Distilling physics from astronomical imaging

John F Wu STScl · JHU

Kavli Institute for Theoretical Physics galevo23 conference

2023-03-21

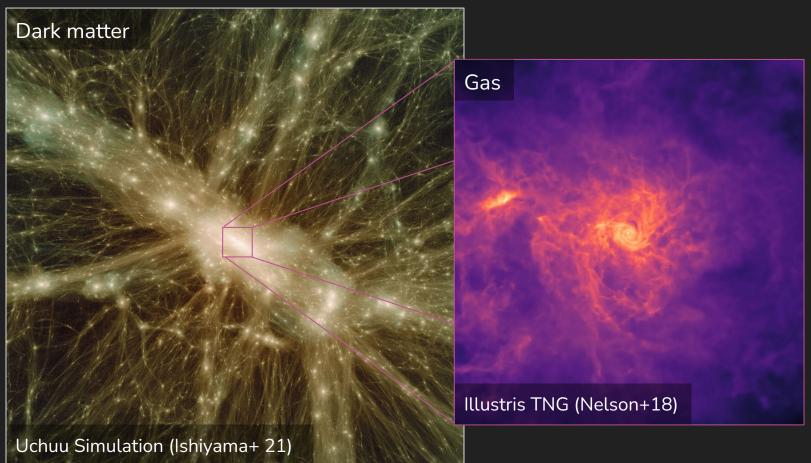
Roadmap

I. The growth and evolution of galaxies
 II. Convolutional neural networks
 III. Extending the SAGA survey with CNNs

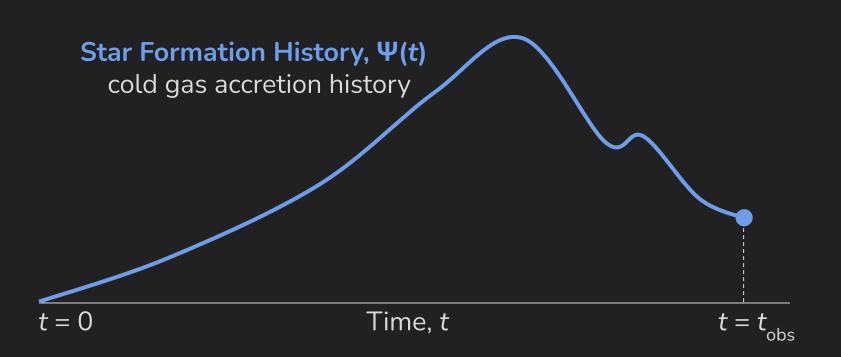
Roadmap

I. The growth and evolution of galaxies
II. Convolutional neural networks
III. Extending the SAGA survey with CNNs

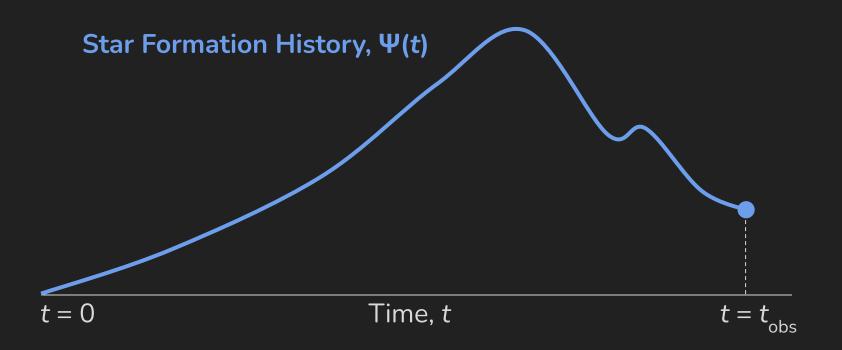
Galaxies grow via gas accretion, star formation, and merging



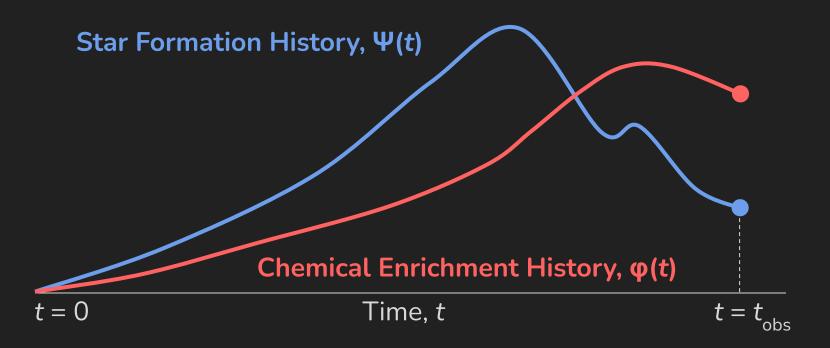
Galaxies grow via gas accretion, star formation, and merging

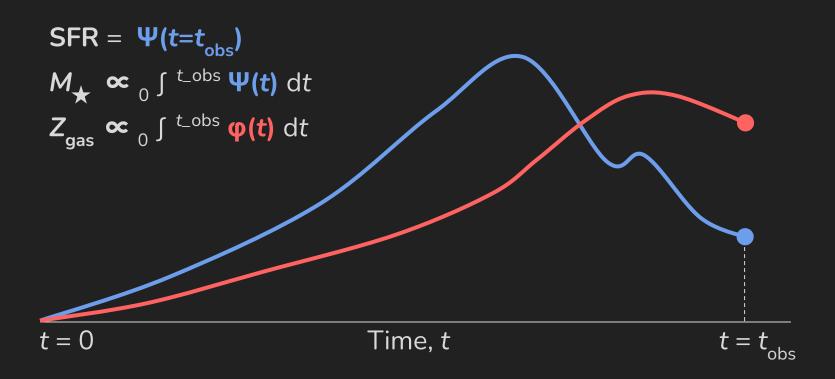


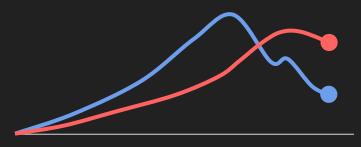
Galaxies grow via gas accretion, star formation, and merging



Heavy element production follows star formation

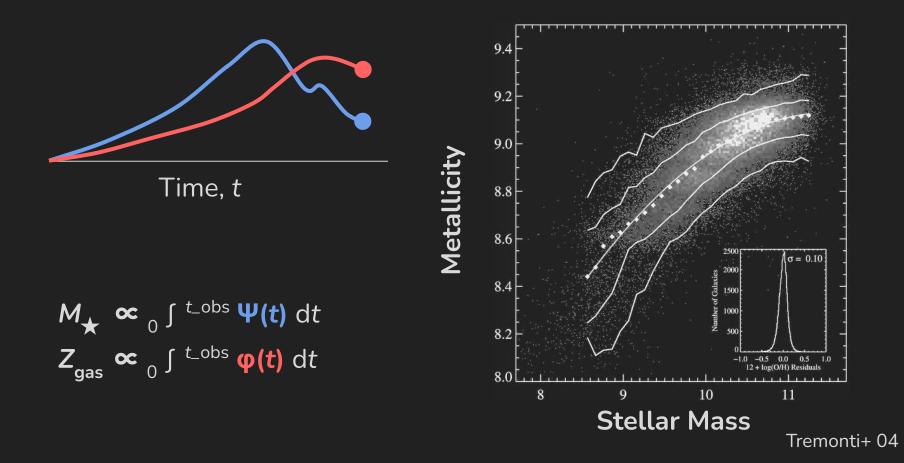


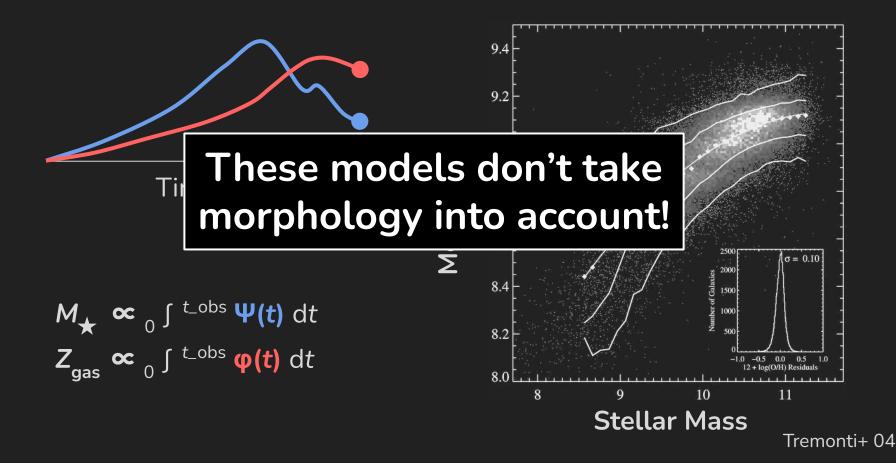




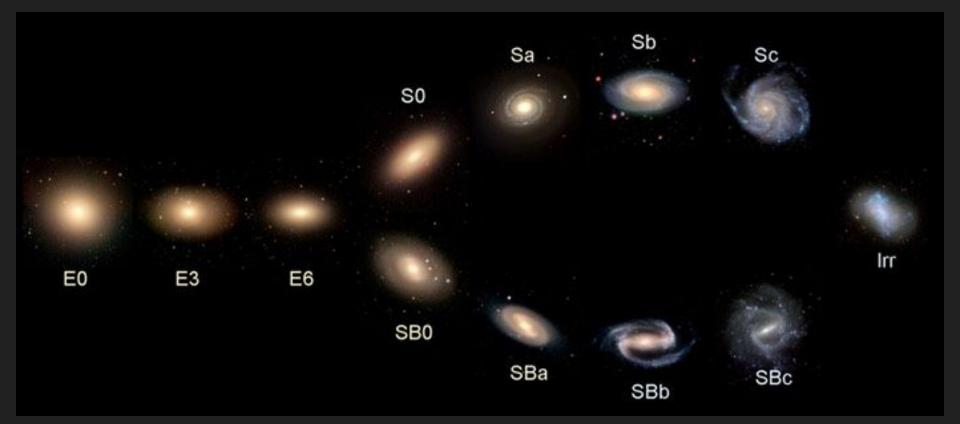
Time, t

 $M_{\star} \propto_{0} \int t_{obs} \Psi(t) dt$ $Z_{gas} \propto_{0} \int t_{obs} \phi(t) dt$





Physical processes are imprinted on galaxies' morphologies



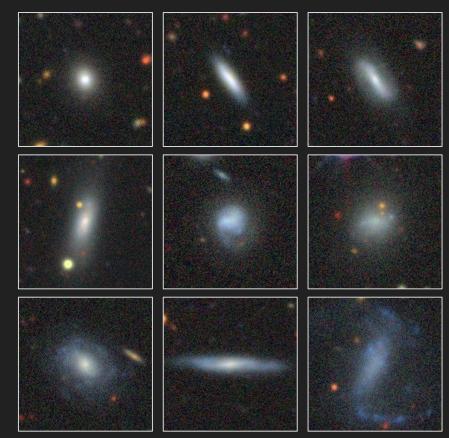
An image is more informative than a row in a photometric catalog

g mag	<i>r</i> mag
17.50	16.99
17.47	16.97
17.50	17.00
17.46	16.95
17.43	16.93
17.48	16.97
17.42	16.92
17.46	16.95
17.47	16.97

Legacy Survey DR9 (Dey+ 19)

An image is more informative than a row in a photometric catalog

g mag	<i>r</i> mag
17.50	16.99
17.47	16.97
17.50	17.00
17.46	16.95
17.43	16.93
17.48	16.97
17.42	16.92
17.46	16.95
17.47	16.97



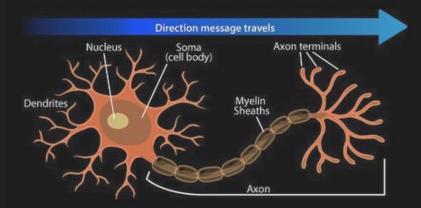
Roadmap

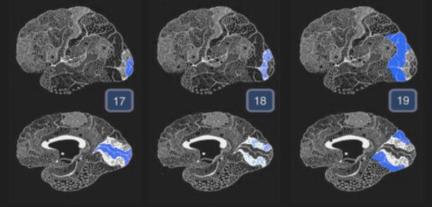
I. The growth and evolution of galaxies
II. Convolutional neural networks
III. Extending the SAGA survey with CNNs

Roadmap

- I. The growth and evolution of galaxies
- II. Convolutional neural networks
- III. Extending the SAGA survey with CNNs

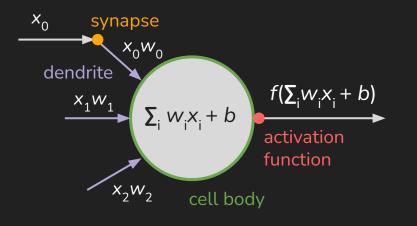
Biological neurons process and propagate signals

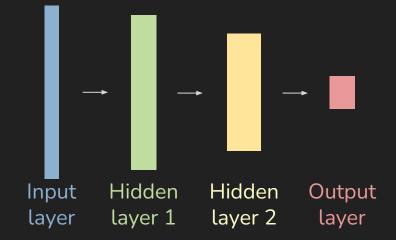


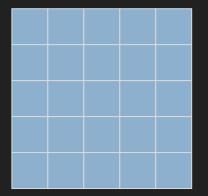


Kuzovkinet+ 18

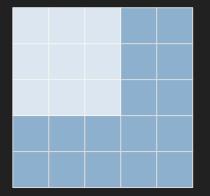
Artificial neurons process and propagate signals!





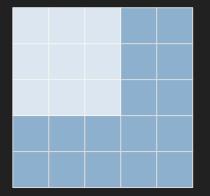


Input image



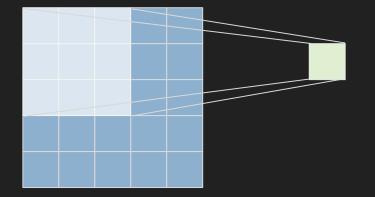
Input image & morphological feature

 $(x_0, x_1, ...)$ $(w_0, w_1, ...)$



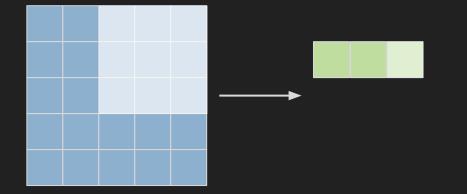
Input image & morphological feature

 $(x_0, x_1, ...)$ $(w_0, w_1, ...)$



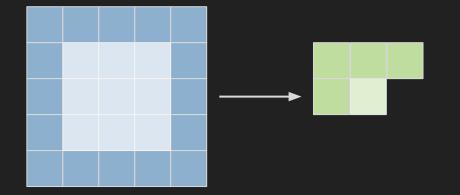
Input image \otimes morphological feature \rightarrow map of features $(x_0, x_1, ...)$ $(w_0, w_1, ...)$ $f(\sum_i w_i x_i + b)$

Input image \otimes morphological feature \longrightarrow map of features $(x_0, x_1, ...)$ $(w_0, w_1, ...)$ $f(\sum_i w_i x_i + b)$

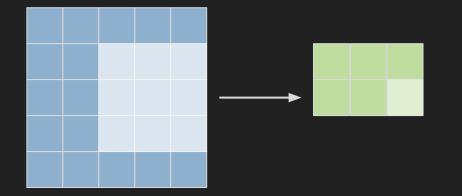


Input image \otimes morphological feature \rightarrow map of features $(x_0, x_1, ...)$ $(w_0, w_1, ...)$ $f(\sum_i w_i x_i + b)$

Input image \otimes morphological feature \rightarrow map of features $(x_0, x_1, ...)$ $(w_0, w_1, ...)$ $f(\sum_i w_i x_i + b)$

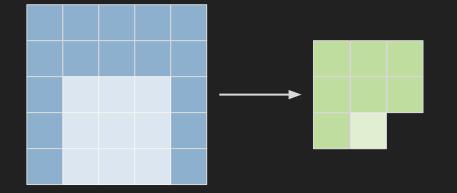


Input image \otimes morphological feature \longrightarrow map of features $(x_0, x_1, ...)$ $(w_0, w_1, ...)$ $f(\sum_i w_i x_i + b)$

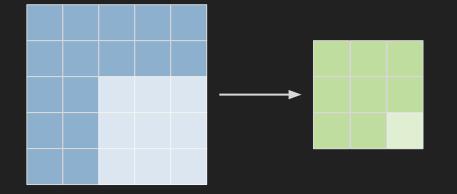


Input image \otimes morphological feature \rightarrow map of features $(x_0, x_1, ...)$ $(w_0, w_1, ...)$ $f(\sum_i w_i x_i + b)$

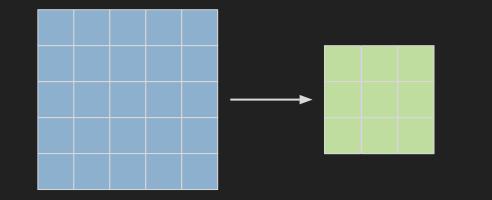
Input image \otimes morphological feature \rightarrow map of features $(x_0, x_1, ...)$ $(w_0, w_1, ...)$ $f(\sum_i w_i x_i + b)$



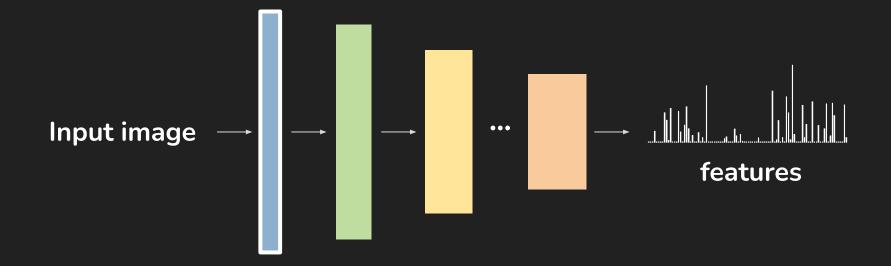
Input image \otimes morphological feature \longrightarrow map of features $(x_0, x_1, ...)$ $(w_0, w_1, ...)$ $f(\sum_i w_i x_i + b)$

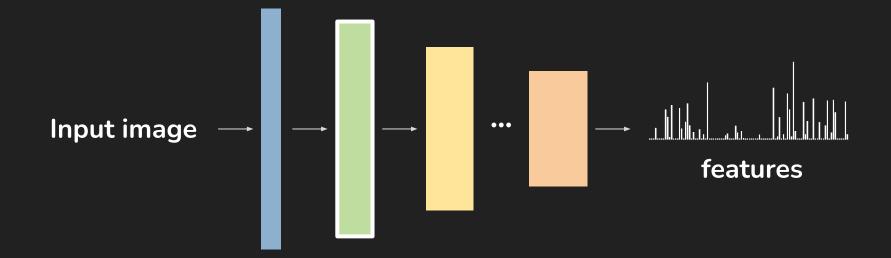


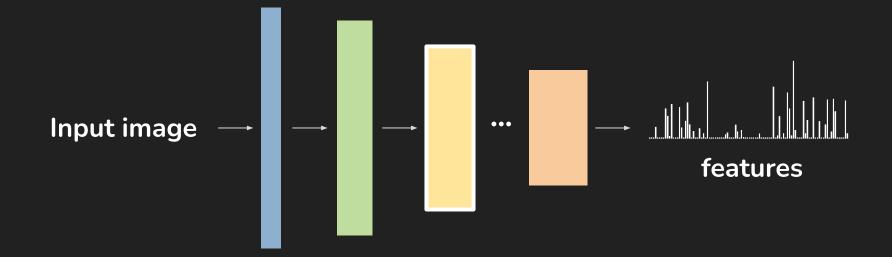
Input image \otimes morphological feature \longrightarrow map of features $(x_0, x_1, ...)$ $(w_0, w_1, ...)$ $f(\sum_i w_i x_i + b)$

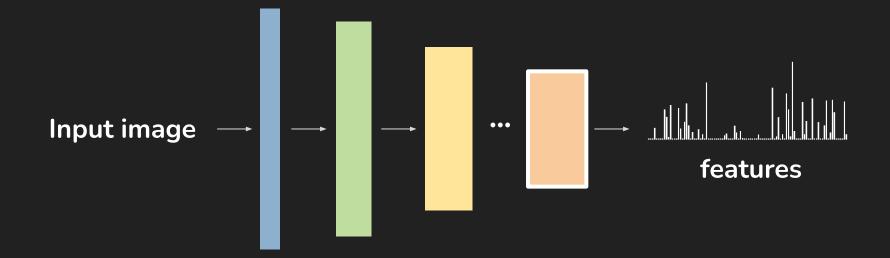


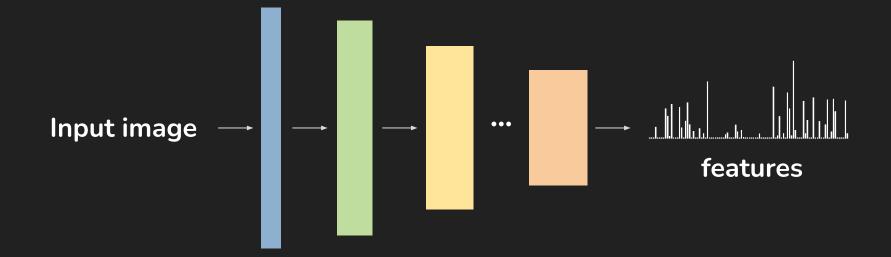




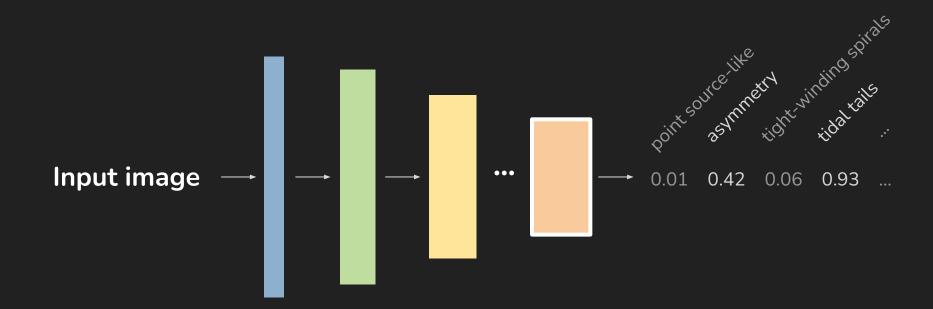






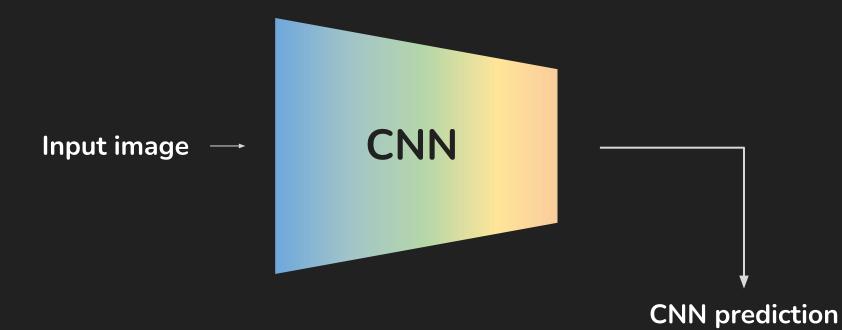


CNNs are just sequential morphological feature finders

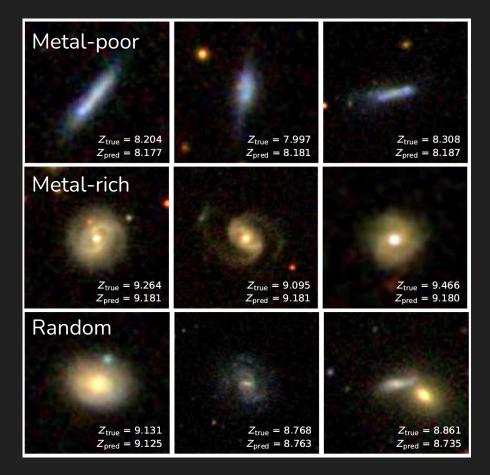


CNNs are just sequential morphological feature finders

CNNs are just sequential morphological feature finders

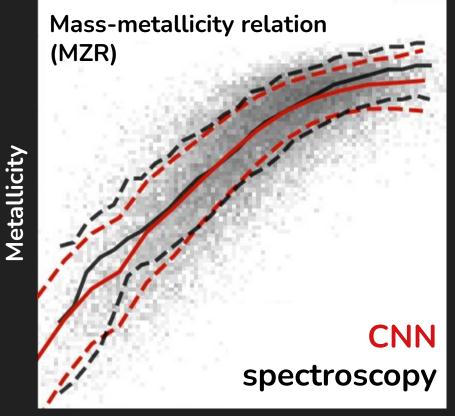


CNNs can estimate spectroscopic properties like metallicity!



Wu & Boada 19

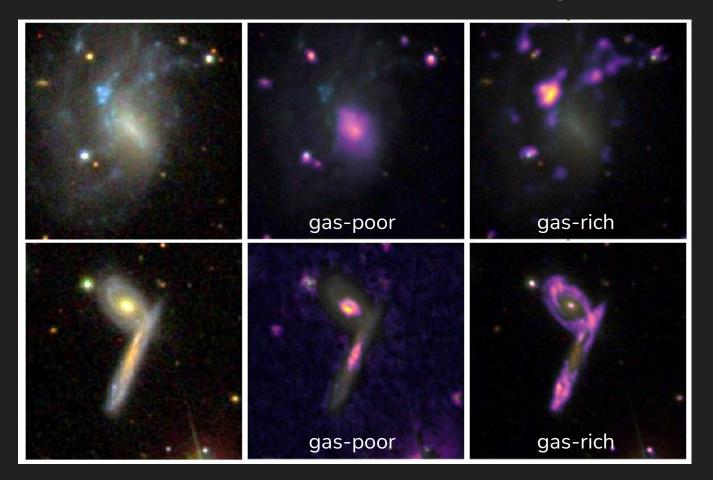
Re-constructing the MZR without any spectroscopy



Stellar mass

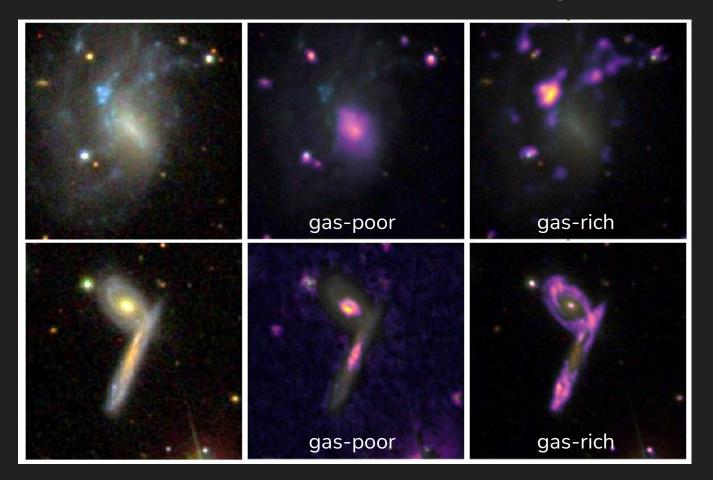
Wu & Boada 19

We know what CNNs are "looking" at!



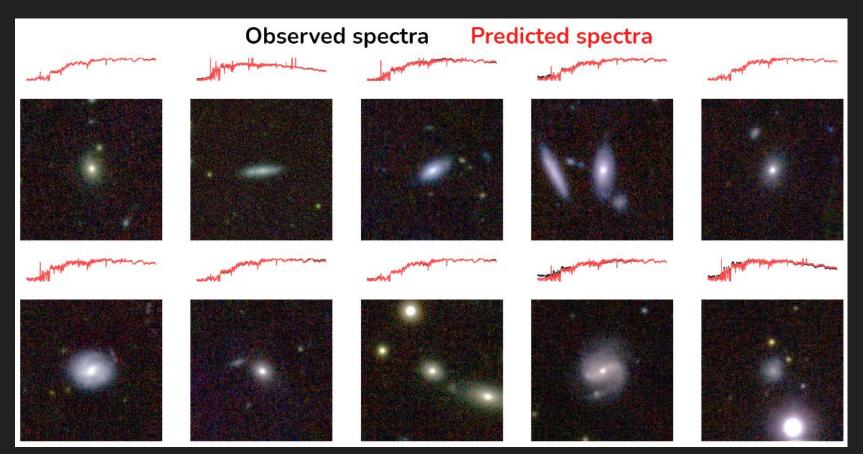
Wu 20

We know what CNNs are "looking" at!



Wu 20

Predict the <u>entire optical spectrum</u> from PS1 imaging



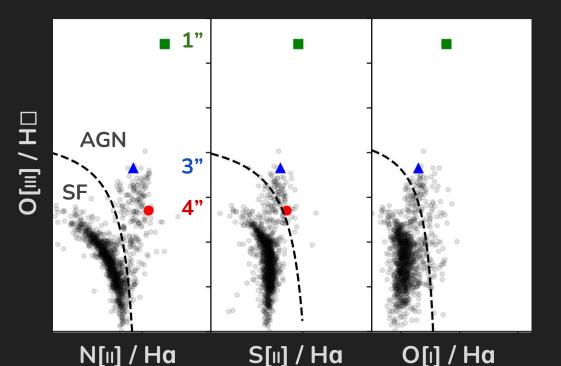
Wu & Peek 20

Passing the test: a weak AGN detected in a bizarre galaxy

70 kpc

Holwerda+ 21

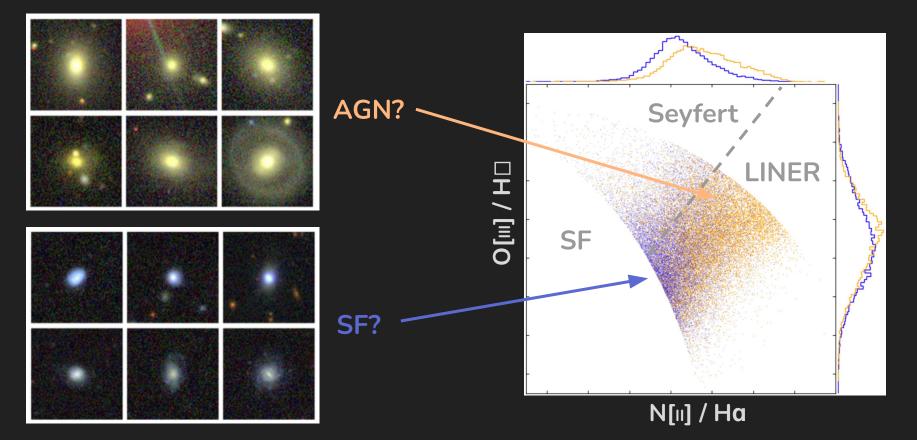
Passing the test: a weak AGN detected in a bizarre galaxy



VIRUS-P + KPNO 2.1m
 + Mount Lemmon 60in
 CNN prediction
 MMT Binospec

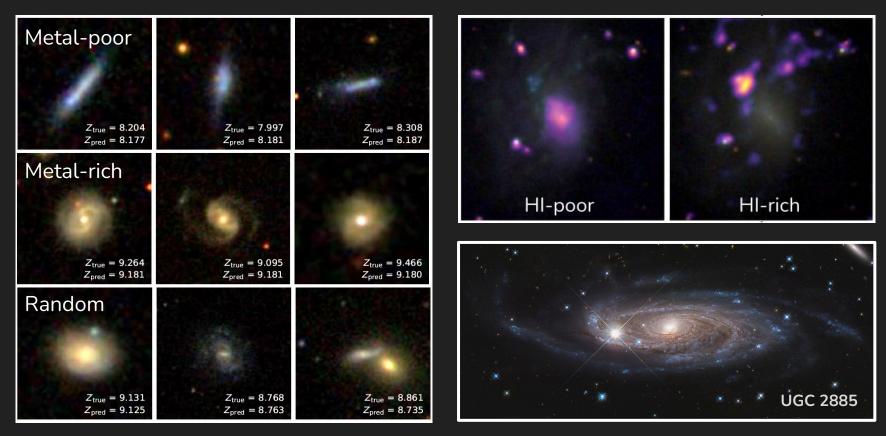
Holwerda+ 21

Identifying LINERs from spectral composites with CNNs?



Guo, **Wu**, & Sharon 22

Just a sample of what can be done with CNNs...



Wu & Boada 19; Wu 2020; Wu & Peek 2020; Holwerda+ 21; Guo, Wu, & Sharon 22

Roadmap

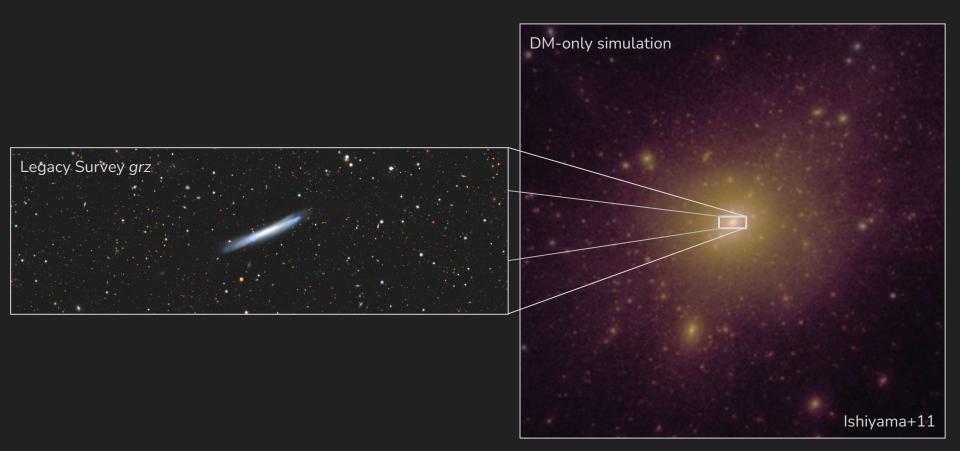
- I. The growth and evolution of galaxies
- II. Convolutional neural networks
- III. Extending the SAGA survey with CNNs

Roadmap

- I. The growth and evolution of galaxies
- II. Convolutional neural networks
- III. Extending the SAGA survey with CNNs

Identifying dwarf satellites is hard...

... but important for galaxy formation theory.



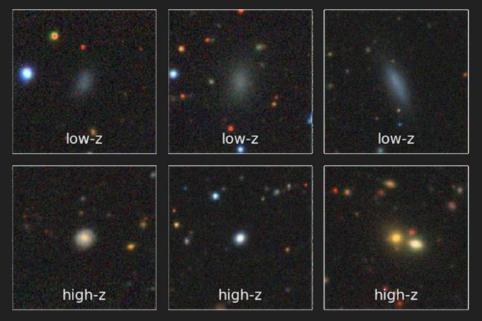
SAGA is the premier spectroscopic survey of low-z satellites

66 new satellites around 36 hosts, using 25,372 spectra; many more on the way!

Geha+ 17, Mao+21

A CNN robustly selects low-z galaxies

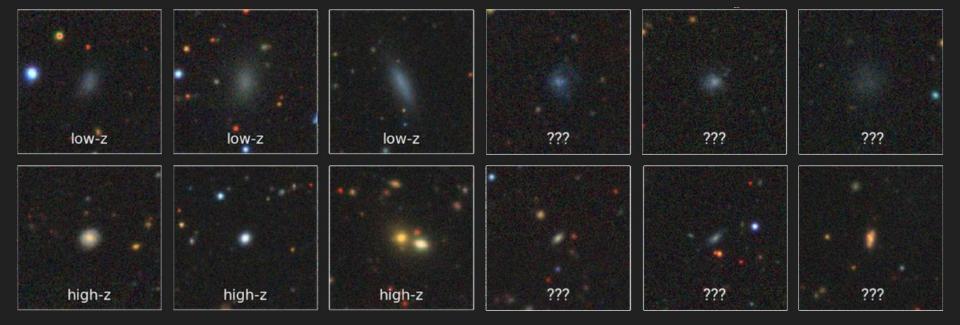
SAGA training sample



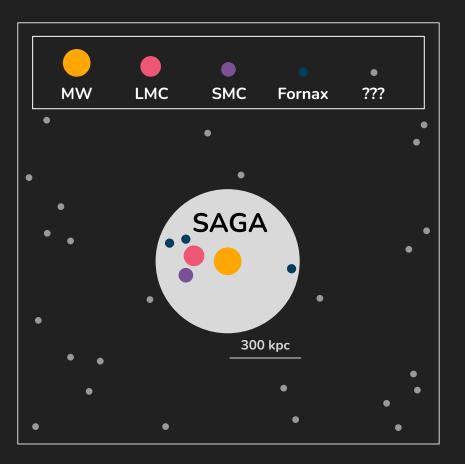
A CNN robustly selects low-z galaxies

SAGA training sample

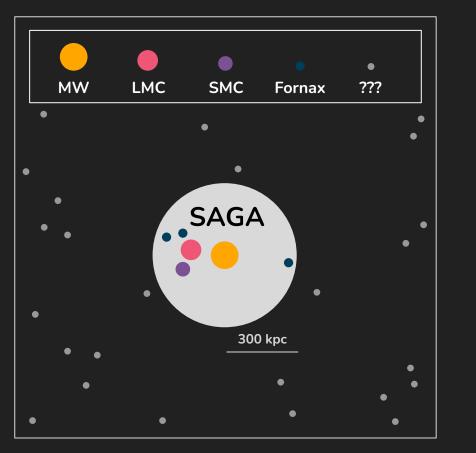
xSAGA test sample

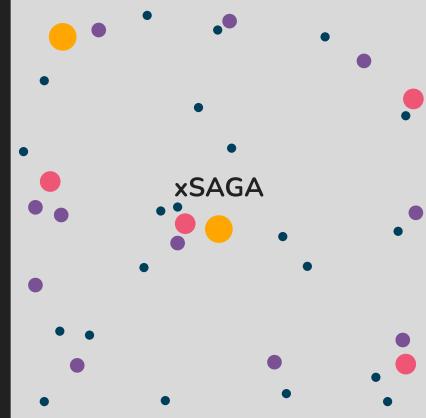


xSAGA: extending the **SAGA** survey with deep learning



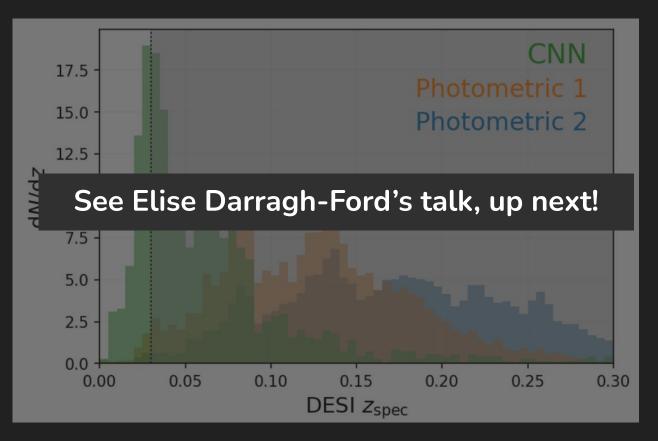
xSAGA: extending the **SAGA** survey with deep learning





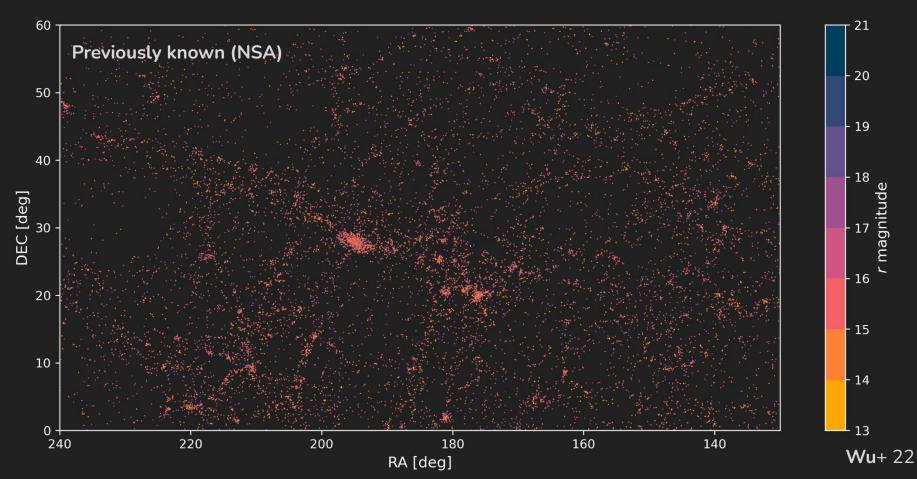
We can validate CNN performance with observations!

CNN

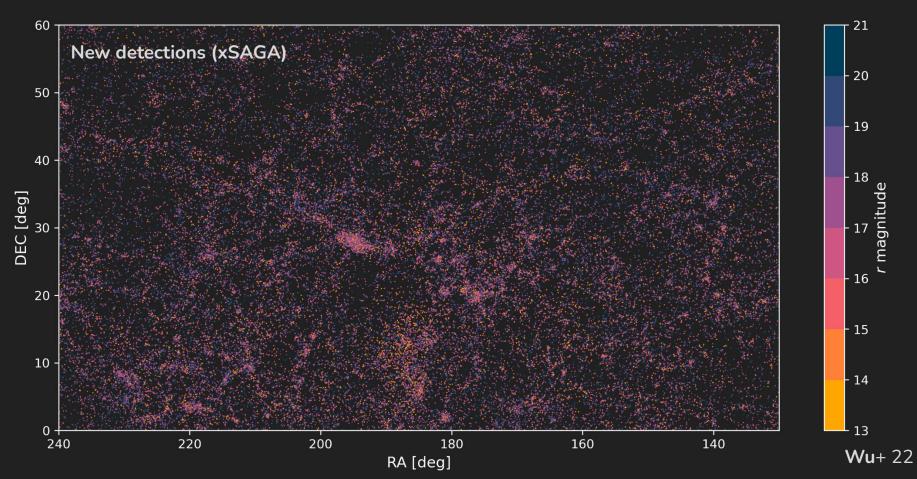


Darragh-Ford+ 22

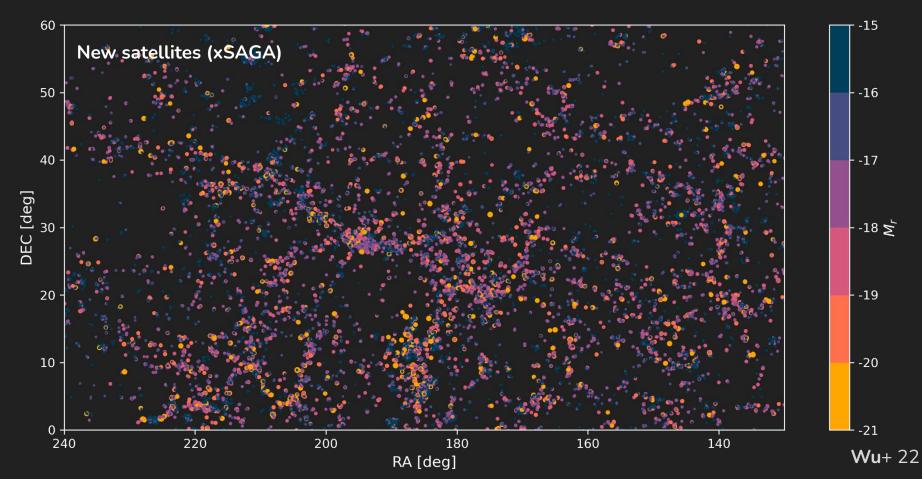
SDSS found bright z < 0.03 galaxies



xSAGA found >100k low-z candidates with a CNN



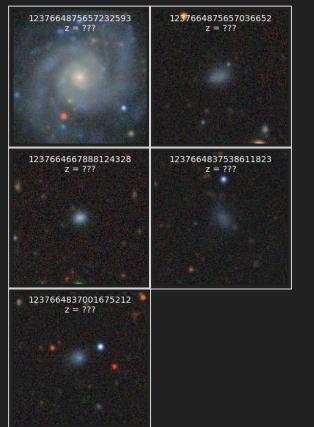
xSAGA: >100x as many satellite systems as before

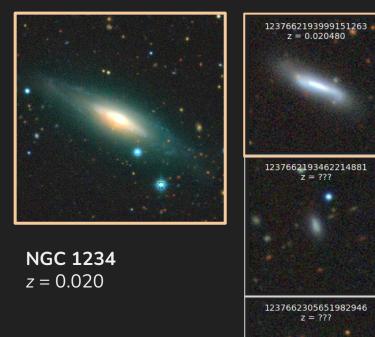


Studying satellites around Milky Way analogs

spectroscopically confirmed

NSAID 407998 *z* = 0.029 no redshift confirmed





Studying satellite groups and their dwarfs

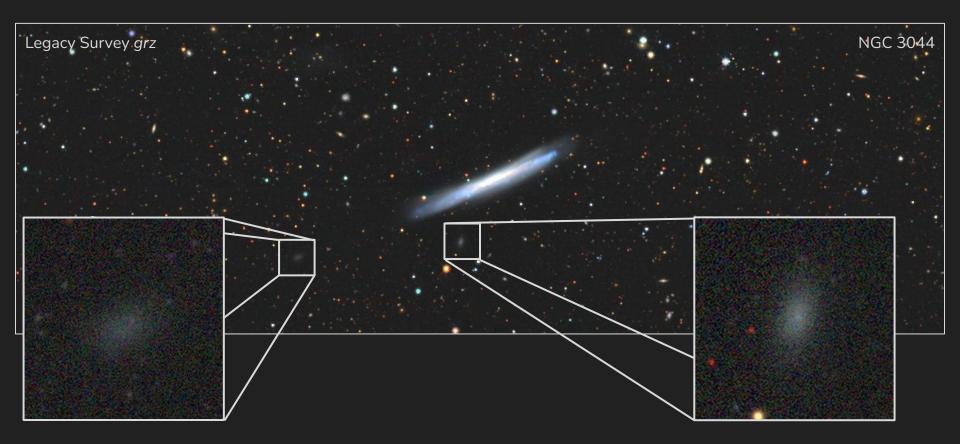
NGC 5326 *z* = 0.008

spectroscopically confirmed

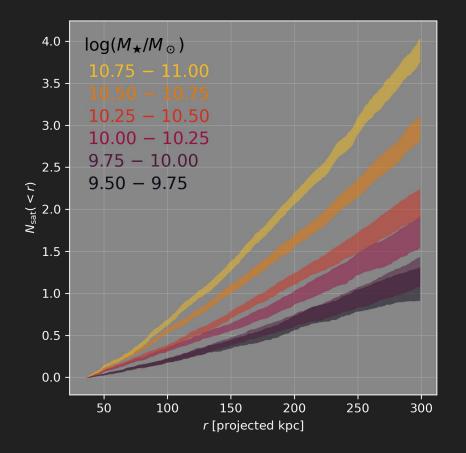
no redshift confirmed

Finding satellites is really really hard

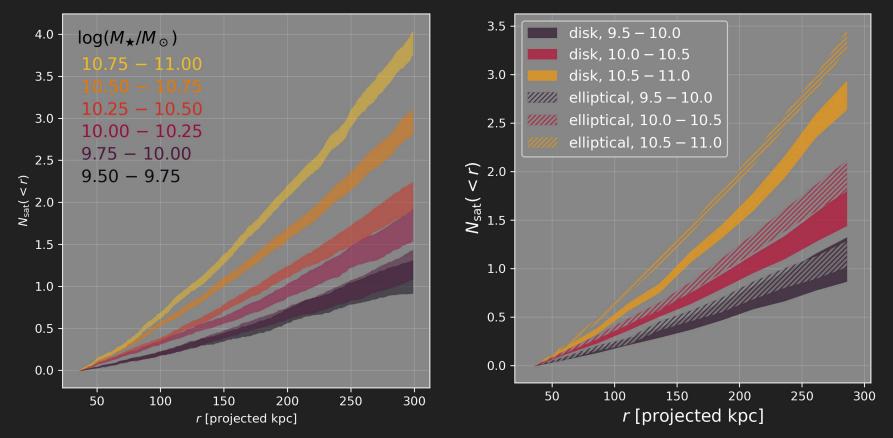
Finding satellites is really really hard



1. The first statistics on satellite radial profiles with host mass!

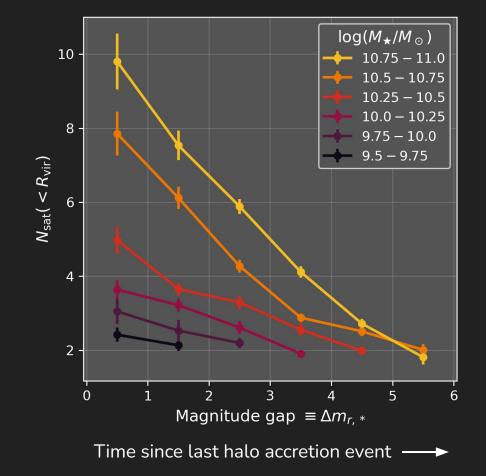


1. The first statistics on satellite radial profiles with host mass!

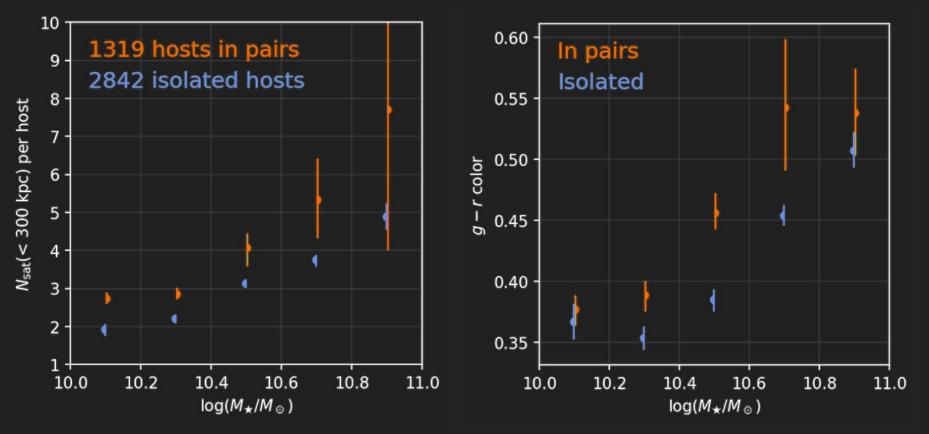


Wu+ 22

2. Satellites probe the halo accretion history

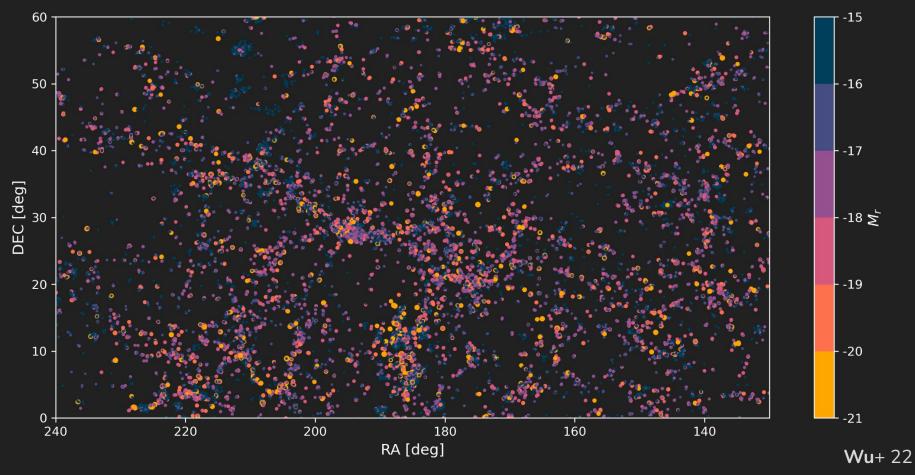


3. Isolated and paired hosts have different satellite populations



Wu+ in prep

xSAGA already scientifically productive, more on the way!



I. We can learn a lot about galaxies using advanced ML methods and astronomical survey data.

- I. We can learn a lot about galaxies using advanced ML methods and astronomical survey data.
- II. The morphologies of galaxies tells us about their physical properties and their formation history.

- I. We can learn a lot about galaxies using advanced ML methods and astronomical survey data.
- II. The morphologies of galaxies tells us about their physical properties and their formation history.
- III. xSAGA gives us an entirely new way to study substructure of the low-redshift cosmos.