - → entire sky every night!
 - Variable Stars
 - Led by Andres Jordan Universidad Católica
 - All Public Data in a USEFUL WAY
 - Long term goal
 - What will YOU do with ASAS-SN?

Variable Stars: Looking back at ASAS

- The original All-Sky Automated Survey (ASAS)
- Low cost project to monitoring of the whole available sky
- $8 \leq V \leq 14 \text{ mag}$
- 10⁷ stars and 50,000 new variables
- 209 refereed publications with "ASAS" in their abstract
 36 in 2015
- ASAS-SN
 - Faster cadence
 - Deeper ($V \leq 17 \text{ mag}$)
 - >1000 times the volume

- Expanding ASAS-SN South, "Cassius"
 - Next few months, camera purchased
 - Improve cadence, sky coverage, and gaps in data
 - 20,000 square degrees a night
- Start the south Galactic Plane
- Further Expansion (with funding) — With 4 sites and 16 cameras
 - \rightarrow entire sky every night!
 - Variable Stars
 - Led by Andres Jordan Universidad Católica
 - All Public Data in a USEFUL WAY
 - Long term goal
 - What will YOU do with ASAS-SN?

