Universality, history, and circumstance: On the structure and boundary of CDM halos

Benedikt Diemer

ITC Fellow, Harvard-Smithsonian Center for Astrophysics

Quantifying and understanding the galaxy-halo connection • KITP • 05/16/17

Efstathiou et al. 1981/1985/1988 • Klypin & Shandarin 1983 • Frenk et al. 1983/1985/1988 • Davis et al. 1985

Jenkins et al. 1998

Jenkins et al. 1998 • Moore et al. 1999 • Diemand et al. 2005 • Springel et al. 2005/2008 • Klypin et al. 2011

89 Mpc

Simulation: Benedikt Diemer (Gadget2)

Visualization code: Philip Mansfield

11 Mpc

Not talking about...

Halo finding, subhalos, and numerical issues Number of halos (mass function) Position of halos (correlation function, assembly bias...) Baryonic effects & hydro sims

Talking about...

What do we mean by "halo"?

Which structural properties do we use for the galaxy-halo connection?

Navarro et al.1995/1996/1997/2004

Navarro-Frenk-White profile

Navarro et al. 1995/1996/1997

Shape

Cole & Lacey 1996 • Jing & Suto 2002 • Allgood et al. 2006 • Despali et al. 2014

Spin

Peebles 1969 • Warren et al. 1992 • Bullock et al. 2001 • van den Bosch et al. 2002 • Mo et al. 1998 Teklu et al. 2015 • Genel et al. 2015 • Zavala et al. 2016 • Somerville et al. 2017 • Benson 2017

Mass accretion history

Lacey & Cole 1993

Jiang & van den Bosch 2016

Press & Schechter 1974 • Davis et al. 1985 • Lacey & Cole 1993 • Behroozi et al. 2013

Dalal et al. 2008 • Mc Bride et al. 2009

Mass accretion history

e.g., Bullock et al. 2001 • Wechsler et al. 2002 • Lu et al. 2006 • Dalal et al. 2008 • Ludlow et al. 2013

Particle orbits

Mass accretion history

Wechsler et al. 2002

Navarro et al. 1997 • Bullock et al. 2001 • Eke et al. 2001 • Wechsler et al. 2002 Zhao et al. 2009 • Giocoli et al. 2012 • Ludlow et al. 2013

Mass accretion history

Navarro et al. 1997 • Bullock et al. 2001 • Eke et al. 2001 • Wechsler et al. 2002 Zhao et al. 2009 • Giocoli et al. 2012 • Ludlow et al. 2013

Halo properties used in the G-H connection

Halo property	SHAM	SHAM+	HOD	SAM
Density profile	×	×	\checkmark	~
Shape / ellipticity	×	×	×	×
Spin	×	~	×	\checkmark
Concentration	×	~	\checkmark	~
Mass accretion history	×	\checkmark	×	\checkmark
Vmax	\checkmark	\checkmark	×	\checkmark
Mass / radius	\checkmark	\checkmark	\checkmark	\checkmark

SHAM: e.g. Kravtsov et al. 2004 • Tasitsiomi et al. 2004 • Vale & Ostriker 2004 • Conroy et al. 2006
 Conroy & Wechsler 2009 • Moster et al. 2010 • Behroozi et al. 2013 • Reddick et al. 2013

SHAM+: e.g. Hearin & Watson 2013 • Lehmann et al. 2016

HOD: e.g. Peacock & Smith 2000 • Seljak 2000 • Berlind & Weinberg 2002 • Zehavi et al. 05

SAM: Leauthaud et al. 2011
 e.g. Kauffmann et al. 1993 • Somerville et al. 2001 • Bower et al. 2006 • Guo et al. 2010
 Benson 2012 • Henriques et al. 2015 • Croton et al. 2016

R_{500c}

The "virial" radius

W = -2K $\rightarrow R_{vir} = 1/2 R_{max}$ $\rightarrow \Delta_{vir} = 18 \pi^2 = 178$

Gunn & Gott 1972 • Peebles 1980 • Lacey & Cole 1993 • Cole & Lacey 1996

Diemand et al. 2007 • Cuesta et al. 2008 • Diemer et al. 2013 • Zemp 2014 More et al. 2015 • Wetzel & Nagai 2015

Influence on other halos

Alternative radius / mass definitions

Friends-of-friends mass

Arbitrarily chosen linking length, results depend on resolution and concentration Can erroneously include neighboring halos

Radius where $v_r = 0$ (turn-around radius)

Hard to measure observationally

Why should all infalling matter be part of the halo?

All mass that has ever been in the halo

Impossible to measure observationally

Can particles not truly leave a halo? What about backsplash halos?

ORIGAMI

Impossible to measure observationally

Theoretically quite complicated

Davis et al. 1985 • White 2001 • Cuesta et al. 2008 • More et al. 2011 Anderhalden & Diemand 2011 • Falck et al. 2012

Fillmore & Goldreich 1984 • Bertschinger 1985 • Lu et al. 2006 • Diemand & Kuhlen 2008 Vogelsberger et al. 2011 • Lithwick & Dalal 2011 • Adhikari et al. 2014

The Splashback Radius

Fillmore & Goldreich 1984 • Bertschinger 1985 • Diemand & Kuhlen 2008 Vogelsberger et al. 2011 • Lithwick & Dalal 2011 • Adhikari et al. 2014 • Diemer & Kravtsov 2014

The Splashback Radius

Low accretion rate

High accretion rate

Diemer & Kravtsov 2014 • More, Diemer & Kravtsov 2015

The Splashback Radius

Mass accretion rate

More, Diemer & Kravtsov 2015

R_{sp} and the galaxy-halo connection

Effect of using R _{sp}	SHAM	SHAM+	HOD	SAM
Environment-dependent change in halo mass	\checkmark	\checkmark	\checkmark	×
Different subhalo statistics	~	~	×	\checkmark
Different mass accretion histories	×	~	×	\checkmark

Observations Surhud's talk (Monday)

Shell finding Phil's talk (Friday)

Particle orbit tracking

Initial splashback papers: Observational papers:

papers: Diemer & Kravtsov 2014 • Adhikari et al. 2014 • More, Diemer & Kravtsov 2015
pers: More et al. 2016 • Tully 2015 • Patej & Loeb 2016 • Adhikari et al. 2016
Umetsu & Diemer 2017 • Zu et al. 2017 • Busch & White 2017 • Baxter et al. 2017
finding: Mansfield, Kravtsov & Diemer 2017
king: Diemer 2017 • Diemer et al. 2017

Splashback shell finding: Particle orbit tracking:

SPARTA

- Subhalo and PARticle Trajectory Analysis
- Framework for tracking orbits in particlebased simulations
- MPI-parallelized, pure C

What do the orbits look like?

Diemer & Facio 2017 • The Fabric of the Universe

Conclusions

- The structure of CDM halos is not a solved problem
- The most important quantities for the galaxy-halo connection, radius and mass, depend on definition
- The **splashback radius** represents a physically motivated halo boundary