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Uncertainty Matters

- Every physical measurement is meaningful with an uncertainty estimate.
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Deep Learning for Physical Discoveries

- Traditional deep learning methods — No uncertainty estimate

- Physical applications require models capable
e . CMB
of quantifying uncertainties. LOCAL UNIVERSE
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Deep Generative Models

- Can learn to generate new data that resembles a distribution - Can encode uncertainties

GAN: Adversarial / Discriminator Generator

training

D(x)

G(z)

VAE: maximize X m oz Jﬁ

Yy

Y

variational lower bound q¢(z|x) ; ; po(x|2)

Inverse
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Y

X = > Z > _1
Invertible transform of f(x) f(2)
distributions

Diffusion models:_ X0 . X1 - X9 > EE—
Gradually add Gaussian === == [ -------- PR -

noise and then reverse
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- Advantages:

- Relatively lower computational

cost during both training &

inference

Well-understood
framework

theoretical

Prob. U-Net

GAN: Adversarial /

Discriminator

Generator

X X > z >
training D(x) G(z)

N e = Encoder % Decoder i
variational lower bound _’pg(XlZ)
Flow-based models: Xl Flow . Z > Inllfrse >
Invertible transform of f(x) [ (=)

distributions
Diffusion models:. X0 - X1 - Xo .

Gradually add Gaussian - *+--1 T[e-------- Tt -
noise and then reverse
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Part 1
The “Probabilistic”’ U-Net

Autoencoder, VAE & cVAE
U-Net

Probabilistic U-Net
Training

Toy Problem 1: Source Reconstruction



Curse of Dimensionality

pixel space is overparameterized!



Manifold Hypothesis

- Many real-world high-dim datasets lie e D e B
along low-dim latent manifolds inside
that space

- Manifold of valid human faces

- If accessible, can easily draw samples
from the distribution of valid faces

Credit: Zhifei Zhang et al. (2017)



Latent Space

- Dimensionality lower than data
space (£ < m)

- Defined by the encoder & decoder

data space latent space

x € R™ z € R?
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encoder

P

/

decoder

d
\
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Latent Space

- Goal: Best encoder-decoder pair
- keep maximum information

- minimize reconstruction error
- Reconstructed Image: x := d(e(x))

- Examples of reconstruction error:
- MSE(x, %) = ||lx — %||*
- BCE(x, X) = — ), x;logx; + (1 —x;) log(1—X%;)

#dimensionality_reduction

#representation_learning

data space latent space
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encoder
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Autoencoder

T~

neural network
encoder

/

/

neural network
decoder

\ﬁ

Lrec = MSE(x, X)
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Problem: Irregular Latent Space

- Autoencoders only focus on reconstruction — Don’t care about the structure of latent space

- Tend to learn punctual distributions

- Latent space should be continuous and complete
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Credit: Joseph Rocca’s Post: towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73



expression

Ideal Latent Space

Frey Face Dataset
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Probabilistic Setup

latent space data space
AZ2 X2

- Learn a mapping from some latent distribution on z to a

complicated distribution on x

- Sample from the prior distribution in latent space —» Map the sample to data space

p(z) = something simple p(x|z) modeled by generator

- Learn representation such that the marginal data likelihood (evidence) is maximized:

p(x>=j p(x,z2)dz  where p(x2) = p(x|z) p(2)

likelihood prior



Variational Inference

Problem: p(x) = f p(x,z) dz isintractable

- Variational inference approach: Find a lower bound for the integral using an auxiliary distribution (q)

variational true
posterior posterior

Inp(x) = Jq(z|x) In (p(x’z)> dz —Jq(z|x) 1n< p(z|x) ) dz

q(z|x) q(z|x)

Evidence Lower BOund (ELBO) Variational Gap

-

Inp(x) = \ELBO

#approximate_inference This is what we will try to maximize!
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Variational Autoencoder

- Based on variational inference

“implicitly” “implicitly”
models variational posterior models likelihood
q¢(z|x) po(x|z)
neural network neural network
encoder decoder

— \ﬁ



Variational Autoencoder

%

neural network
encoder

/

decoder
x=d(z)
ELBO(6, ¢, x) = f qy(z|x) In <ZZ((Z|3> dz R

Lg1go = —ELBO(8, ¢, x) =

neural network

Eq, a0 l— npo (K12)] + Dyt (q5(21%) 1 pg(2))

L ..o (reconstruction term) L. (regularization term)
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Conditional VAE

- How to generate samples of a particular class?

VAE

cVAE

Decoder

________________________

latent space

latent space

Credit: Isaac Dykeman's Personal Blog: iidykeman.github.io

Decoder

19



Conditional VAE

- Used to generate samples of a particular class on demand

Decoder

!
3

Decoder

__________________________________________

latent space latent space

Credit: Isaac Dykeman's Personal Blog: iidykeman.github.io 20



U-Net

- A type of convolutional neural network architecture — learn image to image mapping

Input Prediction

Contracting ] Expanding
Path _ I] Path

[D n x Res-Block % /# Down-/Up-Sampling . Concatenation Skip Connection ]




What We Have So Far

cVAE

Decoder
! H
! 1
! 1
! 1
1

______________________

latent space

a deep generative model to generate new data
based on a noise vector and a set of conditional inputs

U-Net

Input Prediction

a I
R f

Contracting Expanding

Path D)m : Path
b} >

a convolutional neural network to learn
image to image mapping
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What We Need

- Problem Space... .H H .

- high-dimensional observations and parameters

- noisy observations

Expanding
Path

Contracting
Path

- a manifold of parameters consistent with a given
observation instead of a deterministic prediction
(underconstrained problem)

- We Need...

- high-dimensional inference

- quantify uncertainties

- model variability

1
1 1
1 1
1 1
latent space 2 3



Applications

Model Output Variability Inverse Problems
Training Set: 1 observation & multiple predictions Training Set: multiple observations < 1 prediction
Example: Different doctors assign different Example: Reconstruct the initial conditions of
lesion areas on lung CT scans the Universe

forward model

x = f(¥) + noise

CT Scan Segmentation Samples Initial Conditions Observed Galaxy Distribution
X y y X

24



Applications

INn both cases, we are interested in modelling

p(y|x)

25



Prob. U-Net

- Combination of cVAE & U-Net

- Latent spaces at several “scales” of the expanding path

Observation Predictions
M ] 1
—p
.*‘ 2
4 I 8x8
[ nxRes-Block
[ Prior Block 3

Skip Connection
. 4 x4
Concatenation ||
% /# Down-/ Up-Sampling 52
X
..4 Subsumed Operations I;u
\_ ) 1x1

Credit: Simon Kohl et al. (2019) - Figure taken with modification.




Prob. U-Net

Observation

- Prior “conditioned” on the observation and latents
of previous scales .

z; ~ p(z;|z<;, x)

- Joint prior decomposes into priors of each scale

p(zg, ...z, | x) = p(z,| z<p, %) - .- (20| X)

-0

D». 2x2

1x1

1
—
. 2
] H B8x8
4 x4

Predictions

| .

Prior Net

Question: Which part(s) resemble the VAE component that models

prior / likelihood / variational posterior?
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Prob. U-Net

Observation

o B

L J

— 2x2
Prior Net ~a 1xd
Observation + B 4 x4
Ground Truth
— 2x2
T 1x1

Posterior Net

Used in Training & Inference
z; ~ p(zi|z<;, x)

p(ZO, w2y | x) - p(le Z.g, x) C et p(Z()l x)

Used in Training
Z; ~ Q(zilz<i1xry)
q(zg, ...z, | x,Y) = q(Z| 21, x,Y) - ... q(Zo| X, ¥)
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Prob. U-Net

Observation

Prior Net "

/ u € E‘%sz Sample
1x1- ’ ’
conv ’ ’

Latents are pixelwise Gaussians

Observation +
Ground Truth

Posterior Net

| J

1x1

s I

2x?2

Posterior Net has a
“truncated” decoder
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Training

Observation Prediction

- Means and STDs predicted using both

e

networks

- Samples drawn from Posterior Net m H
latents and inserted into the Prior Net D/v
]l El Ground Truth

I
- /[j n x Res-Block )

[ Prior Block

B Posterior Block
Skip Connection

| —'. j\,
- Used to calculate KL 4 @
R MSE
. g

N\

- Objective: Maximize evidence

Lgrgo = Ezol—Inp(y | x,2)]

Concatenation

Observation +
Ground Truth 8x8 %/# Down-/Up-Sampling

L
+Z DKL(qi(Zi | Zoi) X, y) I pi(zi | Z<ilx)) # Subsumed Operations
i=0 Bl Klq,

[l ] I:l 4x4 4 Injectionlof Posterior
\_ Latents y
Lego = Lrec T LxL "! g

1x1
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Toy Problem 1

lensed image seen of
background galaxy

background galaxy

foreground galaxy //

RO R I\

——r

S

TN

Credit: ALMA (ESO/NRAO/NAOQOJ), Luis Calcada (ESO), Yashar Hezaveh et al.




Toy Problem 1

Input: Observation of a Lenis-Source System Goal: Find the Undistorted Image of the Source Galaxy

- Different ways to lens the source galaxy — Problem is underconstrained

- More Precise Goal: Draw samples from the posterior distribution of reconstructed source images

#source_reconstruction

#posterior_sampling

32



A Subtle Difference!

Variational Posterior

Defined in Latent Space

p(z|x,y)

we mean this when we say
posterior network!

Parameters Posterior

Defined in Parameter Space

p(y|x)

we mean this when we say
posterior sampling!

X € data space Yy € parameter space

Z € |latent space

33



Part 2
Rescue the Randomness

KL Vanishing Problem

ELBO Loss with g

GECO Loss

Toy Problem 2: One-hot Flipping




KL Vanishing Problem

Training Validation
v 0.014
2
= - Lrec
B L1, 0.012
L
ELBD 0.01
8e-5
0.008
6e-5 r
| 0.006 rec
45 Ly
0.004
A LELBO
25 AR R N
VRIS AN el 0.002
0 0 N
0 10k 20k 30k 40k 50k 60k 0 10k 20k 30k 40k 50k 60k

- KL Term vanishes early in the training due to non-informative latents

- Model ignores the cause of probabilistic behavior by setting respective weights to O —» Deterministic



KL Vanishing Problem

- KL Term vanishes early in the training due to non-informative latents

- Model ignores the cause of probabilistic behavior by setting respective weights to O - Deterministic

- Happens when two types of paths exist:

— il

B. Leaky Path: Does not pass through latent spaces; Observation + D HHH U D
L]
-

Ground Truth
Leaks the ground truth information || e
g

A. Latent Path: Conditioned on the latent space (same as VAES)

36



ELBO with g

- ldea: Prevent the optimization scheme from caring too much
about the KL term before having meaningful latents.

- Possible Approaches:
- Set0<pf <1
- Start with § = 0 and Gradually Increase it (Beta Annealing)

- Other ways of scheduling f (e.g., Cyclical Schedule)

- What is the best way to schedule 7?
- Variety of choices

- Depends on the specific problem

Leigo = Lrect+ [0 Lki

—@— Monotonic
—— Cyclical

0 5K 10K 15K 20K 25K 30K 35K 40K
lteration

(8L02) BIOIA "4
‘Dpuazay 'q :Mpa41)

OV
~



GECO

Generalized ELBO with Constrained Optimization

Constrained Optimization Framework

- Minimize the KL Term under a set of reconstruction constraints

A plays the role of f —» automatically updated during training

- (Usually) tend to focus on the reconstruction loss early in the
training until it reaches k;

- Then moves the pressure over on the KL Term.

Advantages:
- Hyperparameter (i) defined in data space — More intuitive

- [f is updated automatically

Leigo = Lrect [0 Lki

Leeco = A Lrec — K) + Lxi

Lagrange reconstruction
multiplier threshold

2.0
1.8
1.6
1 1.4
1.2
P 1.0
[3 0.8
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0.4

0.2
10?2 10° 10% 10° 10° 107
iteration

N
I

N4 "H HPaID

(6L02) 218170

W
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Toy Problem 2

- Training Set: all 32-bit one-hot vectors

Input Ground Truth

Flip All Sequences Global Uncertainty Local Uncertainty
Add Noise ~ NV (0, 0) Roll Each Sequence
by r Pixels
p(r=0)=0.4

- New realizations generated at each training step p(+1) = p(=1) = 0.2

p(+2) =p(=2)=10.1 39



Visualizing Latents

- Assign a unique color to each input

- Sample a bunch of latent representations for
each input °

- For an arbitrary scale of the Prob. U-Net

- Can have many dimensions

- Plot the first two principal components
(orthogonal directions with most variability)

40



“Advertisement”
Inspecting Uncertainties

‘ Coverage Probability Test

_ \\\\\



Don’t Get Too Excited!

- Having a model with probabilistic behavior is not enough!

- Require comprehensive statistical analysis that goes
beyond the model's assumptions

- To make sure uncertainties are appropriately quantified

DALL- E’ s impression of
A Robot Thinking About Statistics

42



Coverage Probability Test

High-level explanation:

1.

2.

Repeatedly sample from the model

Calculate a confidence interval using samples
(expected coverage)

Check if the true value falls within the interval

Repeat steps 1-3 for multiple “samples - true value”
combinations

Calculate the fraction of times that the true value
falls within each confidence interval (true coverage)

Plot true coverage vs. expected coverage

True Coverage Probability / Credibility Level

1.0

0.8 -

0.6 -

0.4 1

0.2 -

0.0 -
0.0

0.2 0.4 0.6 0.8 1.0
Expected Coverage Probability / Confidence

Credit: Pablo Lemos et al. (2022)
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s} Advertisement

Sampling-Based Accuracy Testing of Posterior Estimators for General
Inference

1234% 123

3 e
3% Yashar Hezaveh ' 2° Laurence Perreault-Levasseur

Pablo Lemos Adam Coogan '’

arXiv: 2302.03026

- Method to estimate coverage probabilities of generative posterior estimators without posterior
evaluations (by just using samples).

- Necessary and sufficient to show that a posterior estimator is optimal.

- pip-installable package on the way!
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- Thank You For
Your Attention!

Contact: hadi.sotoudeh@umontreal.ca

Col‘laborators: Laurence Perreault-Levasseur, Pablo Lemos,
Eve Campeau-Poirier, Charles Wilson, Alexandre Adam
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To Read More...

Prob. U-Net: Kohl, S. A. A., “A Probabilistic U-Net for Segmentation of Ambiguous Images”, arXiv: 1806.05034 &

Hierarchical Prob. U-Net: Kohl, S. A. A., “A Hierarchical Probabilistic U-Net for Modeling Multi-Scale Ambiguities”,
arXiv: 1905.13077 &

KL Vanishing and Cyclical fB: Fu, H., Li, C., Liu, X,, Gao, J., Celikyilmaz, A., and Carin, L., “Cyclical Annealing
Schedule: A Simple Approach to Mitigating KL Vanishing”, arXiv: 1903.10145 &

GECO: Jimenez Rezende, D. and Viola, F., “Taming VAES”, arXiv: 1810.00597 &

Coverage Test: Lemos, P., Coogan, A, Hezaveh, Y., and Perreault-Levasseur, L., “Sampling-Based Accuracy
Testing of Posterior Estimators for General Inference”, arXiv: 2302.03026 &

VAEs: Rocca, J., Blog Post on “Understanding Variational Autoencoders (VAEs)”, &

Conditional VAEs: Dykeman, |., Blog Post on “Conditional Variational Autoencoders”, &


https://arxiv.org/abs/1806.05034
https://arxiv.org/abs/1905.13077
https://arxiv.org/abs/1903.10145
https://arxiv.org/abs/1810.00597
https://arxiv.org/abs/2302.03026
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://ijdykeman.github.io/ml/2016/12/21/cvae.html
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