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Vision of the Future

Rubin LSST DUNE HL-LHC
~ 20 TB/day ~ 30-60 PB/ year (raw) ~ order of magnitude more data
~ 100 PB total by DR11 ~ 114x4 TB / month (raw) ~ 650 PB/year

for Supernovae detection
(speed need for followups)
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Vision of the Future

Real-time:
data handling,
decision making
detection of
interesting events

inference
Automated experiments
Working with big data later
in the process
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Combining Datasets

All areas of science often need to create

model trained on simulated data, that also
work on real detector data!

DATASETS ARE DIFFERENT!

3 KITP| February 2023

MicroBooNE
(neutrinos)

[llustris / Hubble
(merging galaxies)

.

Vogelsberger et al. (2014)

SIMULATED REAL
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Combining Datasets

All areas of science often need to create

SIMULATED REAL

model trained on simulated data, that also
work on real detector data!

MicroBooNE
DATASETS ARE DIFFERENT! (neutrinos)
M|§smg EInE WO Computational constraints
physics, wrong geometry, . .
for simulations
background levels
[llustris / Hubble

(merging galaxies)

‘

Vogelsberger et al. (2014)
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Combining Datasets

SIMULATED REAL

All areas of science often need to create

model trained on simulated data, that also
work on real detector data!

MicroBooNE
DATASETS ARE DIFFERENT! (neutrinos)
M|§smg EInE WO Computational constraints
physics, wrong geometry, . )
for simulations
background levels
Detector problems, . .
; Imperfect addition of [llustris / Hubble
transients, errors, data . . .
X observational effects (merging galaxies)
compression

f »

Vogelsberger et al. (2014)
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Combining Datasets

SIMULATED REAL

All areas of science often need to create

model trained on simulated data, that also
work on real detector data!

MicroBooNE
DATASETS ARE DIFFERENT! (neutrinos)
M|§smg EInE WO Computational constraints
physics, wrong geometry, . )
for simulations
background levels
Detector problems, . .
; Imperfect addition of [llustris / Hubble
transients, errors, data . . .
X observational effects (merging galaxies)
compression

f »

Vogelsberger et al. (2014)

Different detectors or
telescopes

3 KITP| February 2023
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Combining Datasets

Regular Training

FIND AND REFINE
FEATURES

CLASSIFY )

(NON)MERGER

2% Fermilab

4 KITP| February 2023



Combining Datasets

Regular Training

FIND AND REFINE
FEATURES

Testing the model
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CLASSIFY )

(NON)MERGER

v

CLASSIFY >

Simulated
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Regular Training

FIND AND REFINE
FEATURES

Testing the model IlI.
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- o =

(NON)MERGER

v X

Simulated Observed
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Combining Datasets

Why does this happen?

2% Fermilab
5 KITP| February 2023



Combining Datasets

Why does this happen?

Source Domain

Train the model ll 'l
on source ‘.ﬁv
dataset and find ‘—IOQ :
the decision

boundary.

e
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Combining Datasets

New domain is
shifted,
learned decision
boundary doesn’t
work.

5
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Why does this happen?

Source Domain Target Domain

o m -'/ OO 4
-.-\'g' o9 .
-:I 50 : .- mg O

B OO 5-'-:- o

’? FC_T

DOMAIN SHIFT!
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Combining Datasets

Why does this happen? DOMAIN SHIFT!

Source Domain Target Domain Domain Alighment

2% Fermilab
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Domain Shift - Example 1 Mergers vs. non-mergers

SDSS Pearson et al. 2019. Eagle

z=0.099 dy=10Mpc d,=10Mpc d;=10Mpc d,=10Mpc

2= Fermilab
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Domain Shift - Example 1

0.6

Recall

0.4

0.2

0.0

SDSS

z=0.099

= Random Network
= \falidation
Test

0.0

0.2

0.4 0.6 0.8 1.0
Fall Out
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Pearson et al. 2019.

dy=10Mpc

0.6

Recall

0.4

0.2

0.0

Mergers vs. non-mergers

d,=10Mpc

Eagle

d;=10Mpc

d,=10Mpc

i ’ = Validation 100 Myr

<" Acc. 65.2%
= Random Network

= Test 100 Myr
Validation 200 Myr
Test 200 Myr
Validation 300 Myr
Test 300 Myr

0.2

0.4 0.6 0.8 1.0
Fall Out
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Domain Shift - Example 1 Mergers vs. non-mergers

SDSS Pearson et al. 2019. Eagle

z=0.099 dy=10Mpc d,=10Mpc d;=10Mpc d,=10Mpc

Acc. 53-64.6%

0.2
== Random Network
= SDSS through EAGLE
0.0 EAGLE through 5DSS
0.0 0.2 0.4 0.6 0.8 1.0
Fall Out

2= Fermilab
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Domain Shift - Example 2

Moreno et al. 2019 gal. interaction simulation

Bottrell et al. 2019.

G2G3_f 393

-

orbit_1 il
StellarMap

StellarMap SemiReal

# StellarMap FullReal

Photometry

Photometry SemiReal

.

Photometry FullReal

No obs. effects

PSF+noise
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real sky background

Classifying merger stage
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Domain Shift - Example 2

Moreno et al. 2019 gal. interaction simulation

Bottrell et al. 2019.

G2G3_f 393
orbit_1 il
StellarMap

StellarMap SemiReal

# StellarMap FullReal

Photometry

Photometry SemiReal

Photometry FullReal

No obs. effects

PSF+noise
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real sky background

Classifying merger stage

fully realistic training images are needed to
achieve high acc. on fully-realistic test set

A

/ sMo PH .\

PHSR

D

PHFR

Otherwise you often get as low as
~50% acc.
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Types of Domain Shift Problems

source target
-
D Ax

Closed

2% Fermilab
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Types of Domain Shift Problems

Zﬁourcte (lii.ﬁz‘l(')l'zigUﬁOH Targe’r distribution source target
CEETE | K(2) Pr(Z) @ (A
¢ Closed
Dog Pecision Boundary ———— Cat Label Unknown, Using Estimation
£& Fermilab
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Types of Domain Shift Problems

Source distribution Targe’r distribution source target
Zhao et al. 2022. PS(Z) PT(Z) ® (:A::'
< Closed
Dog — Decision Boundary ——— Cat Label Unknown, Using Estimation
ey Partial
“Bird”
Z& Fermilab
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Types of Domain Shift Problems

Target distribution

source target
- e~
QD A%

Closed

Source distribution

Zhao et al. 2022 Ps(2) Pr(Z)

<

\S
Partial

Label Unknown, Using Estimation

Dog — Decision Boundary ——— Cat
r’?

“Bird” 4
/ \
\ [ ) Open

2% Fermilab
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Types of Domain Shift Problems

Zﬁourcte (lii.ﬁz‘l(')l'zigUﬁOH Targe’r distribution source target
ao et al. . =
Ps(2) Pr(2) @ A
< Closed
Pecision Boundary ———— Cat Label Unknown, Using Estimation )
o Partial
“Bear” )j
“Bird” P e
/] \
1 \
\ D ! Open
A\ \ 2 /

[ ] ! Open-Partial
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Types of Domain Shift Problems

Zﬁoum (liisz’grziguﬁon Targe’f distribution source target
- Closed
Label Unknown, Using Estimation
o"i Partial
“Bird”
. Open
We can have extra classes present in only one or both of
the datasets!
e We might not even know about it!
o  Mutual classes should overlap. Open-Partial
o Non-overlapping classes should not be aligned with
anything.
£& Fermilab
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Combining Datasets

Solution?
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Combining Datasets

Solution?

OPTION 1: My new datasets is
fully or partially labeled
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Combining Datasets

TRANSFER LEARNING

OPTION 1 My new datasets iS TRADITIONAL MACHINE LEARNING TRANSFER LEARNING
fully or partially labeled 5
—
- DATASET 1 MACHINE LEARNING MODEL 1
DATASET 1 MACHINE LEARNING MODEL 1
———
— [{0] &
DATASET 2 MACHINE LEARNING MODEL 2

DATASET 2 MACHINE LEARNING MODEL 2

2% Fermilab
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Combining Datasets

TRANSFER LEARNING
SDSS DR7

0.9999 0.9997 1.0000 0.9997

OPTION 1: My new datasets is
fully or partially labeled

ImageNet

4 i,. s 0.9998 0.9991 0.9997 0.9999

1.0000 0.9997 0.9989 0.9933

0.9999 0.9998 0.9872 0.9948

JE

3¢ Fermilab

Ackermann et al. 2018.
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Combining Datasets

Solution?

OPTION 2: My new datasets is
sadly unlabeled

2% Fermilab
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Combining Datasets

DOMAIN ADAPTATION

OPTION 2: My new datasets is
sadly unlabeled

2% Fermilab
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Combining Datasets

DOMAIN ADAPTATION

Align data distributions in the latent space of the network by forcing the network
to find more robust domain-invariant features.
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Combining Datasets

DOMAIN ADAPTATION

Align data distributions in the latent space of the network by forcing the network
to find more robust domain-invariant features.

Distance-based methods Adversarial methods

o a7, Closs LD
el
5Lg = label predictor G,(-:6,)
>N —/\T)'/ ; /;.g domain classifier G(-; 64)
SO ’ featizre ‘.x”}‘(“”v Gr:0p) 4 Z’:// ﬂ E> ﬂ $ @ domain label d
\&Ld Closs LD
H 90,
Gretton et al. (2012) Ganinetal. (2016)
JE =
a¢ Fermilab
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Combining Datasets

DOMAIN ADAPTATION

Align data distributions in the latent space of the network by forcing the network
to find more robust domain-invariant features.

Distance-based methods Adversarial methods

o a7, Closs LD
RS
\ L = label predictor G, (-;6,)
,%r E = —\o0; b-,f/? domain classifier Gy(-; 04)
AR Closed feature extractor Gj(-; ) é,;;fx;,/’/: E> ﬂ $ o o i 4
. \&Ld Closs LD
Gretton et al. (2012) Ganinetal.(2016) L
JE .
3¢ Fermilab
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Combining Datasets

DOMAIN ADAPTATION

Align data distributions in the latent space of the network by forcing the network
to find more robust domain-invariant features.

Distance-based methods Adversarial methods

Training

Task Loss
+

DA Loss

Gretton et al. (2012)

2% Fermilab
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Combining Datasets

DOMAIN ADAPTATION

Align data distributions in the latent space of the network by forcing the network
to find more robust domain-invariant features.

Distance-based methods Adversarial methods

Works on unlabeled target domain!
Can be applied to new data, no need for
scientists to label anythin

2% Fermilab
KITP| February 2023



Domain Adversarial Neural Networks - DANNs

DANN -
predictor +

10

Gradient reversal layer -
multiplies the gradient by a
negative constant during the
backpropagation.

Results in the extraction of
domain-invariant features.
Only source domain images
are labeled during training.

KITP| February 2023

. forwardprop  backprop (and produced derivatives)

= oL,
/—l (.)()-/. ()(}.'/ @
E> \ E> If‘> E> |f‘> E('l;l.\\‘ label vy
I . E> ‘ \ l

= label predictor G, (6
i (')L,[ abel predictor G, (- )

00 ¢ - g domain classifier G4(+;04)
: 3 A

"
%,

: Y :
feature extractor Gs(;0y) (9])(3’,‘;;./ %
G 4 |$ E> @ domain label d
D kn
90 )\(‘)L,/ @

a0,

Sal1jead]

Ganinetal. (2016)
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Domain Adversarial Neural Networks - DANNs

DANN -
predictor +

10

Gradient reversal layer -
multiplies the gradient by a
negative constant during the
backpropagation.

Results in the extraction of
domain-invariant features.
Only source domain images
are labeled during training.
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| OL
oL, a0,
/- 00 ¢ a0, @
’ [> E> —-'~|$ E> |f‘> E('l;l»‘ label vy
I 3 l

v
Bl = label predictor G,(-;6,)
(')()./. \&)‘g (l()lllllll classifier G4(+;0,)

feature vxlreXl(n' Gy(-6f) / [ s %
/ |$ E> Edtmmm label d
oL, )|
>

Saollljeo

C /\ 0L g4
| forwardprop  backprop (and produced derivatives) | ()(),/

Ganinetal. (2016)
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Maximum Mean Discrepancy - MMD

Are P and @ different?

— AW
— Q)
5 -2 2 0 2 4 6

Gaussian kernel on x;

Gaussian kernel on y;

KITP| February 2023

Smola et al. (2007)
Gretton et al. (2012)

Observe X = {x1,...,Xp} ~ P

Observe Y = {y1,...,¥n} ~ @

v pp(v) = %Z;?ll k(z;,v)

fig(v): mean embedding of Q

o ®eo \%
witness(v) = fip(v) — fio(V)
\_/
2& Fermilab



FIND AND REFINE
FEATURES

SIMULATED
IMAGES

LABELS

OBSERVED
IMAGES
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Y

CLASSIFY >

(NON)MERGER
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Combining Datasets

Domain Adaptation
FIND AND REFINE
l \. l, FEATURES

SIMULATED
IMAGES

(NON)MERGER
+

LABELS Testing the model / /

- g o=

Y

CLASSIFY

Simulated Observed

4& Fermilab
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Combining Datasets

Source - lllustris Target - SDSS observations

: This is how the network sees the data.
2D representation of network’s latent space.

Ciprijanovic et al. 2020b.
Ciprijanovi¢ et al. 2021a.

2& Fermilab
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Combining Datasets

Source - lllustris

Important regions are
highlighted!

Ciprijanovic et al. 2020b.
Ciprijanovic et al. 202

13 KITP| February 2023

Regular Training
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Combining Datasets

Source - lllustris

Important regions are
highlighted!

Ciprijanovic et al. 2020b.
Ciprijanovic et al. 202
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Regular Training
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Combining Datasets

Source - lllustris Target - SDSS observations

Regular Training

Ciprijanovic et al. 2020b.
Ciprijanovic et al. 202

2& Fermilab
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Combining Datasets

Source - lllustris Target - SDSS observations
~ % ‘

t. accuracy

‘e
*: & = S. accuracy
A o
. >
Ciprijanovic et al. 2020b. 80/0
Ciprijanovi¢ et al. 202

2& Fermilab
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Combining Datasets

Source - lllustris Target - SDSS observations
e

Domain Adaptation

Ciprijanovic et al. 2020b.
Ciprijanovic et al. 202

2& Fermilab
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Combining Datasets

Source - lllustris Target - SDSS observations
e

Domain Adaptation

Ciprijanovic et al. 2020b.
Ciprijanovic¢ et al. 2021a.

2& Fermilab
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Combining Datasets

Source - lllustris Target - SDSS observations

N
» .. » -

Up to 30% increase!

t. accuracy

Ciprijanovic et al. 2020b.
Ciprijanovi¢ et al. 2021a

2& Fermilab
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Failure modes and Model Robustness

Scientific data pipelines will introduce inadvertent

data perturbations:

14

image compression or blurring
noise

data pre-processing

detector errors

transient phenomena ...

KITP| February 2023
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Failure modes and Model Robustness

Scientific data pipelines will introduce inadvertent

data perturbations:

14

imgge compression or blurring — Model performance drops
noise _ (sometimes catastrophically)
data pre-processing

detector errors

transient phenomena...

“airliner”

+ 0.005 x

9

Targeted attack!
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Failure modes and Model Robustness

Scientific data pipelines will introduce inadvertent

data perturbations:

14

image compression or blurring
noise

data pre-processing

detector errors

transient phenomena...

In science, attacks won’t be
targeted, so we also need a more
general defense mechanism!

KITP| February 2023

— Model performance drops
(sometimes catastrophically)

“airliner”

+ 0.005 x

9

Targeted attack!
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Failure modes and Model Robustness

Scientific data pipelines will introduce inadvertent
data perturbations:
e image compression or blurring

® noise . — Model performance drops
e datapre-processing (sometimes catastrophically)
e detectorerrors

e transient phenomena...

Ciprijanovic’ etal.2021b.
Ciprijanovi¢ et al. 2022a.

If we perturb a single pixel, model will classify the
object incorrectly!

2= Fermilab
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Failure modes and Model Robustness

Scientific data pipelines will introduce inadvertent
data perturbations:
e image compression or blurring

® noise . — Model performance drops
e datapre-processing (sometimes catastrophically)
e detectorerrors

e transient phenomena...

Ciprijanovic’ etal.2021b.
Ciprijanovi¢ et al. 2022a.

If we perturb a single pixel, model will classify the
object incorrectly!

Old data can help!

2= Fermilab

14 KITP| February 2023



Model Robustness

spiral — elliptical

merger
(incorrect)

Noisy Direction

-1.0 -0.5 0.0 0.5 1.0
One-Pixel Direction

Ciprijanovic¢ et al. 2021b.
Ciprijanovi¢ et al. 2022a.

Regular Training on Y10 data

4& Fermilab
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Model Robustness

spiral — elliptical

1.0

merger
(incorrect)

0.5 )
spiral

(correct) ‘

0.0

Noisy Direction

-0.5

-1.0

-1.0 -0.5 0.0 0.5 1.0
One-Pixel Direction

Ciprijanovic¢ et al. 2021b.
Ciprijanovi¢ et al. 2022a.

Regular Training on Y10 data
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Model Robustness

Noisy Direction

-1.0 -0.5 0.0 0.5 1.0
One-Pixel Direction

= o o o o o - o —

. |
I Ciprijanovic et al.2021b. I
: Ciprijanovi¢ et al. 2022a. |

Regular Training on Y10 data
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Model Robustness

spiral - elliptical

Noisy Direction

-1.0 -0.5 0.0 0.5 1.0
One-Pixel Direction

= o o o o o - o —

. |
I Ciprijanovic et al.2021b. I
: Ciprijanovi¢ et al. 2022a. |

Regular Training on Y10 data
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Model Robustness

spiral - elliptical

Noisy Direction

-1.0 -0.5 0.0 0.5 1.0
One-Pixel Direction

= o o o o o - o —

. |
I Ciprijanovic et al.2021b. I
: Ciprijanovi¢ et al. 2022a. |

Regular Training on Y10 data

15 KITP| February 2023

Y10
e spiral
o elliptical
@ merger

X Y10
* Y1
a perturbed

Y1
ospiral
o elliptical
omerger

2% Fermilab



Model Robustness

spiral - elliptical

Noisy Direction

-1.0

-1.0 -0.5 0.0 0.5 1.0
One-Pixel Direction

I C:iprijanovic'etal. 2021b.
: Ciprijanovi¢ et al. 2022a. |

Regular Training on Y10 data
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Y10
e spiral

o elliptical

@ merger

X Y10
* Y1

a perturbed

Y1
ospiral
o elliptical
omerger
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Model Robustness

spiral — elliptical Y10 Y1

: : ®

e spiral spiral
merger eelliptical o elliptical
(incorrect) e merger omerger

X Y10

* Y1l

a perturbed

@
L J

Noisy Direction

-1.0 -0.5 . 0.5 1.0
One-Pixel Direction

Ciprijanovic¢ et al. 2021b.
Ciprijanovi¢ et al. 2022a.

Regular Training on Y10 data

£& Fermilab
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Model Robustness

spiral - elliptical Y10 Yi -
e spiral spiral
merger @ elliptical o elliptical ® &
(incorrect) @ merger omerger s

X Y10
* Y1
a perturbed

Noisy Direction

-1.0 0.5 1.0

One-Pixel Direction

Ciprijanovic¢ et al. 2021b.
Ciprijanovi¢ et al. 2022a.

Regular Training on Y10 data Domain Adaptation using Y1 data

4& Fermilab
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Model Robustness

e Accuracyon both datasets
increases (up to 23%)!

Regular Training on Y10 data |::> Domain Adaptation using Y1 data

2% Fermilab
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Model Robustness

Accuracy on both datasets
increases (up to 23%)!
Distance to the wrong class
increases ~2.3!

Robustness to inadvertent
perturbations increases!

Regular Training on Y10 data |::> Domain Adaptation using Y1 data

2% Fermilab
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Multi-dataset inference

Bridging between observations is much harder!
We need general and flexible algorithms.

The gap between observational datasets is much
larger:
e Noise, PSF
Pixel scale

Depth of the survey
Magnitude limit
Perhaps different filters
Different data distributions.... /| b

DECaLS & NSA

2% Fermilab
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Multi-dataset inference

Bridging between observations is much harder!
We need general and flexible algorithms.

The gap between observational datasets is much

larger:

e Noise, PSF
Pixel scale
Depth of the survey I
Magnitude limit T, D& RS
Perhaps different filters g 9) o .
Different data distributions....

GZ2
DECaLS & NSA
Partial

How do we build something flexible
enough to handle any kind of data
distribution shifts?

Open

\
, Open-Partial

2% Fermilab
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Universal Domain Adaptation (DeepAstroUDA)

) Ciprijanovi¢ et al. 2022.
Ciprijanovic¢ et al. 2023 (soon)

Classification of known classes 1

. 2

Clustering of similar known and unknown
samples

4

source target ———)> Entropy Separation

Separation of different (anomalous) @ (AD > Adspive Cluserng

== Cross-Entropy Clustering

unknown samples

4& Fermilab
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Universal Domain Adaptation (DeepAstroUDA)

) Ciprijanovi¢ et al. 2022.
Ciprijanovic¢ et al. 2023 (soon)

Classification of known classes 1

. 2

Clustering of similar known and unknown
samples

4

source target ———)> Entropy Separation

Separation of different (anomalous) @ (AD > Adspive Cluserng

== Cross-Entropy Clustering

unknown samples

Via self-supervision for more
flexibility!

$& Fermilab
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Universal Domain Adaptation (DeepAstroUDA)

SDSS

PO T P12

PaE 7Y P:0 T2

P T, ., P2 T2

P:0 T:A Pyl T:2

« P:2TT:3

PO Tl Pi1 T2 P2T3
T "
P:6 T PO T2

:'A‘ P 5

P:7 T P:6 T2

P:4 T:3"

P:1 T3

L

P:3 T4

o~

P:T T4

P:1 T:4
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P:4 T:5

P2 T:5

P:4 T5

P:1T5

P9 T:5

L

R

P:5 T:6

P:6 T:6

.

P:5 T6

&

P:1 T:6

P:3 T:6

P:6 T:7
P:2 (R7
L

P3 [T:7

5

P.:7 LE:]

P:0 T:8

.

P T8

Class labels are from Galaxy Zoo 2 & 3
(crowdsourcing labels ~10/5 volunteers).

Known classes:
Disturbed (0)

Merging (1)

Round smooth (2)

Cigar shaped smooth (3)
Barred spiral (4)

Unbarred tight spiral (5),
Unbarred loose spiral (6)
Edge-on without bulge (7),
Edge-on with bulge (8),

Unknown anomaly class (only in DECaLS):
Strong gravitational lens (9)
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Universal Domain Adaptation (DeepAstroUDA)

No Domain Adaptaion
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Universal Domain Adaptation (DeepAstroUDA)

No Domain Adaptaion With Domain Adaptaion
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Ciprijanovi¢ et al. 2023 (soon)
Classes are mixed! Source: Target Known classes overlap,
@ Barred spiral O Barred spiral . .
4 Round smooth & Round Smooth unknown is pushed to the side.
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Universal Domain Adaptation (DeepAstroUDA)

No Domain Adaptaion With Domain Adaptaion
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Questions to think about

e |[s the domain shift a big problem in

astrophysics/cosmology and how do we solve it?
o transfer learning (labeled data), domain adaptation (unlabeled data),
or something completely new?

IIECBO
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Questions to think about

21

|s the domain shift a big problem in

astrophysics/cosmology and how do we solve it?
o transfer learning (labeled data), domain adaptation (unlabeled data),
or something completely new?

How do we fight against unknown unknowns causing
the domain shift?
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Questions to think about

e |[s the domain shift a big problem in

astrophysics/cosmology and how do we solve it?
o transfer learning (labeled data), domain adaptation (unlabeled data),
or something completely new?

e How do we fight against unknown unknowns causing
the domain shift?

e Uncertainty quantification in Al and do we trust it?
o  BNNs, Dropout...?
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Questions to think about

e |[s the domain shift a big problem in

astrophysics/cosmology and how do we solve it?

o transfer learning (labeled data), domain adaptation (unlabeled data),
or something completely new?

e How do we fight against unknown unknowns causing
the domain shift?

e Uncertainty quantification in Al and do we trust it?
o  BNNs, Dropout...?

e Do we need to standardize model testing and reporting

results”?
o Does our model work on data different from our initial test dataset
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Questions to think about

21

|s the domain shift a big problem in

astrophysics/cosmology and how do we solve it?
o transfer learning (labeled data), domain adaptation (unlabeled data),

or something completely new? e
How do we fight against unknown unknowns causing P N
the domain shift? J
Uncertainty quantification in Al and do we trust it? b

o BNNs, Dropout...? x%f?
Do we need to standardize model testing and reporting -
results?

o Does our model work on data different from our initial test dataset?

How to make our Al models more transparent?
o Model interpretability, visualizations, ablation studies

£& Fermilab
KITP| February 2023



Questions to think about

21

|s the domain shift a big problem in

astrophysics/cosmology and how do we solve it?
o transfer learning (labeled data), domain adaptation (unlabeled data),
or something completely new?

How do we fight against unknown unknowns causing
the domain shift?

Uncertainty quantification in Al and do we trust it?

o  BNNs, Dropout...?
Do we need to standardize model testing and reporting
results?

o Does our model work on data different from our initial test dataset?

How to make our Al models more transparent?
o Model interpretability, visualizations, ablation studies

How to make sure our results are reproducible?
o Open data and code, setting community standards, astro
benchmarks

KITP| February 2023
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