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• In	our	recent	Annual	Reviews	ar6cle,	Daniel	Gruen	and	
I	present	key	challenges	for	photometric	redshi3s	with	
Rubin	Observatory,	Euclid,	Roman,	etc.,	that	affect	
galaxy	evolu6on	&	cosmology	studies	

• Journal	version:	h%ps://www.annualreviews.org/doi/abs/
10.1146/annurev-astro-032122-014611			

• ArXiv	version	(with	some	formaWng	advantages):	h%ps://
arxiv.org/abs/2206.13633		

• Our	focus	is	on	ways	we	need	to	improve	both:	
• The	performance	of	photo-z	algorithms:	how	well	we	

can	predict	the	redshi3s	and	other	proper6es	of	
individual	objects	

• The	calibra6on	of	redshi3	distribu6ons,	which	must	
reach	<0.1%	levels	to	not	dominate	over	random	
errors	in	cosmology

Achieving	the	full	poten6al	of	next-genera6on	surveys	via	photometric	redshi3s	
presents	many	challenges...	

https://www.annualreviews.org/doi/abs/10.1146/annurev-astro-032122-014611
https://www.annualreviews.org/doi/abs/10.1146/annurev-astro-032122-014611
https://www.annualreviews.org/doi/abs/10.1146/annurev-astro-032122-014611
https://arxiv.org/abs/2206.13633
https://arxiv.org/abs/2206.13633


• For	machine	learning-based	methods,	we	use	
objects	with	secure	redshi3	measurements	
from	spectroscopy	to	train	algorithms	

• For	template-based	methods,	they	are	s6ll	
needed	to	refine	models	of	galaxy	spectral	
energy	distribu6ons	

• However,	obtaining	large	numbers	of	spectra	
is	expensive:	we	are	typically	limited	to	only	
brighter	objects	

• The	range	of	colors	/	SEDs	of	bright	galaxies	
does	not	span	the	range	that	faint	galaxies	
cover:	an	example	of	domain	shi3	

Many	of	these	challenges	are	connected	to	the	spectroscopic	datasets	we	use	to	
train	and	calibrate	photo-z's

Figure:	Zach	Pace

Alexandra	Ciprijanovic:	



• Ideal	case:	we	obtain	redshi3s	for	objects	
densely	and	evenly	sampling	the	distribu6on	
of	galaxies	in	SED	space	

• Here,	a	toy	model:	e.g.,	what	you	would	get	
dimensionality-reducing	SED	space	to	2D	

• Can	easily	determine	redshi3	at	any	point	
from	redshi3s	of	objects	in	the	local	
neighborhood

Some	of	the	ways	that	real-world	spectroscopic	datasets	fall	short	of	the	ideal:	1)	
sparse	sampling
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• Real	world:	if	we	want	spectroscopy	of	faint	
galaxies,	sample	sizes	will	be	small	and	will	
only	sparsely	cover	SED	space	

• The	objects	with	spectroscopy	in	the	same	
neighborhood	may	not	be	all	that	close...



• Ideal	case:	the	redshi3s	in	your	spectroscopic	
training	set	have	a	redshi3	distribu6on	
matching	the	overall	average	across	the	sky

Some	of	the	ways	that	real-world	spectroscopic	datasets	fall	short	of	the	ideal:	2)	
sample	/	cosmic	variance
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• Real	world:	Deep	training	sets	are	obtained	
over	only	small	areas	of	sky	

• The	selected	regions	will	be	overdense	or	
underdense	at	some	redshi3s	due	to	large-
scale	structure	

• This	can	easily	imprint	on	redshi3	
distribu6ons	across	the	sky	with	ML	methods



• Ideal	case:	every	galaxy	you	target	for	
spectroscopy	provides	a	secure	measurement	
of	its	redshi3

Some	of	the	ways	that	real-world	spectroscopic	datasets	fall	short	of	the	ideal:	3)	
systema6c	incompleteness
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• Real	world:	When	we	target	faint	samples,	we	
fail	to	measure	the	redshi3	~30%	or	more	of	
the	6me	

• The	objects	we	do	get	redshi3s	for	are	
systema6cally	different	in	proper6es	
(including	redshi3)	than	the	things	we	
succeed	for
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• Ideal	case:	every	6me	you	measure	the	
redshi3	spectroscopically	you	get	the	
correct	z

Some	of	the	ways	that	real-world	spectroscopic	datasets	fall	short	of	the	ideal:	4)	
incorrect	redshi3s
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• Real	world:	Depending	upon	the	sample,	
0.5%-10%	of	redshi3	measurements	will	be	
incorrect	

• E.g.:	misiden6fied	a	single	emission	line,	or	
mistook	sky	subtrac6on	residuals	for	lines	

• Need	robust	ML	methods	for	photometric	
redshi3s
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Figure:	Coil	
et	al.	2010



• Ideal	case:	you	can	just	use	redshi3s	from	
pre-exis6ng	spectroscopic	surveys	and	don't	
need	to	obtain	any	new	measurements

Some	of	the	ways	that	real-world	spectroscopic	datasets	fall	short	of	the	ideal:	5)	
color	selec6ons
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• Real	world:	Most	large	high-z	surveys	rely	on	
color	cuts	to	target	a	limited	redshi3	range	of	
interest	

• Heterogeneous	coverage	of	color	space	is	a	
major	problem	in	photo-z	training	and	
calibra6on

Figure:	
Newman	et	al.	
2013



• Ideal	case:	Training	samples	provide	good	
coverage	across	all	possible	redshi3s

Some	of	the	ways	that	real-world	spectroscopic	datasets	fall	short	of	the	ideal:	6)	
difficul6es	training	at	very	low	z
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• Real	world:	The	universe	has	liAle	volume	at	
low	redshi3s	so	low-z	galaxies	are	rare	in	
magnitude-limited	samples	

• Since	they	are	poorly	represented	in	training	
sets	photo-z	algorithms	tend	to	disfavor	low	z	
solu6ons

Figure:	
MSE	team	/	
Yao-Yuan	
Mao



• Nope...		

• Kodra	et	al.	2022	tested	many	
template-based	methods	applied	to	
CANDELS	data	

• Methods	that	all	agree	well	with	
spec-z's	where	we	have	them	predict	
very	different	redshi3	distribu6ons	
vs.	magnitude,	from	the	same	data

Do	template-based	photo-z's	solve	these	problems	by	being	less	dependent	on	
training	sets?

data arrays (logspace z): GOODS-S

Figure : Linear color scale, excluded objects: 417Figure:	Kodra	et	al.	2022



• One	of	the	first	problems	where	machine	learning	was	
applied	to	astronomy	was	for	finding	photometric	
redshi3s...	but	we're	s6ll	not	done	

• Upcoming	datasets	are	sufficiently	powerful	that	we	
will	need	to	con6nue	to	advance	the	state	of	the	art	to	
take	full	advantage	of	them	

• Spectroscopic	training	sets	pose	many	challenges	

• We	will	need	large	alloca6ons	of	6me	on	many	of	the	
largest	telescopes	to	get	datasets	at	all	approaching	
the	ideal	

• For	lots	more	details,	see	our	ARAA	ar6cle!	
• Journal	version:	h%ps://www.annualreviews.org/doi/abs/10.1146/annurev-

astro-032122-014611			

• ArXiv	version	(with	some	formaWng	advantages):	h%ps://arxiv.org/abs/2206.13633	

Conclusions
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If	we	restrict	to	the	most-secure	redshi3s,	much	more	of	color	space	is	untrained	by	
current	samples

• Grey	regions:	cells	in	self-organized	maps	of	galaxy	color	space	that	
are	not	constrained	by	spectroscopic	redshi3s	10

Fig. 6.— Left: The median spectroscopic redshift of galaxies associating with each SOM cell, using only very high confidence (∼100%)
redshifts from the COSMOS master spectroscopic catalog (Salvato et al., in prep). The redshifts come from a variety of surveys that have
targeted the COSMOS field; see text for details. Gray regions correspond to parts of galaxy color space for which no high-confidence
spectroscopic redshifts currently exist. These regions will be of interest for training and calibration campaigns. Right: The same figure,
but including all redshifts above !95% confidence from the COSMOS spectroscopic catalog. Clearly, more of the color space is filled in
when the quality requirement is relaxed, but nevertheless large regions of parameter space remain unexplored.

The preceding analysis treats the photo-z calibration
as a stratified sampling problem, in which the overall
statistics of a population are inferred through targeted
sampling from relatively homogeneous subpopulations.
The gain in statistical precision from using Equation (10)
to estimate 〈z〉 can be attributed to the systematic way
in which the full color space is sampled, relative to blind
direct sampling. However, stratified sampling will only
outperform random sampling in the case that the sub-
populations being sampled do, in fact, have lower disper-
sion than the overall distribution–i.e., in the case that the
Pi(z) distributions for the color cells have lower redshift
dispersion than the N(z) distribution of all the galaxies
in a tomographic bin.

6.2. Simulating different sampling strategies

Now we attempt to more realistically estimate the
spectroscopic coverage needed to achieve the requirement
in our knowledge of 〈z〉. To begin, we assume that the
cell redshift PDFs from Le Phare are reasonably accu-
rate, and can be taken to represent the true Pi(z) distri-
butions for galaxies in each color cell. (This assumption
is, of course, far from certain, and simply serves as a
first approximation). With the known occupation den-

sity of cells of the map (Figure 3), we can then use Equa-
tion (8) to generate realistic N(z) distributions for differ-
ent tomographic bins. For this illustration, we break the
map up into photo-z-derived tomographic bins of width
∆z = 0.2 over 0 < z < 2 (although Euclid will most
likely use somewhat different bins in practice). An ex-
ample of one of the N(z) distributions modeled in this
way is shown in Figure 8.
The uncertainty in the estimated 〈z〉 of these N(z) dis-

tributions can then be tested for different spectroscopic
sampling strategies through Monte Carlo simulations, in
which spectroscopy is simulated by randomly drawing
from the Pi(z) distributions. (Alternatively, given our
knowledge of the individual σ〈zi〉 uncertainties, Equa-
tion (11) can be used directly. In fact, the results were
checked in both ways and found to be in agreement).
The results of three possible sampling strategies are

given in Table 1. The simplest strategy tested (“Strategy
1”) is to obtain one spectrum per color cell in order to
estimate the cell mean redshifts. Equation (10) is then
used to compute the overall mean of the tomographic
bin. We expect to meet the Euclid requirement, ∆〈z〉 ≤
0.002(1+〈z〉), for 3/10 bins (and come close in the others)
with this approach, which would require ∼11k spectra in

Masters	et	al.	2015
cells with <1% failure rate z's with <5% failure rate z's



An	addi6onal	issue:	some	photo-z/spec-z	outliers	are	physical

Zhou,	Cooper,	JN	et	al.	2019

• A	few	percent	of	DEEP2	
spectroscopic	targets	
correspond	to	mul6ple	galaxies	
when	you	look	at	HST	catalogs	

• 1%	of	DEEP2	objects	show	
spectral	features	from	mul6ple	
redshi3s	

• Can	iden6fy	many	but	NOT	all	
of	these	blends	with	space-
based	imaging	
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If	spectroscopy	proves	incomplete,	calibra6on	will	probably	need	to	come	from	cross-
correla6on	methods...

•	Galaxies	of	all	types	cluster	
together:	trace	same	dark	maAer	
distribu6on		

•	Enables	reconstruc6on	of	z	
distribu6ons	via	spectroscopic/
photometric	cross-correla6ons	
(Newman	2008)	

•	For	LSST	calibra6on,	>500	degrees	
of	overlap	with	DESI-like	survey	
would	meet	LSST	science	
requirements	(>4000	sq	deg	of	
overlap	expected)		

•...	IF	LSST	data	is	uniform	(a3er	
calibra6on),	as	DESI	is	in	North	

Snowmass	white	paper:	Spectroscopic	
Needs	for	Imaging	DE	Experiments	

(Newman	et	al.	2015,	hAp://arxiv.org/abs/
1309.5388)



Biggest	concern:	disentangling	cross-correla6ons	from	
clustering	and	lensing	magnifica6on

•	Black:	cross-correla6ons	
between	photo-z	objects	(z=0.75	
Gaussian)	and	spectroscopic	
sample	as	a	func6on	of	z	

•	Blue:	observed	cross-correla6on	
due	to	spectroscopic	objects	
lensing	photometric	ones	

•	Red:	observed	cross-correla6on	
due	to	photometric	objects	
lensing	spectroscopic	ones	

•	Weak/CMB	lensing	could	help	us	
predict	the	red	curves	 Daniel Matthews Ph. D. 

thesis, 2014



A difficult problemNote:	even	for	100%	complete	samples,	current	
false-z	rates	would	be	a	problem

Based on simulated redshift 
distributions for ANNz-defined DES 
bins in mock catalog from Huan Lin, 
UCL & U Chicago, provided by Jim 
Annis

• Only	the	highest-
confidence	redshi3s	
should	be	useful	for	
precision	calibra6on:	
lowers	spectroscopic	
completeness	further	
when	restrict	to	only	the	
best	

• A	major	reason	why	
geWng	highly	secure	
redshi3s	is	important 

Approx LSST 

Req't



Biggest	concern:	disentangling	cross-correla6ons	from	
clustering	and	lensing	magnifica6on

Daniel Matthews Ph. D. 
thesis, 2014

The KiDS collaboration: KiDS+VIKING-450: Cosmic shear tomography with optical+infrared data

Fig. C.1. Similar to Fig. 1 showing the fiducial redshift distributions and also some alternative n(z) estimates. The red lines and their confidence
regions correspond to the weighted direct calibration technique (DIR, Sect. 3.2), blue corresponds to a smoothed version of the DIR method
(sDIR, Appendix C.1), and green shows the small-scale clustering-z measurements (CC, Appendix C.2) after correction for the spectroscopic bias
but before fitting with a Gaussian mixture model and correction for the photometric bias (the latter being negligible). The clustering-z n(z) as
estimated with the optimal-quadratic-estimator (OQE, Appendix C.3) out to z < 0.9 are shown in purple. Note that the normalisation of the green
CC estimate is somewhat ambiguous due to noise and the resulting negative amplitudes. The purple OQE estimates have been normalised to the
same area as the CC estimates for the redshift range z < 0.9. We also include the DIR n(z) that result when the combined spec-z calibration sample
is replaced by the COSMOS-2015 photo-z catalogue (orange; shown without uncertainties).

Fig. C.2. Illustration of the sDIR method. The blue line represents the
unweighted spectroscopic redshift distribution of the calibration sam-
ple. The red line is the DIR estimate of the redshift distribution of the
full lensing catalogue, nDIR,all(z). The black line in the upper panel shows
a parametric fit to the red line and the lower panel shows the ratio of this
fitted function to the blue line, which is a first guess of the smoothing
weight.

Fig. C.3. Refinement of the smoothing weight for each calibration ob-
ject. The blue data points represent the initial guess of the smoothing
weights, wi(z), that just depend on redshift (equivalent to the lower panel
of Fig. C.2) while the green data points represent wp,i, which is the ratio
of wi and the average hwii of the wj of the k nearest neighbours around
an object i.

3. Define a weight function as
w(z) = nsmooth,all(z)/nDIR,all(z) (solid line in bottom panel of
Fig. C.2 and blue data points in Fig. C.3).

Article number, page 25 of 31

Hildebrandt et al. 2018
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What	might	an	ideal	photo-z	algorithm	look	like?

• What	might	an	ideal	LSST/Euclid/Roman	photo-z	algorithm	for	the	next	decade	look	like?	

• Trained	with	>30,000	spectra	spanning	range	of	photometric	objects	

• Develops	priors	&	tweaks	templates	via	hierarchical	Bayesian	hyperparameters,	or	via	
forward-modeling	distribu6ons	

• Incorporates	varia6ons	in	effec6ve	filter	wavelengths	due	to	observa6onal	condi6ons:	
requires	applying	algorithm	to	O(1000)	measurements	instead	of	O(6)	

• Incorporates	AGN	classifica6on	and	AGN	photo-z	determina6on:	colors	are	not	constant	
with	6me	for	many	objects!	

• Want	algorithms	to	be	fast:	create	ML-based	emulators	for	template	photo-z's?	

• For	bright	objects,	may	also	be	useful	to	compare	template	to	ML	techniques	to	iden6fy	
poten6al	outliers	(different	failure	modes)


