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Galaxies grow via gas accretion, star formation, and merging

Uchuu Simulation (Ishiyama+ 21)

Illustris TNG (Nelson+18)

Dark matter
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Star Formation History, Ψ(t)

Time, t t = tobst = 0
Chemical Enrichment History, φ(t)

Heavy element production follows star formation



SFR =  Ψ(t=tobs)

M
★   ∝ 0 ∫ t_obs Ψ(t) dt

Zgas  ∝ 0 ∫ t_obs φ(t) dt

Time, t t = tobst = 0
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Models map physical processes to observables

Time, t

Stellar Mass 

M
★   ∝ 0 ∫ t_obs Ψ(t) dt

Zgas  ∝ 0 ∫ t_obs φ(t) dt

Tremonti+ 04

These models don’t take 
morphology into account!



U. Iowa

Physical processes are imprinted on galaxies’ morphologies



An image is more informative than a row in a photometric catalog
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An image is more informative than a row in a photometric catalog

Legacy Survey DR9 (Dey+ 19)
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Biological neurons process and propagate signals

Kuzovkinet+ 18
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Artificial neurons process and propagate signals!
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Convolutional layers are just morphological feature finders
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CNNs are just sequential morphological feature finders
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CNNs are just sequential morphological feature finders
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CNNs are just sequential morphological feature finders
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CNNs are just sequential morphological feature finders

Input image

CNN prediction
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CNNs are just sequential morphological feature finders

Input image

CNN prediction

CNN



CNNs can estimate spectroscopic properties like metallicity!

Metal-poor

Metal-rich

Random

Wu & Boada 19



Re-constructing the MZR without any spectroscopy
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Wu & Boada 19



We know what CNNs are “looking” at!

Wu 20
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We know what CNNs are “looking” at!
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Predict the entire optical spectrum from PS1 imaging

Wu & Peek 20



Passing the test: a weak AGN detected in a bizarre galaxy

Holwerda+ 21

70 kpc

HST WFC3/UVIS
F475W, F606W, F814W



Passing the test: a weak AGN detected in a bizarre galaxy

Holwerda+ 21
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Identifying LINERs from spectral composites with CNNs?

Guo, Wu, & Sharon 22
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Metal-poor

Metal-rich

Random

UGC 2885

Just a sample of what can be done with CNNs…

Wu & Boada 19; Wu 2020; Wu & Peek 2020; Holwerda+ 21; Guo, Wu, & Sharon 22
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Identifying dwarf satellites is hard…

Legacy Survey grz NGC 3044



Ishiyama+11

DM-only simulation

… but important for galaxy formation theory.

Legacy Survey grz



SAGA is the premier spectroscopic survey of low-z satellites

Geha+ 17, Mao+2166 new satellites around 36 hosts, using 25,372 spectra; many more on the way!



A CNN robustly selects low-z galaxies

SAGA training sample



A CNN robustly selects low-z galaxies

SAGA training sample xSAGA test sample

Wu+ 22



xSAGA: extending the SAGA survey with deep learning

300 kpc

SAGA

MW LMC SMC Fornax ???
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300 kpc

SAGA
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xSAGA



We can validate CNN performance with observations!

Darragh-Ford+ 22

See Elise Darragh-Ford’s talk, up next!

CNN



Previously known (NSA)

SDSS found bright z < 0.03 galaxies

Wu+ 22



New detections (xSAGA)

xSAGA found >100k low-z candidates with a CNN

Wu+ 22



New satellites (xSAGA)

xSAGA: >100x as many satellite systems as before

Wu+ 22



NSAID 407998
z = 0.029

NGC 1234
z = 0.020

spectroscopically confirmed           no redshift confirmed

Studying satellites around Milky Way analogs



NGC 5326  z = 0.008

IC 4336NGC 5337 NGC 5346

spectroscopically confirmed no redshift confirmed

Studying satellite groups and their dwarfs



Finding satellites is really really hard

Legacy Survey grz NGC 3044



Legacy Survey grz NGC 3044

Finding satellites is really really hard



1. The first statistics on satellite radial profiles with host mass!
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2. Satellites probe the halo accretion history

Time since last halo accretion event Wu+ 22



3. Isolated and paired hosts have different satellite populations

Wu+ in prep



xSAGA already scientifically productive, more on the way!

Wu+ 22
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Summary

I. We can learn a lot about galaxies using advanced ML 
methods and astronomical survey data.

II. The morphologies of galaxies tells us about their 
physical properties and their formation history.

III. xSAGA gives us an entirely new way to study 
substructure of the low-redshift cosmos.


