Tutorial On PROBABILISTIC U-NETS

Mila

Hadi Sotoudeh

Université de Montréal

KITP Program on Building a Physical Understanding of Galaxy Evolution with Data-driven Astronomy

Ciela

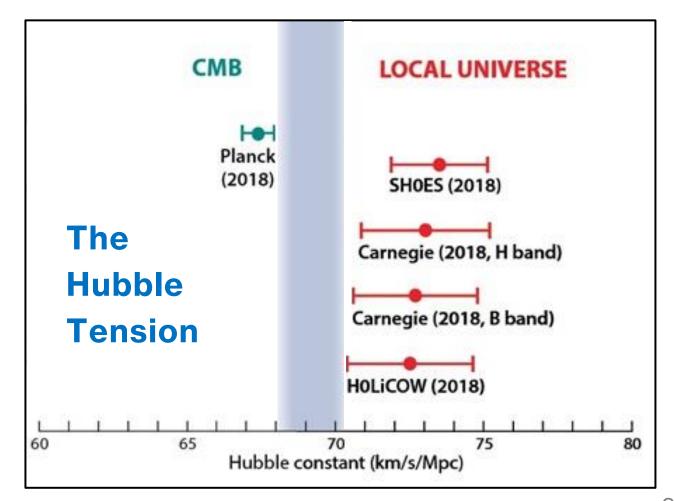
23 Feb 2023

Outline

Advertisement Inspecting Uncertainties (Coverage Tests)

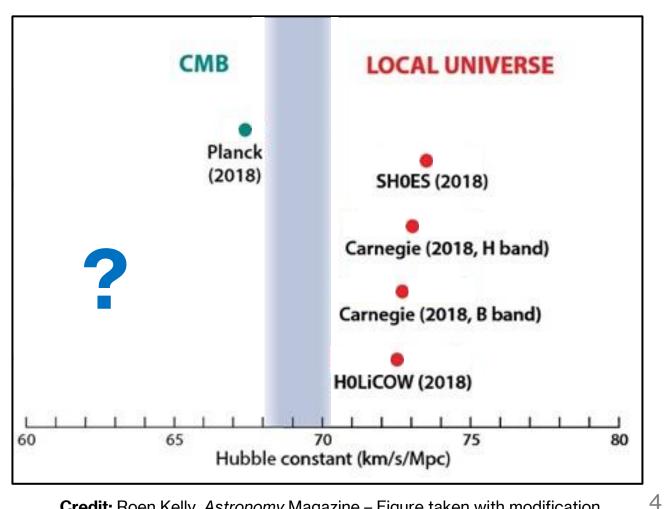
Uncertainty Matters

- Every physical measurement is meaningful with an uncertainty estimate.



Deep Learning for Physical Discoveries

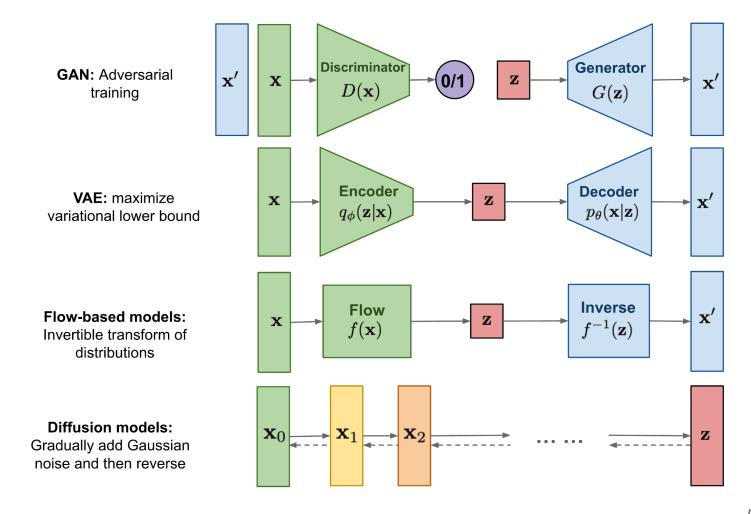
- Traditional deep learning methods \rightarrow No uncertainty estimate
- Physical applications require models capable of quantifying uncertainties.



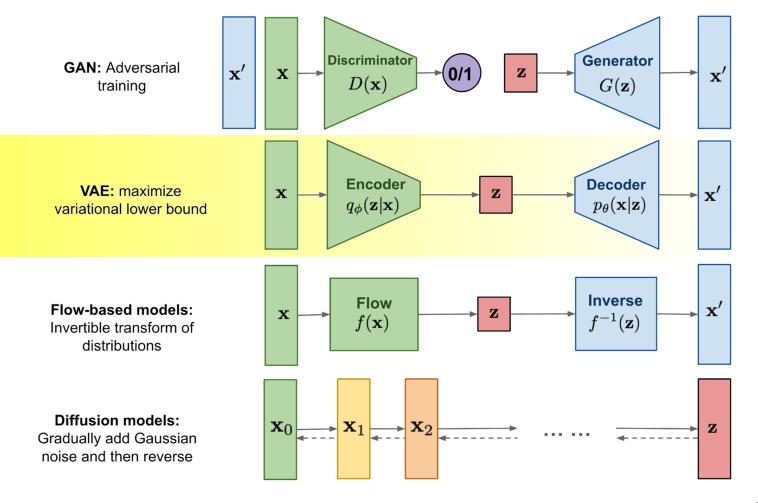
#uncertainty quantification

Deep Generative Models

- Can learn to generate new data that resembles a distribution \rightarrow Can encode uncertainties



- Advantages:
 - Relatively lower computational cost during both training & inference
 - Well-understood theoretical framework



Part 1 The "Probabilistic" U-Net

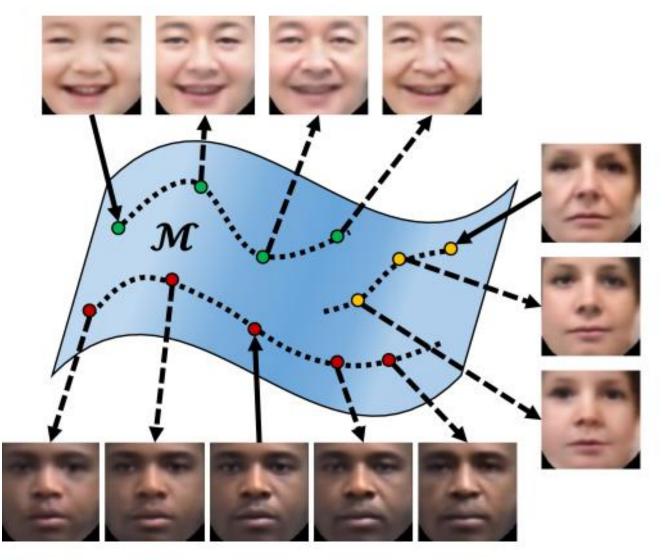
Autoencoder, VAE & cVAE U-Net Probabilistic U-Net Training Toy Problem 1: Source Reconstruction

Curse of Dimensionality

pixel space is overparameterized!

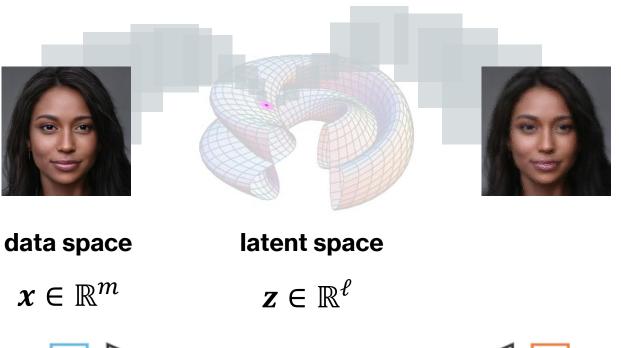
Manifold Hypothesis

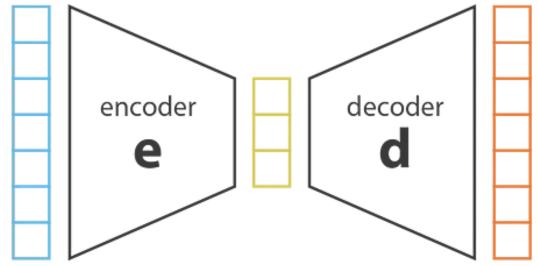
- Many real-world high-dim datasets lie along low-dim latent manifolds inside that space
- Manifold of valid human faces
 - If accessible, can easily draw samples from the distribution of valid faces



Latent Space

- Dimensionality lower than data space $(\ell < m)$
- Defined by the encoder & decoder

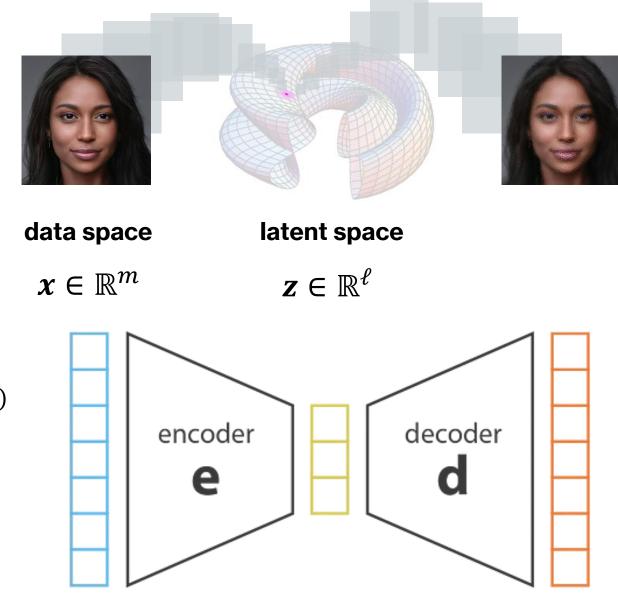




Latent Space

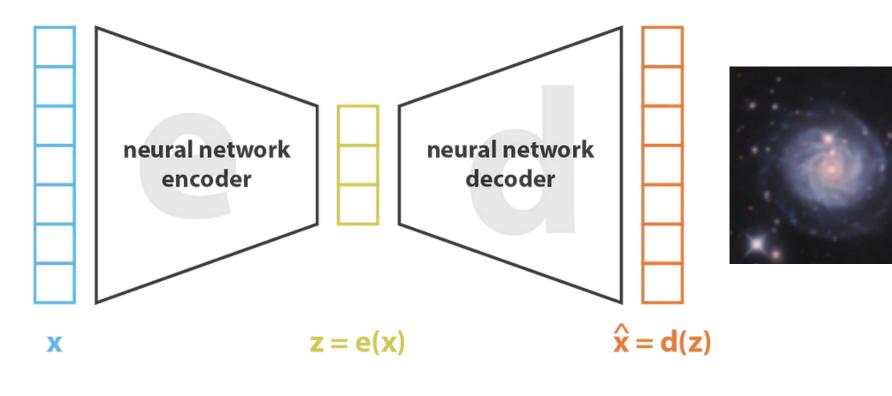
- Goal: Best encoder-decoder pair
 - keep maximum information
 - minimize reconstruction error
- Reconstructed Image: $\hat{x} \coloneqq d(e(x))$
- Examples of reconstruction error:
 - MSE $(x, \hat{x}) = ||x \hat{x}||^2$
 - BCE $(x, \hat{x}) = -\sum x_i \log \hat{x}_i + (1 x_i) \log(1 \hat{x}_i)$

#dimensionality_reduction
#representation_learning



11

Autoencoder



$$\mathcal{L}_{rec} = MSE(\mathbf{x}, \widehat{\mathbf{x}})$$

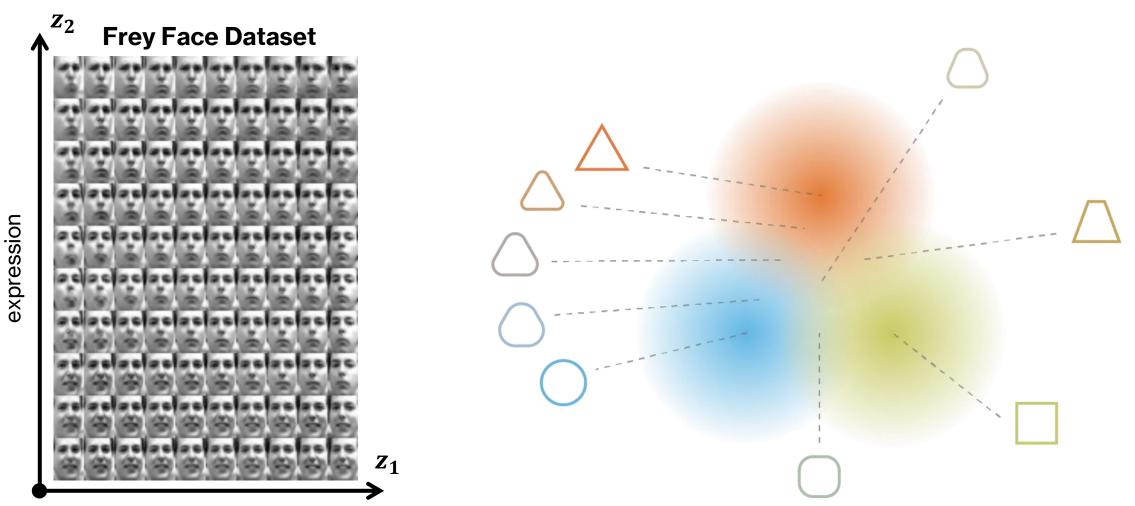
Problem: Irregular Latent Space

- Autoencoders only focus on reconstruction \rightarrow Don't care about the structure of latent space
 - Tend to learn punctual distributions
- Latent space should be **continuous** and **complete**



Credit: Joseph Rocca's Post: towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

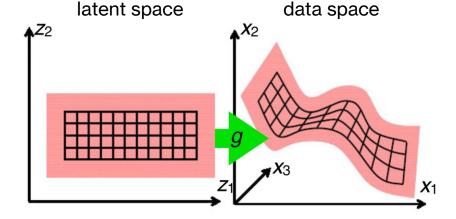
Ideal Latent Space



pose

Probabilistic Setup

- Learn a mapping from some latent distribution on z to a complicated distribution on x



- Sample from the prior distribution in latent space \rightarrow Map the sample to data space

 $p(\mathbf{z}) =$ something simple

 $p(\mathbf{x}|\mathbf{z})$ modeled by generator

- Learn representation such that the marginal data likelihood (evidence) is maximized:

$$p(\mathbf{x}) = \int p(\mathbf{x}, \mathbf{z}) d\mathbf{z}$$
 where $p(\mathbf{x}, \mathbf{z}) = p(\mathbf{x}|\mathbf{z}) p(\mathbf{z})$

Variational Inference

Problem:
$$p(x) = \int p(x, z) dz$$
 is intractable

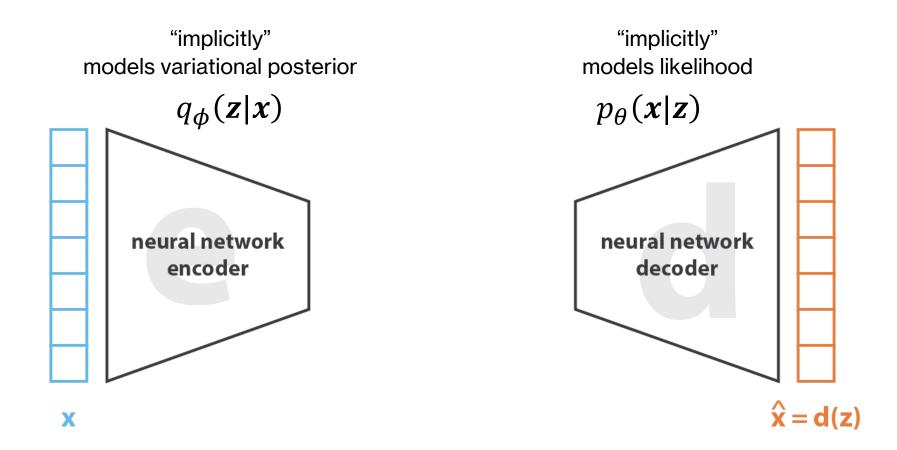
- Variational inference approach: Find a lower bound for the integral using an auxiliary distribution (q)

$$\ln p(\mathbf{x}) = \int q(\mathbf{z}|\mathbf{x}) \ln \left(\frac{p(\mathbf{x}, \mathbf{z})}{q(\mathbf{z}|\mathbf{x})}\right) d\mathbf{z} - \int \frac{\int q(\mathbf{z}|\mathbf{x})}{q(\mathbf{z}|\mathbf{x})} \ln \left(\frac{p(\mathbf{z}|\mathbf{x})}{q(\mathbf{z}|\mathbf{x})}\right) d\mathbf{z}$$
Evidence Lower BOund (ELBO) Variational Gap
$$\ln p(\mathbf{x}) \geq \underbrace{\text{ELBO}}_{\text{This is what we will try to maximize!}}$$

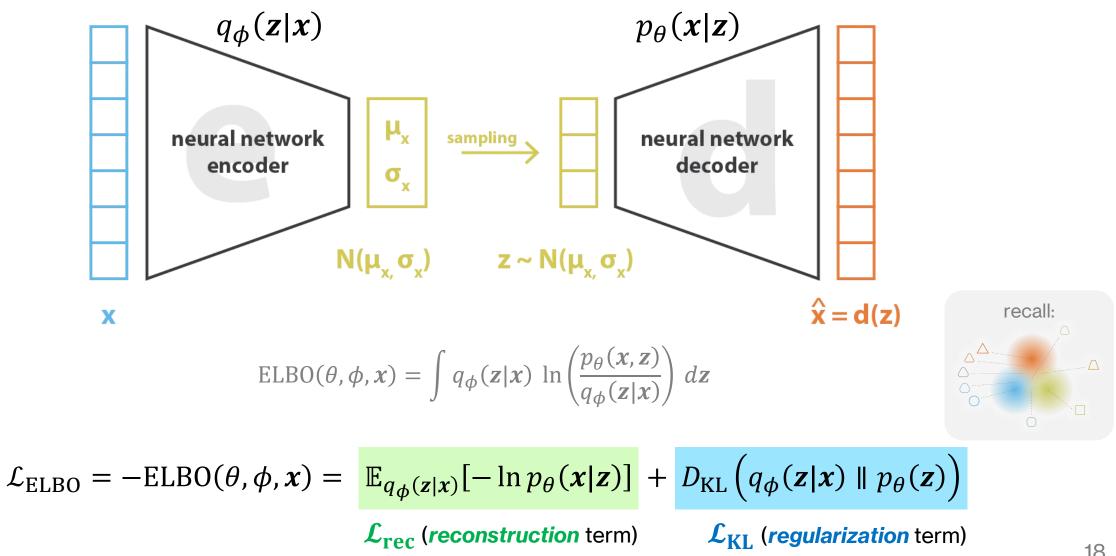
#approximate_inference

Variational Autoencoder

- Based on variational inference

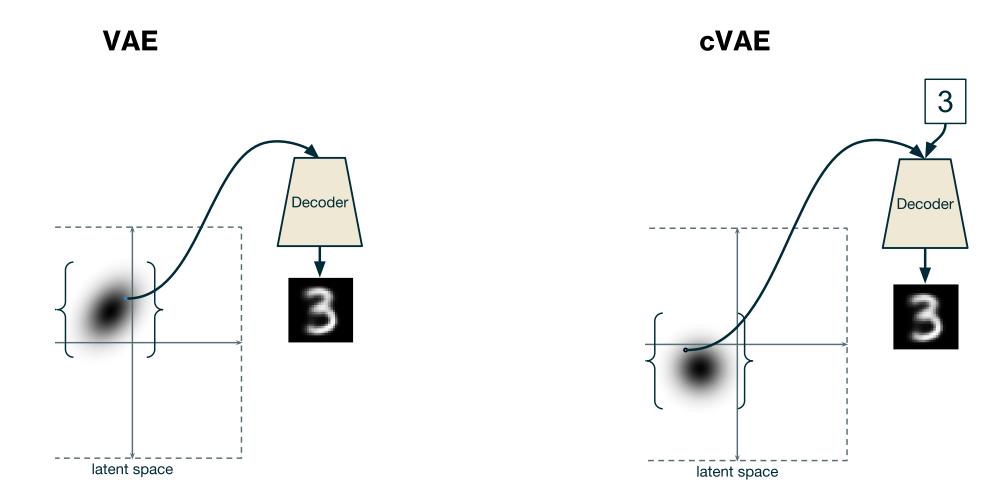


Variational Autoencoder



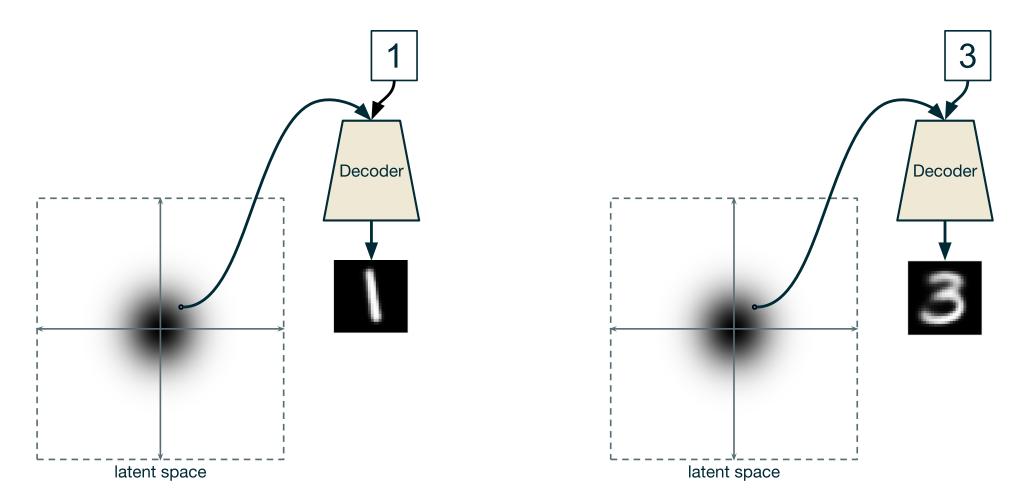
Conditional VAE

- How to generate samples of a particular class?

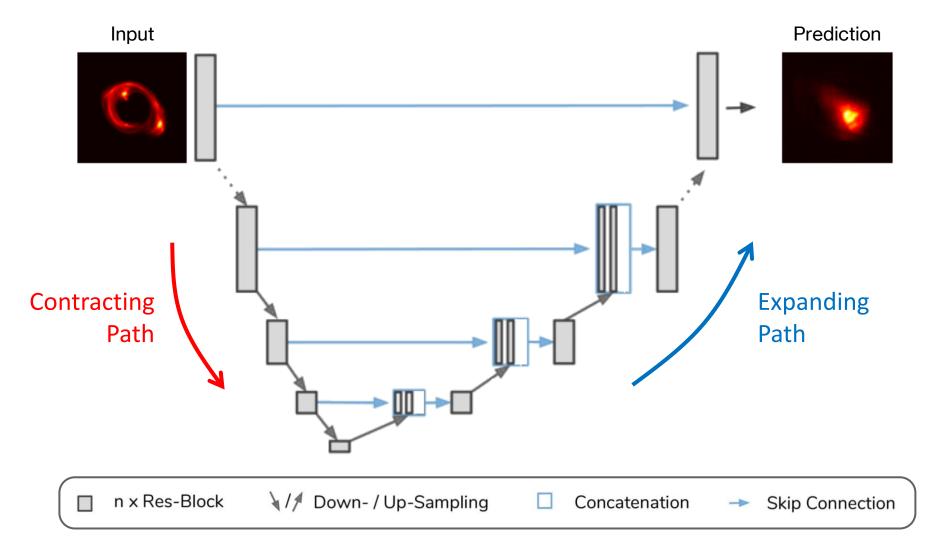


Conditional VAE

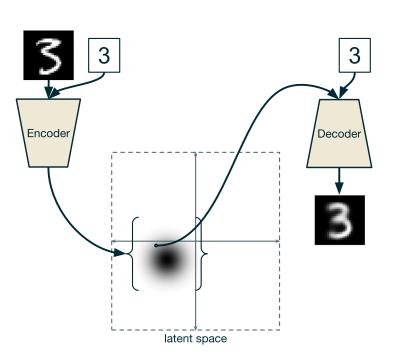
- Used to generate samples of a particular class on demand



- A type of convolutional neural network architecture \rightarrow learn image to image mapping



What We Have So Far



cVAE

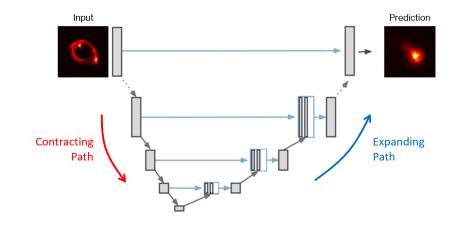
Input Prediction

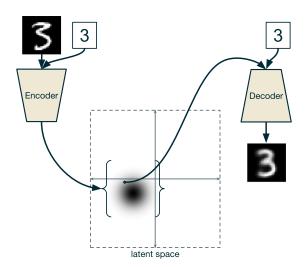
U-Net

a deep generative model to **generate new data** based on a noise vector and a set of conditional inputs a convolutional neural network to learn image to image mapping

What We Need

- Problem Space...
 - high-dimensional observations and parameters
 - noisy observations
 - a manifold of parameters consistent with a given observation instead of a deterministic prediction (underconstrained problem)
- We Need...
 - high-dimensional inference
 - quantify uncertainties
 - model variability



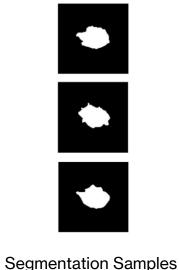


Applications

Model Output Variability

Training Set: 1 observation ↔ multiple predictions

Example: Different doctors assign different lesion areas on lung CT scans



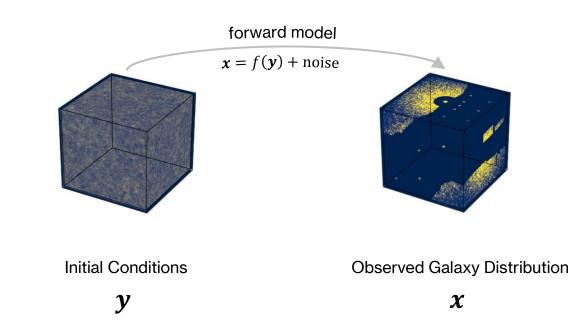
y

CT Scan

X

Inverse Problems Training Set: multiple observations ↔ 1 prediction

Example: Reconstruct the initial conditions of the Universe



Applications

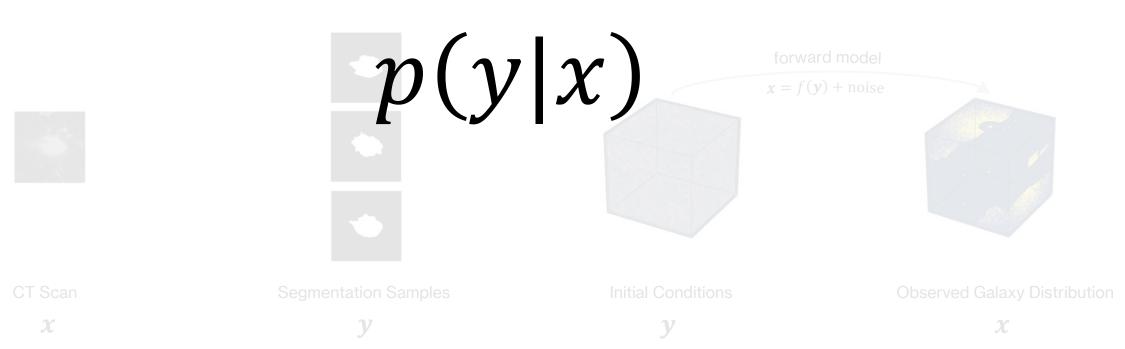
Model Output Variability

Inverse Problems

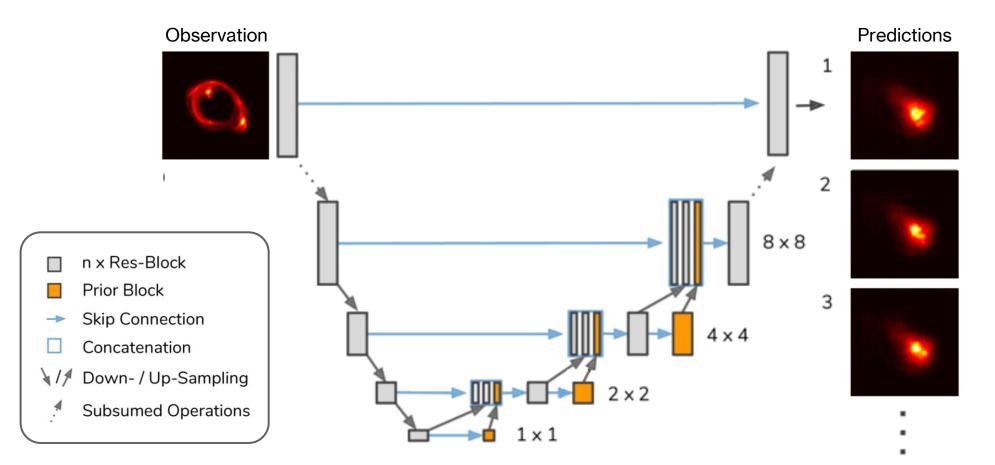
Training Set: 1 observation ↔ multiple predictions

Fraining Set: multiple observations \leftrightarrow 1 prediction

in both cases, we are interested in modelling



- Combination of cVAE & U-Net
- Latent spaces at several "scales" of the expanding path

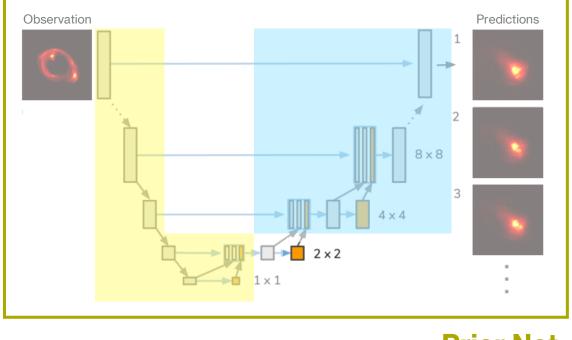


- Prior "conditioned" on the observation and latents of previous scales

$$\mathbf{z}_i \sim p(\mathbf{z}_i | \mathbf{z}_{< i}, \mathbf{x})$$

- Joint prior decomposes into priors of each scale

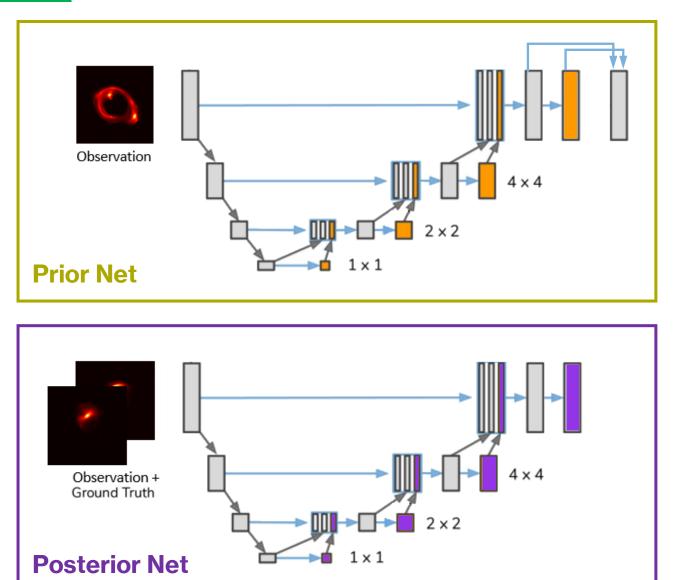
$$p(\mathbf{z}_0, \dots, \mathbf{z}_L \mid \mathbf{x}) = p(\mathbf{z}_L \mid \mathbf{z}_{< L}, \mathbf{x}) \cdot \dots \cdot p(\mathbf{z}_0 \mid \mathbf{x})$$



Prior Net

Question: Which part(s) resemble the VAE component that models

prior / likelihood / variational posterior?



Used in Training & Inference

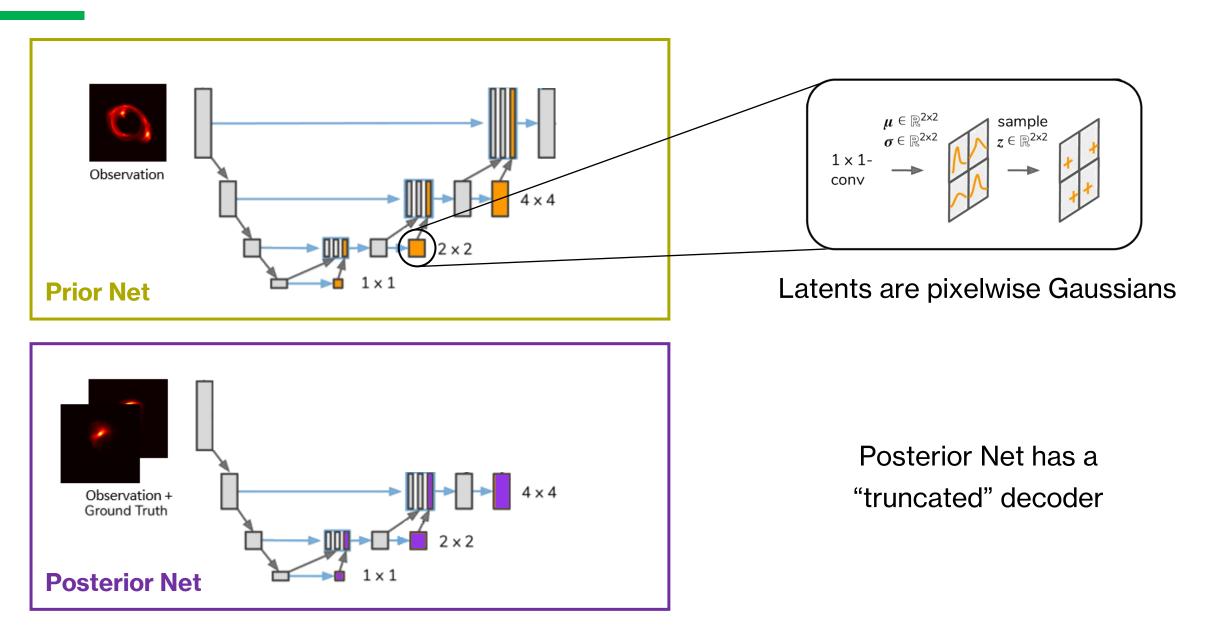
 $\mathbf{z}_i \sim p(\mathbf{z}_i | \mathbf{z}_{< i}, \mathbf{x})$

 $p(\mathbf{z}_0, \dots, \mathbf{z}_L \mid \mathbf{x}) = p(\mathbf{z}_L \mid \mathbf{z}_{< L}, \mathbf{x}) \cdot \dots \cdot p(\mathbf{z}_0 \mid \mathbf{x})$

Used in Training

$$\mathbf{z}_i \sim q(\mathbf{z}_i | \mathbf{z}_{< i}, \mathbf{x}, \mathbf{y})$$

 $q(\mathbf{z}_0, \dots, \mathbf{z}_L \mid \mathbf{x}, \mathbf{y}) = q(\mathbf{z}_L \mid \mathbf{z}_{< L}, \mathbf{x}, \mathbf{y}) \cdot \dots \cdot q(\mathbf{z}_0 \mid \mathbf{x}, \mathbf{y})$

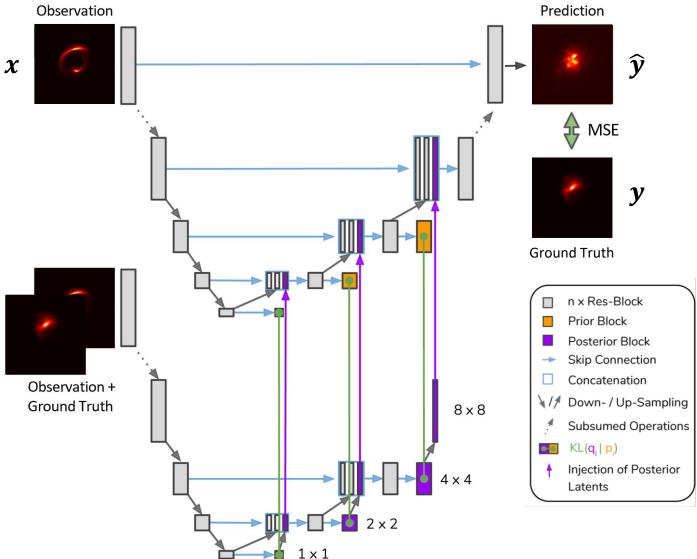


Training

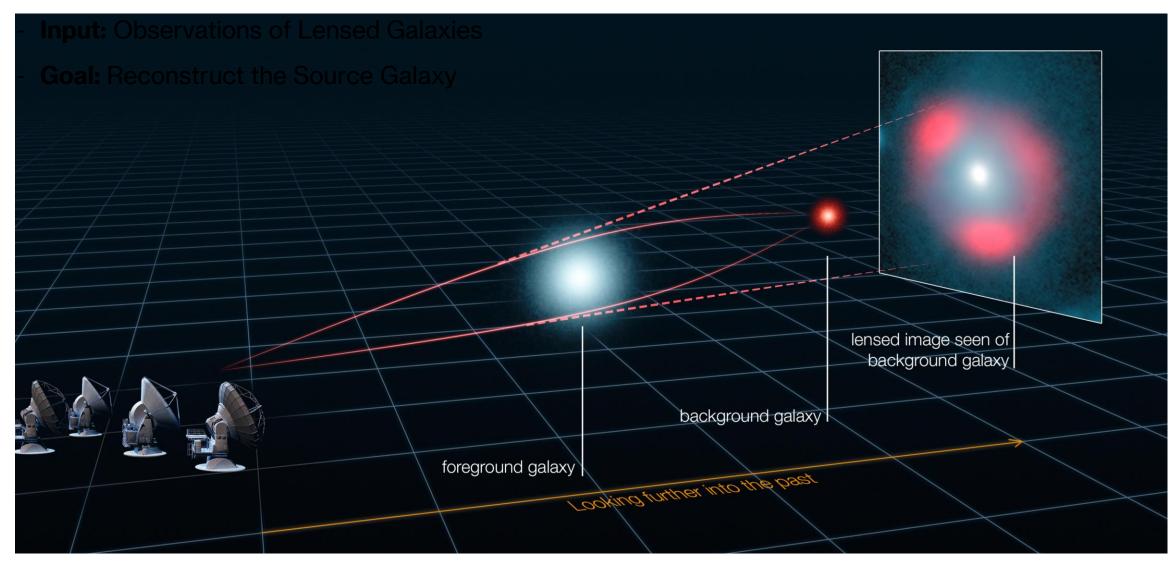
- Means and STDs predicted using both networks
 - Used to calculate KL
- Samples drawn from Posterior Net latents and inserted into the Prior Net
- Objective: Maximize evidence

$$\mathcal{L}_{\text{ELBO}} = \mathbb{E}_{\boldsymbol{z} \sim Q} \left[-\ln p(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{z}) \right]$$
$$+ \sum_{i=0}^{L} D_{\text{KL}} \left(q_i(\boldsymbol{z}_i \mid \boldsymbol{z}_{< i}, \boldsymbol{x}, \boldsymbol{y}) \parallel p_i(\boldsymbol{z}_i \mid \boldsymbol{z}_{< i}, \boldsymbol{x}) \right)$$

$$\mathcal{L}_{\text{ELBO}} = \mathcal{L}_{\text{rec}} + \mathcal{L}_{\text{KL}}$$



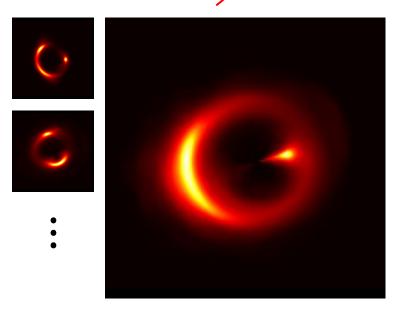
Toy Problem 1



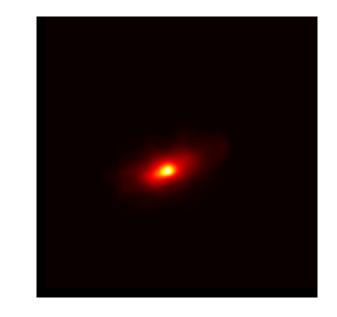
Credit: ALMA (ESO/NRAO/NAOJ), Luis Calçada (ESO), Yashar Hezaveh et al.

Toy Problem 1

Input: Observation of a Lens-Source System



Goal: Find the Undistorted Image of the Source Galaxy



- Different ways to lens the source galaxy \rightarrow Problem is underconstrained
- More Precise Goal: Draw samples from the posterior distribution of reconstructed source images

#source_reconstruction
#posterior_sampling

A Subtle Difference!

Variational Posterior

Defined in Latent Space

Parameters Posterior

Defined in Parameter Space

 $p(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{y})$

 $p(\mathbf{y}|\mathbf{x})$

we mean this when we say **posterior network**!

we mean this when we say **posterior sampling**!

 $x \in$ data space

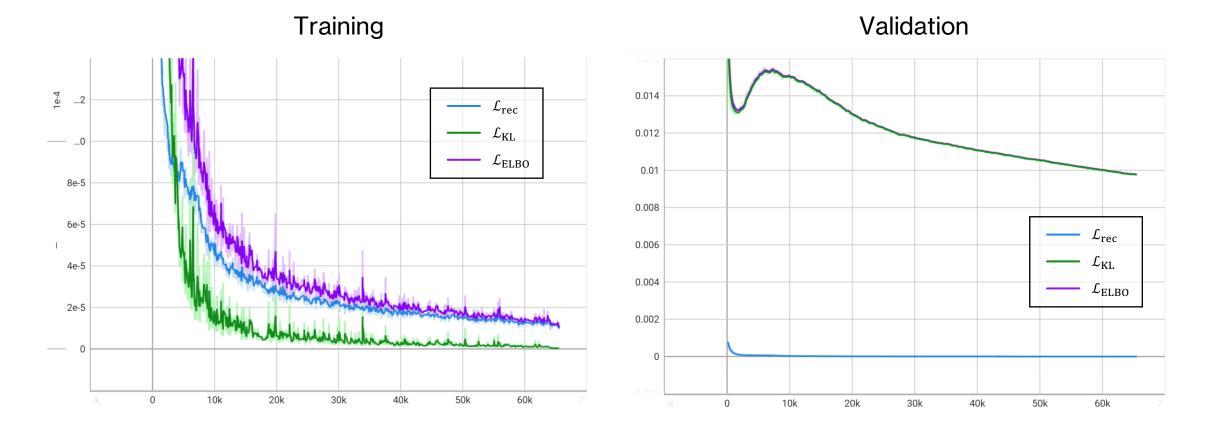
 $y \in$ parameter space

 $z \in latent space$

Part 2 Rescue the Randomness

KL Vanishing Problem ELBO Loss with β GECO Loss Toy Problem 2: One-hot Flipping

KL Vanishing Problem

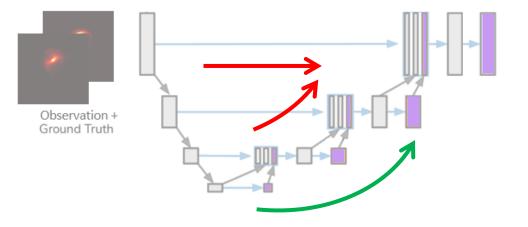


- KL Term vanishes early in the training due to non-informative latents
- Model ignores the cause of probabilistic behavior by setting respective weights to $0 \rightarrow$ Deterministic

KL Vanishing Problem

- KL Term vanishes early in the training due to non-informative latents
- Model ignores the cause of probabilistic behavior by setting respective weights to $0 \rightarrow$ Deterministic

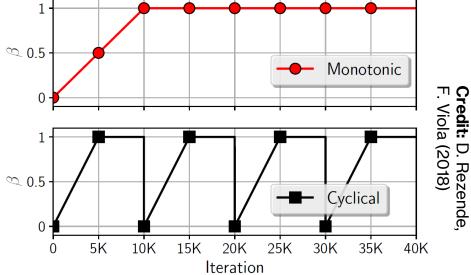
- Happens when two types of paths exist:
 - A. Latent Path: Conditioned on the latent space (same as VAEs)
 - **B. Leaky Path:** Does not pass through latent spaces; Leaks the ground truth information



ELBO with β

- Idea: Prevent the optimization scheme from caring too much about the KL term before having meaningful latents.
- Possible Approaches:
 - Set $0 < \beta < 1$
 - Start with $\beta = 0$ and Gradually Increase it (**Beta Annealing**)
 - Other ways of scheduling β (e.g., **Cyclical Schedule**)
- What is the best way to schedule β ?
 - Variety of choices
 - Depends on the specific problem

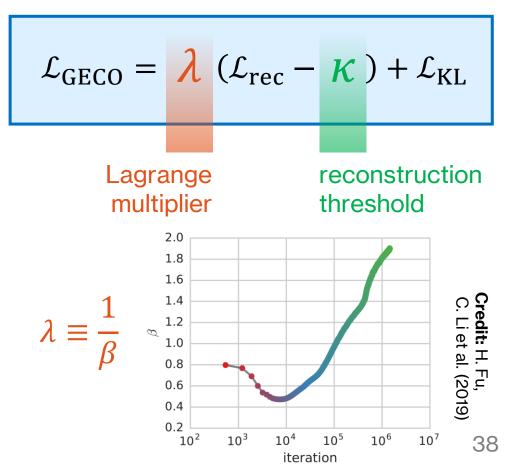
$$\mathcal{L}_{ELBO} = \mathcal{L}_{rec} + \beta \mathcal{L}_{KL}$$
governs the amount of regularization



GECO

- Generalized ELBO with Constrained Optimization
- Constrained Optimization Framework
 - Minimize the KL Term under a set of reconstruction constraints
- λ plays the role of $\beta \rightarrow$ automatically updated during training
 - (Usually) tend to focus on the reconstruction loss early in the training until it reaches κ;
 - Then moves the pressure over on the KL Term.
- Advantages:
 - Hyperparameter (κ) defined in data space \rightarrow More intuitive
 - β is updated automatically

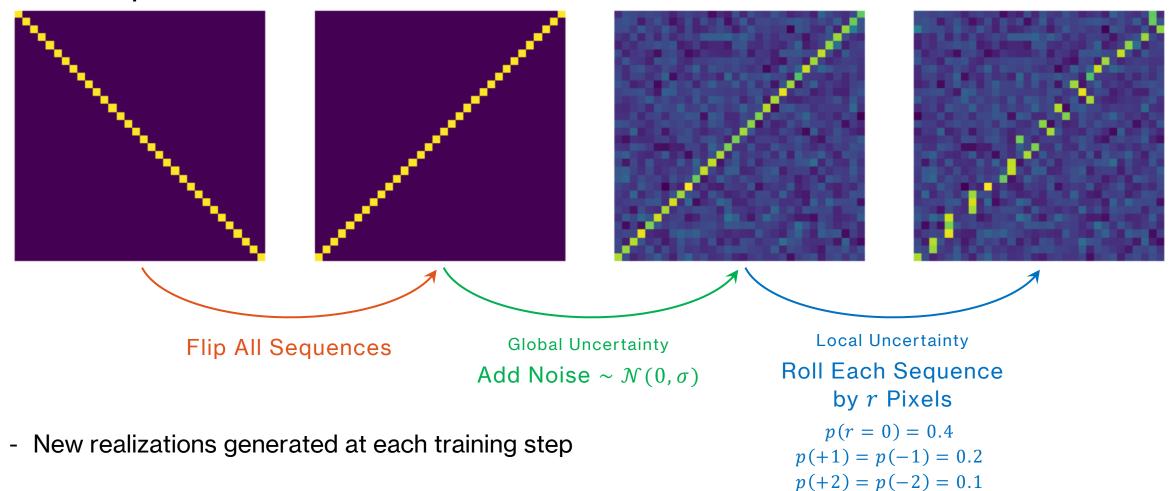
$$\mathcal{L}_{\text{ELBO}} = \mathcal{L}_{\text{rec}} + \beta \mathcal{L}_{\text{KL}}$$



Toy Problem 2

- Training Set: all 32-bit one-hot vectors

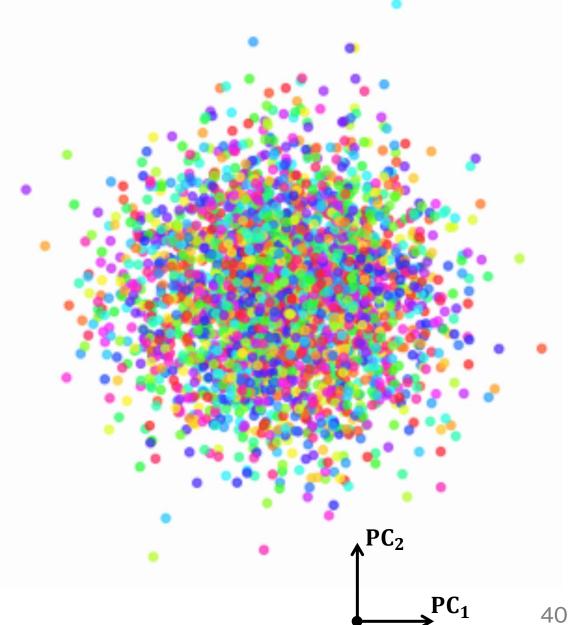
Input



Ground Truth

Visualizing Latents

- Assign a unique color to each input
- Sample a bunch of latent representations for each input
 - For an arbitrary scale of the Prob. U-Net
 - Can have many dimensions
- Plot the first two **principal components** (orthogonal directions with most variability)



"Advertisement" Inspecting Uncertainties

Coverage Probability Test

Don't Get Too Excited!

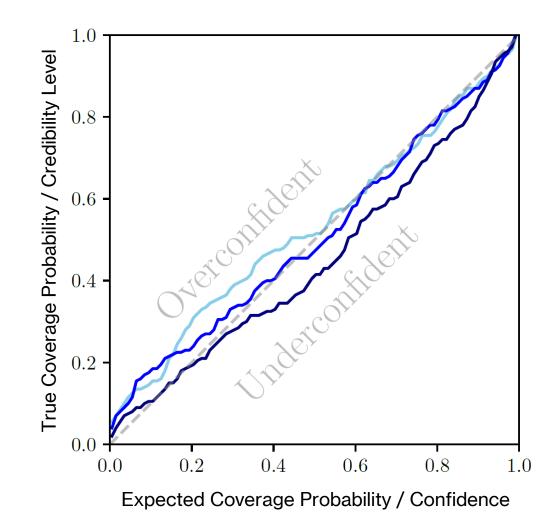
- Having a model with probabilistic behavior is not enough!
- Require comprehensive statistical analysis that goes beyond the model's assumptions
- To make sure uncertainties are appropriately quantified

DALL· E 's impression of **A Robot Thinking About Statistics**

Coverage Probability Test

High-level explanation:

- 1. Repeatedly sample from the model
- Calculate a confidence interval using samples (expected coverage)
- 3. Check if the true value falls within the interval
- 4. Repeat steps 1-3 for multiple "samples true value" combinations
- 5. Calculate the fraction of times that the true value falls within each confidence interval (true coverage)
- 6. Plot true coverage vs. expected coverage



Credit: Pablo Lemos et al. (2022)

Advertisement

Sampling-Based Accuracy Testing of Posterior Estimators for General Inference

Pablo Lemos^{1234*} Adam Coogan^{123*} Yashar Hezaveh¹²³ Laurence Perreault-Levasseur¹²³

arXiv: 2302.03026

- Method to estimate coverage probabilities of generative posterior estimators without posterior evaluations (by just using samples).
- Necessary and sufficient to show that a posterior estimator is optimal.
- pip-installable package on the way!

Thank You For Your Attention!

Contact: hadi.sotoudeh@umontreal.ca

Collaborators: Laurence Perreault-Levasseur, Pablo Lemos, Ève Campeau-Poirier, Charles Wilson, Alexandre Adam

This work was made possible through the generous support of:

To Read More...

- Prob. U-Net: Kohl, S. A. A., "A Probabilistic U-Net for Segmentation of Ambiguous Images", arXiv: 1806.05034 🔗
- Hierarchical Prob. U-Net: Kohl, S. A. A., "A Hierarchical Probabilistic U-Net for Modeling Multi-Scale Ambiguities", arXiv: 1905.13077
- KL Vanishing and Cyclical β: Fu, H., Li, C., Liu, X., Gao, J., Celikyilmaz, A., and Carin, L., "Cyclical Annealing Schedule: A Simple Approach to Mitigating KL Vanishing", arXiv: 1903.10145
- GECO: Jimenez Rezende, D. and Viola, F., "Taming VAEs", arXiv: 1810.00597 🔗
- Coverage Test: Lemos, P., Coogan, A., Hezaveh, Y., and Perreault-Levasseur, L., "Sampling-Based Accuracy Testing of Posterior Estimators for General Inference", arXiv: 2302.03026 *O*
- VAEs: Rocca, J., Blog Post on "Understanding Variational Autoencoders (VAEs)", 🔗
- Conditional VAEs: Dykeman, I., Blog Post on "Conditional Variational Autoencoders", *O*