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Redshift-Space Galaxy Clustering

Small scales:  FoG
    galaxy kinematics inside  
    virtualized structures (halos)

Large scales: Kaiser effect
    structure growth rate

The simple model is not accurate.



High Precision Galaxy Clustering Measurements



~ accuracy of 
analytic models of 
real-space 2PCFs
(e.g., Tinker+05, 

van den Bosch+13)

High Precision Galaxy Clustering Measurements



• non-linear evolution of 
matter power spectrum

• scale dependence of 
halo bias

• halo exclusion effect

• nonsphericity of halos

• halo alignment

• … 

(Zheng04, Tinker+05, van 
den Bosch+13)

Difficulties in Developing Accurate Models of Galaxy Clustering



Galaxy Infall onto SDSS Groups 5

Figure 3. Joint probability distributions of radial and tangential velocities P (vr , vt) from the simulation (top panels) and the best–fit using our GIKmodel (bot-
tom panels), in four different radial bins marked at the bottom of each panel. The colour scales used by panels in the same column are identical, indicated by
the colour bar on top.

P (vr, vt) across all scales from the inner 1h−1Mpc to beyond
40 h−1Mpc.

Motivated by the top panels of Fig. 3, we adopt a two–
component mixture model for the velocity distribution at any given
cluster–centric radius r, with the virialized component described
by a 2D Gaussian G and the infall component by a 2D skewed t-
distribution T :

P (vr, vt) ≡ P (v) = fvir · G(v) + (1− fvir) · T (v), (3)

where fvir ! 0 is the fraction of galaxies in the virialized com-
ponent, approaching zero at large r. We refer to the radius beyond
which fvir = 0 as the “shock radius” rsh, since it marks (at least
within the model) the boundary between single–component and
two–component flow. By definition G has zero mean in both ra-
dial and tangential axes, and we find it adequate to assume equal
dispersions, making G a function of only one parameter, the virial
dispersion σvir (which is still allowed to vary with r). For the in-
fall component, describing the varying degrees of skewness and
kurtosis at different r requires a functional form T with greater
complexity. We adopt the skewed t–distribution parameterization
from Azzalini & Capitanio (2003), with two parameters describing
the higher order moments of the velocity distribution (α and dof)
in addition to three parameters for the mean and dispersions (vr,c,
σrad, and σtan). The full expression is

T (v) = 2 t2(v; dof)×

T1

{

α
T
ω

−1(v − v̄) ·

(

dof+ 2
Qv + dof

)

; dof+ 2

}

,(4)

where v̄ =
(

vr,c, 0
)

, α =
(

α, 0
)

, and ω =
(

σrad,σtan

)

are 2-

element vectors, andQv = (v− v̄)TΣ−1(v− v̄) is a scalar where

Σ =

(

σ2
rad 0
0 σ2

tan

)

. (5)

For the two rhs terms in Equation 4, t2 is the density function of
2D t-variate with dof degrees of freedom,

t2(v; dof) =
Γ{(dof+ 2)/2}

|Σ|1/2(π dof)1/2Γ(dof/2)

(

1 +
Qv

dof

)(dof+2)/2

,

(6)
and T1(x;dof + 2) denotes the scalar t-distribution function with
dof + 2 degrees of freedom. Generally speaking, α controls the
skewness of P (vr, vt) in the radial velocity direction, while dof
adjusts the kurtosis in both directions, with lower dof correspond-
ing to longer non–Gaussian tails. Since P (vr, vt) is symmetric
in the tangential velocity axis, α is reduced to one parameter α.
σrad and σtan describe the dispersion in each direction, and vr,c
is the characteristic radial velocity. Therefore, we have seven pa-
rameters in total for P (vr, vt) at every r: virialized fraction fvir,
velocity dispersion of the virialized component σvir, characteristic
infall velocity vr,c, two velocity dispersions of the infall compo-
nent σrad and σtan, skewness parameter α, and kurtosis parameter
dof (effectively reducing to five parameters at r > rsh). With seven
parameters, Equation 3 provides an excellent fit for the measured
P (vr, vt) at all scales, as shown visually in the bottom panels of
Fig. 3, and in greater detail below. We considered other parameteri-
zations for the infall component, such as sums of Gaussians, but we
were unable to find a compact description as accurate as the skewed
t-distribution, so we obtained poor results in modeling ξscg .

Using the best–fit GIK models, we take a closer look into the
properties of P (vr, vt) at different radii in Fig. 4. In each panel,
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Reid & White (2011) Zu & Weinberg (2013)

(e.g., Tinker 2007, Reid & White 2011, Zu & Weinberg 2013)

P (vr, vt|r,M1,M2)

Distribution of halo-halo (radial and transverse) pairwise velocity

Difficulties in Developing Accurate Models of Galaxy Clustering



e.g., White+(2011), Parejko+(2013)
halotools (Hearin+2016)

Model Galaxy Clustering with N-body Simulations

  Populate halos with galaxies according to HOD/CLF to form mock
  Measure 2PCFs from the mock as the model prediction

Credit: Springel+(2005)
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halo galaxy pairs. The intra-halo component, or the one-halo term,

represents the highly nonlinear part of the 2PCF. The inter-halo

component, or the two-halo term, can be largely modelled by linear

theory. Such analytic models have the advantage of being compu-

tationally inexpensive, and they can be used to efficiently probe the

HOD/CLF and cosmology parameter space. However, as the preci-

sion of the 2PCF measurements in large galaxy surveys continues

to improve, the requirement on the accuracy of the analytic mod-

els becomes more and more demanding. As pointed out in Zheng

(2004a), an accurate model of the galaxy 2PCF needs to incorporate

the nonlinear growth of the matter power spectrum (e.g. Smith et al.

2003), the halo exclusion effect, and the scale-dependent halo bias.

In addition, the non-spherical shape of haloes should also be ac-

counted for (e.g. Tinker et al. 2005; van den Bosch et al. 2013).

These are just factors to be taken into account in computing the

real-space or projected 2PCFs. For redshift-space 2PCFs, more fac-

tors come into play. An accurate analytical description of the ve-

locity field of dark matter haloes in the nonlinear or weakly non-

linear regime proves to be difficult and complex (e.g. Tinker 2007;

Reid & White 2011; Zu & Weinberg 2013). Therefore, an accurate

analytic model of redshift-space 2PCFs on small and intermediate

scales is still not within reach.

The above complications faced by analytic models can all be

avoided or greatly reduced if the 2PCF calculation is directly done

with the outputs of N -body simulations. With the simulation, dark

matter haloes can be identified, and their properties (mass, veloc-

ity, etc) can be obtained. For a given set of HOD/CLF parameters,

one can populate haloes with galaxies accordingly (e.g. using dark

matter particles as tracers) and form a mock galaxy catalog. The

2PCFs measured from the mock catalog are then the model pre-

dictions used to model the measurements from observations. Such

a method of directly populating simulations have been developed

and applied to model galaxy clustering data (e.g. White et al. 2011;

Parejko et al. 2013). This simulation-based model is attractive, as

more and more large high-resolution N -body simulations emerge.

It is also straightforward to implement. Once the mock catalog is

produced, measuring the 2PCFs can be made fast (e.g. with tree

code). However, populating haloes with a given set of HOD/CLF

parameters is probably the most time-consuming step, as one needs

to loop over all haloes of interest. In addition, information of indi-

vidual haloes and tracer particles is needed, like their positions and

velocities. Even with only a subset of all the particles in a high-

resolution simulation, the amount of data can still be substantial.

The purpose of this paper is to introduce a method that takes

the advantage of the simulation-based model, but being much more

efficient in modelling galaxy clustering. The main idea is to decom-

pose the galaxy 2PCFs and compress the information in the simu-

lation by tabulating relevant clustering-related quantities of dark

matter haloes. We also apply a similar idea to extend the com-

monly used sub-halo abundance matching method (SHAM; e.g.

Conroy et al. 2006).

The paper is structured as follows. In Section 2, we formu-

late the method, within the HOD/CLF-like framework and within

the halo/sub-halo framework. In Section 3, we show an example

of modelling redshift-space 2PCFs, which also provides an under-

standing of the three-dimensional (3D) small- and intermediate-

scale galaxy redshift-space 2PCF and its multipoles by decompos-

ing them into the various components. In Section 4, we summarize

the method and discuss possible generalizations and limitations.

2 SIMULATION-BASED METHOD OF CALCULATING

GALAXY 2PCFS

In our simulation-based method, we divide haloes identified in N -

body simulations into narrow bins of a given property, which de-

termines galaxy occupancy. In the commonly used HOD/CLF, the

property is the halo mass. In our presentation, we use halo mass as

the halo variable, but the method can be generalized to any set of

halo properties.

The basic idea of the method is to decompose the galaxy

2PCF into contributions from haloes of different masses, from one-

halo and two-halo terms, and from different types of galaxy pairs

(e.g. central-central, central-satellite, and satellite-satellite pairs).

The decomposition also allows the separation between the halo

occupation and halo clustering. The former relies on the specific

HOD/CLF parameterization, while the latter can be calculated from

the simulation. The method is to tabulate all relevant information

about the latter for efficient calculation of galaxy 2PCFs and explo-

ration of the HOD/CLF parameter space.

We first formulate the method in the HOD/CLF framework.

We then apply the similar idea to the SHAM case, which provides

a more general SHAM method.

2.1 Case with Simulation Particles

Let us start with a given N -body simulation and a given set of

HOD/CLF parameters. To populate galaxies into a halo identified in

the simulation, we can put one galaxy at the halo ‘centre’ as a cen-

tral galaxy, according to the probability specified by the HOD/CLF

parameters. Halo ‘centre’ should be defined to reflect galaxy for-

mation physics. For example, a sensible choice is the position of

potential minimum rather than centre of mass. For satellites, we

can choose particles as tracers. In the usually adopted models, it is

assumed that satellite galaxies follow dark matter particles inside

haloes (e.g. Zheng 2004a; Tinker et al. 2005; van den Bosch et al.

2013), rooted in theoretical basis (e.g. Nagai & Kravtsov 2005).

One can certainly modify the distribution profile as needed, and

below we assume that the distribution of galaxies inside haloes has

been specified and that the corresponding tracer particles have been

selected for each halo.

We divide haloes in the simulation into N narrow mass bins

and denote the mean number density of haloes in the mass bin

logMi ± d logMi/2 as n̄i. The mean number density of galax-

ies is computed as

n̄g =
∑

i

[⟨Ncen(Mi)⟩+ ⟨Nsat(Mi)⟩]n̄i, (1)

where Ncen(M) and Nsat(M) are the occupation numbers of cen-

tral and satellite galaxies in a halo of mass M , ⟨⟩ denotes the aver-

age over all haloes of this mass, and i = 1, ..., N .

In the halo-based model, galaxy 2PCF ξgg is computed as

the combination of two terms, ξgg = 1 + ξ1hgg + ξ2hgg (Zheng

2004a), where the one-halo term ξ1hgg (two-halo term ξ2hgg ) are from

contributions of intra-halo (inter-halo) galaxy pairs. Following

Berlind & Weinberg (2002), the one-halo term can be computed

based on

1
2
n̄g(n̄gd

3
r)
[

1 + ξ1hgg (r)
]

=
∑

i

n̄i⟨Npair(Mi)⟩f(r;Mi)d
3
r.(2)

The left-hand side (LHS) is the number density of one-halo pairs

with separation in the range r± dr/2 from the definition of 2PCF.
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The right-hand side (RHS) is the same quantity from counting one-

halo pairs in each halo and the summation is over all the halo mass

bins. Here ⟨Npair(M)⟩ is the total mean number of galaxy pairs in

haloes of mass M , and f(r;M) is the probability distribution of

pair separation in haloes of mass M , i.e. f(r;M)d3r is the proba-

bility of finding pairs with separation in the range r±dr/2 in haloes

of M . By further decomposing pairs into central-satellite (cen-sat)

and satellite-satellite (sat-sat) pairs, we reach the following expres-

sion,

1 + ξ1hgg (r) =
∑

i

2
n̄i

n̄2
g
⟨Ncen(Mi)Nsat(Mi)⟩fcs(r;Mi)

+
∑

i

n̄i

n̄2
g
⟨Nsat(Mi)[Nsat(Mi)− 1]⟩fss(r;Mi) (3)

The functions fcs(r;M) and fss(r;M) are the probability distri-

butions of one-halo cen-sat and sat-sat galaxy pair separation in

haloes of mass M . They are normalized such that
∫

fcs(r;M)d3r = 1 and

∫

fss(r;M)d3r = 1. (4)

Note that here and in what follows, the 2PCF can be either real-

space, projected-space, redshift-space, or it can be the multipoles

of the redshift-space 2PCF. The variable r should be understood as

pair separation in the corresponding space. For redshift-space clus-

tering, we discuss how to specify velocity distribution of galaxies

later.

To compute the two-halo term, we add up all possible two-halo

galaxy pairs, following the 2PCF decomposition from different pair

counts in Zu et al. (2008). Similar to equation (2), the total number

density of two-halo pairs with separation in the range r± dr/2 is

npair,2h =
1
2
n̄g(n̄gd

3
r)
[

1 + ξ2hgg (r)
]

, (5)

which is composed of two-halo central-central (cen-cen) pairs

ncc−pair,2h =
1
2

∑

i̸=j

[n̄i⟨Ncen(Mi)⟩][n̄j⟨Ncen(Mj)⟩d
3
r]

×[1 + ξhh,cc(r;Mi,Mj)], (6)

two-halo cen-sat pairs

ncs−pair,2h =
∑

i̸=j

[n̄i⟨Ncen(Mi)⟩][n̄j⟨Nsat(Mj)⟩d
3
r]

×[1 + ξhh,cs(r;Mi,Mj)], (7)

and two-halo sat-sat pairs

nss−pair,2h =
1
2

∑

i̸=j

[n̄i⟨Nsat(Mi)⟩][n̄j⟨Nsat(Mj)⟩d
3
r]

×[1 + ξhh,ss(r;Mi,Mj)]. (8)

In each of equations (6)–(8), the summation is over all halo mass

bins (i.e. i = 1, ..., N and j = 1, ..., N ). The three correlation func-

tions on the RHS have the following meanings – ξhh,cc(r;Mi,Mj)
is just the two-point cross-correlation function between ‘centres’

(positions to put central galaxies) of haloes of masses Mi and

Mj (cen-cen); ξhh,cs(r;Mi,Mj) is the two-point cross-correlation

function between the ‘centres’ of Mi haloes and the satellite tracer

particles in the (extended) Mj haloes (cen-sat); ξhh,ss(r;Mi,Mj)
is the two-point cross-correlation function between satellite tracer

particles in the (extended) Mi haloes and those in the (extended)

Mj haloes (sat-sat). With npair,2h = ncc−pair,2h + ncs−pair,2h +

nss−pair,2h, we reach the final expression for the two-halo term,

ξ2hgg (r) =
∑

i̸=j

n̄in̄j

n̄2
g

⟨Ncen(Mi)⟩⟨Ncen(Mj)⟩ξhh,cc(r;Mi,Mj)

+
∑

i̸=j

2
n̄in̄j

n̄2
g

⟨Ncen(Mi)⟩⟨Nsat(Mj)⟩ξhh,cs(r;Mi,Mj)

+
∑

i̸=j

n̄in̄j

n̄2
g

⟨Nsat(Mi)⟩⟨Nsat(Mj)⟩ξhh,ss(r;Mi,Mj) (9)

Equations (1), (3), and (9) lead to the method we pro-

pose. The quantities related to galaxy occupancy are specified

by the HOD/CLF parameterization one chooses, while those re-

lated to haloes are from the simulation, independent of the

HOD/CLF parameterization. We therefore can prepare tables for

n̄i, fcs(r;Mi), fss(r;Mi), ξhh,cc(r;Mi,Mj), ξhh,cs(r;Mi,Mj),
and ξhh,ss(r;Mi,Mj). For a given set of HOD/CLF parameters,

the predictions of galaxy 2PCFs can be obtained from perform-

ing the weighted summation over the tables. The tables are only

prepared once, and we can then change the galaxy occupation as

needed to compute galaxy 2PCFs for different galaxy samples and

different sets of HOD/CLF parameters, which is much more effi-

cient than populating galaxies into haloes by selecting particles.

Since summation is used to replace integration in the method,

we need to choose narrow halo mass bins (d logM = 0.01 is usu-

ally sufficient, as shown in Section 3). The n̄i table represents the

halo mass function. To prepare the other tables that depend on

pair separation, the bins of pair separation r are best chosen to

match the ones used in the measurements from observational data,

which would naturally avoid any discrepancy related to the finite

bin sizes. For haloes in each mass bin, the fcs and fss tables can

be computed by using either all the particles in the haloes with

the specified distribution or a random subset. For ξhh,cc, ξhh,cs,
and ξhh,ss, we effectively compute the halo-halo two-point cross-

correlation function with different definitions of halo positions. For

ξhh,cc, halo positions are defined by our choice of ‘centres’. For

ξhh,cs(r;Mi,Mj), we choose ‘centres’ for Mi haloes and positions

of arbitrary tracer particles in Mj haloes. For ξhh,ss(r;Mi,Mj),
positions of arbitrary tracer particles in both Mi and Mj haloes are

chosen. We can use any number of tracer particles in each halo to

do the calculation. For haloes with positions defined by the tracer

particles, they can be thought as extended (with positions having a

probability distribution). On large scales, ξhh,cc, ξhh,cs, and ξhh,ss
are the same, while on small scales, ξhh,cs and ξhh,ss are smoothed

version of ξhh,cc. Note that in analytic models such differences

are usually neglected. In computing the three halo-halo correlation

functions, we do not need to construct random catalogs to find out

the pair counts from a uniform distribution – in the volume Vsim

of the simulation with periodic boundary conditions, the counts of

cross-pairs at separation in the range r ± dr/2 between two ran-

domly distributed populations with number densities n̄i and n̄j are

simply (n̄iVsim)(n̄jd
3
r). Making use of this fact can greatly re-

duce the computational expense in preparing the tables.

For the redshift-space tables, in addition to the halo veloci-

ties, one needs to specify the velocity distribution of galaxies in-

side haloes, which can be different from that of dark matter parti-

cles (a.k.a. velocity bias; e.g. Berlind & Weinberg 2002). The dif-

ference can be parameterized by central and satellite velocity bias

parameters (e.g. Guo et al. 2015a). For a set of central and satel-

lite velocity bias parameters and with a choice of the line-of-sight

direction, we can obtain the redshift-space positions of the cen-

tral galaxy and satellite tracer particles according to halo velocities
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The right-hand side (RHS) is the same quantity from counting one-

halo pairs in each halo and the summation is over all the halo mass

bins. Here ⟨Npair(M)⟩ is the total mean number of galaxy pairs in

haloes of mass M , and f(r;M) is the probability distribution of

pair separation in haloes of mass M , i.e. f(r;M)d3r is the proba-

bility of finding pairs with separation in the range r±dr/2 in haloes

of M . By further decomposing pairs into central-satellite (cen-sat)

and satellite-satellite (sat-sat) pairs, we reach the following expres-

sion,

1 + ξ1hgg (r) =
∑

i

2
n̄i

n̄2
g
⟨Ncen(Mi)Nsat(Mi)⟩fcs(r;Mi)

+
∑

i

n̄i

n̄2
g
⟨Nsat(Mi)[Nsat(Mi)− 1]⟩fss(r;Mi) (3)

The functions fcs(r;M) and fss(r;M) are the probability distri-

butions of one-halo cen-sat and sat-sat galaxy pair separation in

haloes of mass M . They are normalized such that
∫

fcs(r;M)d3r = 1 and

∫

fss(r;M)d3r = 1. (4)

Note that here and in what follows, the 2PCF can be either real-

space, projected-space, redshift-space, or it can be the multipoles

of the redshift-space 2PCF. The variable r should be understood as

pair separation in the corresponding space. For redshift-space clus-

tering, we discuss how to specify velocity distribution of galaxies

later.

To compute the two-halo term, we add up all possible two-halo

galaxy pairs, following the 2PCF decomposition from different pair

counts in Zu et al. (2008). Similar to equation (2), the total number

density of two-halo pairs with separation in the range r± dr/2 is

npair,2h =
1
2
n̄g(n̄gd

3
r)
[

1 + ξ2hgg (r)
]

, (5)

which is composed of two-halo central-central (cen-cen) pairs

ncc−pair,2h =
1
2

∑

i̸=j

[n̄i⟨Ncen(Mi)⟩][n̄j⟨Ncen(Mj)⟩d
3
r]

×[1 + ξhh,cc(r;Mi,Mj)], (6)

two-halo cen-sat pairs

ncs−pair,2h =
∑

i̸=j

[n̄i⟨Ncen(Mi)⟩][n̄j⟨Nsat(Mj)⟩d
3
r]

×[1 + ξhh,cs(r;Mi,Mj)], (7)

and two-halo sat-sat pairs

nss−pair,2h =
1
2

∑

i̸=j

[n̄i⟨Nsat(Mi)⟩][n̄j⟨Nsat(Mj)⟩d
3
r]

×[1 + ξhh,ss(r;Mi,Mj)]. (8)

In each of equations (6)–(8), the summation is over all halo mass

bins (i.e. i = 1, ..., N and j = 1, ..., N ). The three correlation func-

tions on the RHS have the following meanings – ξhh,cc(r;Mi,Mj)
is just the two-point cross-correlation function between ‘centres’

(positions to put central galaxies) of haloes of masses Mi and

Mj (cen-cen); ξhh,cs(r;Mi,Mj) is the two-point cross-correlation

function between the ‘centres’ of Mi haloes and the satellite tracer

particles in the (extended) Mj haloes (cen-sat); ξhh,ss(r;Mi,Mj)
is the two-point cross-correlation function between satellite tracer

particles in the (extended) Mi haloes and those in the (extended)

Mj haloes (sat-sat). With npair,2h = ncc−pair,2h + ncs−pair,2h +

nss−pair,2h, we reach the final expression for the two-halo term,

ξ2hgg (r) =
∑

i̸=j

n̄in̄j

n̄2
g

⟨Ncen(Mi)⟩⟨Ncen(Mj)⟩ξhh,cc(r;Mi,Mj)

+
∑

i̸=j

2
n̄in̄j

n̄2
g

⟨Ncen(Mi)⟩⟨Nsat(Mj)⟩ξhh,cs(r;Mi,Mj)

+
∑

i̸=j

n̄in̄j

n̄2
g

⟨Nsat(Mi)⟩⟨Nsat(Mj)⟩ξhh,ss(r;Mi,Mj) (9)

Equations (1), (3), and (9) lead to the method we pro-

pose. The quantities related to galaxy occupancy are specified

by the HOD/CLF parameterization one chooses, while those re-

lated to haloes are from the simulation, independent of the

HOD/CLF parameterization. We therefore can prepare tables for

n̄i, fcs(r;Mi), fss(r;Mi), ξhh,cc(r;Mi,Mj), ξhh,cs(r;Mi,Mj),
and ξhh,ss(r;Mi,Mj). For a given set of HOD/CLF parameters,

the predictions of galaxy 2PCFs can be obtained from perform-

ing the weighted summation over the tables. The tables are only

prepared once, and we can then change the galaxy occupation as

needed to compute galaxy 2PCFs for different galaxy samples and

different sets of HOD/CLF parameters, which is much more effi-

cient than populating galaxies into haloes by selecting particles.

Since summation is used to replace integration in the method,

we need to choose narrow halo mass bins (d logM = 0.01 is usu-

ally sufficient, as shown in Section 3). The n̄i table represents the

halo mass function. To prepare the other tables that depend on

pair separation, the bins of pair separation r are best chosen to

match the ones used in the measurements from observational data,

which would naturally avoid any discrepancy related to the finite

bin sizes. For haloes in each mass bin, the fcs and fss tables can

be computed by using either all the particles in the haloes with

the specified distribution or a random subset. For ξhh,cc, ξhh,cs,
and ξhh,ss, we effectively compute the halo-halo two-point cross-

correlation function with different definitions of halo positions. For

ξhh,cc, halo positions are defined by our choice of ‘centres’. For

ξhh,cs(r;Mi,Mj), we choose ‘centres’ for Mi haloes and positions

of arbitrary tracer particles in Mj haloes. For ξhh,ss(r;Mi,Mj),
positions of arbitrary tracer particles in both Mi and Mj haloes are

chosen. We can use any number of tracer particles in each halo to

do the calculation. For haloes with positions defined by the tracer

particles, they can be thought as extended (with positions having a

probability distribution). On large scales, ξhh,cc, ξhh,cs, and ξhh,ss
are the same, while on small scales, ξhh,cs and ξhh,ss are smoothed

version of ξhh,cc. Note that in analytic models such differences

are usually neglected. In computing the three halo-halo correlation

functions, we do not need to construct random catalogs to find out

the pair counts from a uniform distribution – in the volume Vsim

of the simulation with periodic boundary conditions, the counts of

cross-pairs at separation in the range r ± dr/2 between two ran-

domly distributed populations with number densities n̄i and n̄j are

simply (n̄iVsim)(n̄jd
3
r). Making use of this fact can greatly re-

duce the computational expense in preparing the tables.

For the redshift-space tables, in addition to the halo veloci-

ties, one needs to specify the velocity distribution of galaxies in-

side haloes, which can be different from that of dark matter parti-

cles (a.k.a. velocity bias; e.g. Berlind & Weinberg 2002). The dif-

ference can be parameterized by central and satellite velocity bias

parameters (e.g. Guo et al. 2015a). For a set of central and satel-

lite velocity bias parameters and with a choice of the line-of-sight

direction, we can obtain the redshift-space positions of the cen-

tral galaxy and satellite tracer particles according to halo velocities
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More Efficient Simulation-Based Clustering Modeling 



• Accurate
- equivalent to populating galaxies into dark matter halos and using the 

(mean) mock 2PCF measurements as the model prediction

- no finite-bin-size effect (same binning and integration scheme as 
measurements); residual RSD automatically accounted for

• Efficient
- no need for the construction of mocks and the measurement of the 2PCF 

from the mocks

- independent of simulation size

- efficient exploration of the parameter space (e.g., MCMC)

• Extension to subhalos (SCAM), halo variables other than 
mass, and other clustering statistics 

(Neostein+2011, Neistein & Khochfar2012, Zheng & Guo 2016,  Guo+2015)

Accurate and Efficient Halo-Based 
Galaxy Clustering Modeling with Simulations 



An Accurate and Efficient Simulation-based Model 
for Redshift-Space Galaxy Two-Point Correlation Function

ZZ & Guo (2016)



one-halo total

two-halo total

total

ZZ & Guo (2016)



An Accurate and Efficient Simulation-based Model 
for Redshift-Space Galaxy Two-Point Correlation Function

Projected Monopole

Quadrupole Hexadecapole

ZZ & Guo (2016)



An Accurate and Efficient Simulation-based Model 
for Redshift-Space Galaxy Two-Point Correlation Function

Projected Monopole

Quadrupole Hexadecapole

ZZ & Guo (2016)
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6. HALO CORE VELOCITY OFFSETS

In the ΛCDM paradigm, the main method by which halos
reach a relaxed state is dynamical friction, namely, energy in
bulk motions relative to the halo center of gravity is transformed
into increased halo velocity dispersion. Dynamical friction
depends not only on the background density that a satellite halo
is passing through, but also on the satellite mass and velocity.
For a massive host halo, the high background density means that
incoming satellites will initially transfer momentum to the host
with high efficiency. However, massive host halos also have
very strong tidal fields, and once satellites are disrupted into
cold velocity streams, dynamical friction becomes much less
effective at transferring momentum into the inner halo regions.
This combination of dynamical friction and tidal forces suggests
that momentum transfer may be more efficient in the outer
regions of a host halo and less efficient in the inner regions,
leading to an offset between the mean velocity of the central
density peak and the bulk velocity of the halo.

We examine the presence of this effect by calculating radially
averaged halo particle velocities (i.e., particle velocities aver-
aged in spherical shells) and comparing to the halo bulk velocity
(averaged over all halo particles) for a large number of central
halos in both the Bolshoi and Consuelo simulations over a range
of halo masses (1012–1014 M⊙) and redshifts (z = 0–1.4). We
additionally consider the effects of excluding particles belong-
ing to substructure from calculations of the radially binned ve-
locities; results for all of the median offsets (both including and
excluding substructure) are shown in Figure 11.

Figure 11 demonstrates that the core-bulk velocity difference
can be quite dramatic at high redshift for massive halos: halos
with 1014 M⊙ < M < 3 × 1014 M⊙ at z = 1.4 have a
median offset of over 450 km s−1 between the velocity averaged
within 0.1 Rvir (excluding substructure) and the bulk velocity of
the halo. This effect is lower for both smaller halos and later
times, presumably due to lower velocity offsets in incoming
substructure for smaller halos and a reduced merger rate at later
times. Nonetheless, a clear difference between the inner and
bulk velocities is present in all halos tested even down to z = 0.
In all cases, there is a definite radial trend, with the velocity in
the inner region of the halo being farther away from the bulk
velocity than the halo outskirts, consistent with the hypothesis
of reduced efficiency of momentum transfer in the inner regions
of the halo.

In the calculations that exclude substructure, a clear plateau
is evident below 0.1–0.2 Rvir where the core velocity offset
stabilizes, at least for halos with M > 1013 M⊙; we have
insufficient mass resolution to test this effect robustly for smaller
halos. This transition is extremely consistent with expectations
for where most of the satellite mass will be stripped in such
halos. For a satellite halo with a concentration of c = 10
falling into a massive host with c = 5, Equation (12) would
suggest that 90% of the satellite mass (and momentum) will be
stripped from the main satellite density peak at radii greater than
0.3 Rvir,host, with another 9% stripped by 0.1 Rvir,host. As tidal
forces increase dramatically toward the center of a halo, they
should disrupt efficient momentum transfer within 0.1 Rvir,host
even for satellites on highly radial orbits.

In the calculations that include substructure, the median
velocity offsets are less than the results that exclude substructure
because substructure is included when calculating the bulk halo
velocity. In the very innermost regions of halos, however, both
radial velocity averages converge, suggesting that our results

Figure 11. Significant differences are seen between the halo bulk velocity
and particle velocities especially within 10% of the virial radius. Panels show
comparisons between velocities averaged in radial bins (i.e., spherical shells)
and the total average bulk velocity of the halo as a function of radius. Results are
plotted in terms of the median magnitude of the velocity difference at each radius
for halos in several mass and redshift bins. Calculations including substructure
(“All Part.”) and excluding particles in substructure (“Excl. SS”) are shown. All
panels show central halos from the Bolshoi simulation; the middle and lower
panels also show central halos from the Consuelo simulation. In all cases, each
radial bin contains at least 400 particles so as to minimize the effects of Poisson
noise. For the lower panel, the numbers of halos used in Bolshoi were 18, 226,
and 484 at redshifts z = 1.41, 0.53, and 0.00, respectively. All other panels (as
well as Consuelo for z = 0.00) averaged results from more than 2000 halos.
Each panel shows halos in a mass bin of 0.48 dex (1–3 times 1012 M⊙, 1013 M⊙,
and 1014 M⊙, respectively); the respective virial radii are ∼0.3 h−1 Mpc, ∼0.6
h−1 Mpc, and ∼1.3 h−1 Mpc.
(A color version of this figure is available in the online journal.)
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Modeling Redshift-Space Galaxy Clustering

•  Choose the reference frame 
  to define galaxy velocity bias 

     - halo core frame

     - halo bulk velocity frame
           (more appropriate for large, low-res simulations)

•  Account for galaxy redshift errors
(Gaussian-Convolved Laplace Distribution)

Guo, ZZ, et al. (2015c)



Guo, ZZ, et al. (2015a)

Constraining Galaxy Kinematics inside Halos

Velocity bias

In the halo frame

↵c =
vcen
�DM

↵s =
�sat

�DM



Measuring and Modeling the 
Redshift-Space Galaxy Clustering

Guo, ZZ, et al. (2015a)
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z~0.5



Measuring and Modeling the 
Redshift-Space Galaxy Clustering

Guo, ZZ, et al. (2015a)

    Projected Monopole

Quadrupole

Hexadecapole

BOSS Galaxies
z~0.5



Guo, ZZ, et al. (2015a)
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BOSS Galaxies

Galaxy Kinematics inside Halos

The central galaxy in a halo 
is not at rest w.r.t. the halo.



Projected Monopole

Quadrupole Hexadecapole

SDSS Main Galaxy Sample (z~0.1)

Guo, ZZ, et al. (2015c)



Projected Monopole

Quadrupole Hexadecapole

SDSS Main Galaxy Sample (z~0.1)

Guo, ZZ, et al. (2015c)



Guo, ZZ, et al. (2015c)Velocity Bias of SDSS Main Galaxies (z~0.1)

In broad agreement with results based on galaxy groups 
(van den Bosch+2005; Skibba+ 2011)

faint samples bright samples



pairwise infall velocity

cen gal v
elocity dispersion

Velocity Bias of SDSS Main Galaxies (z~0.1)

faint bright

In lower mass halos, central galaxies and halos are more 
mutually relaxed, consistent with an overall earlier 
formation and thus more time for relaxation.



Ye, Guo, ZZ, & Zehavi (2017)

Velocity Bias in the Illustris Simulation



Galaxy Velocity Bias in Illustris 7

Fig. 4.— Dependence of the central galaxy velocity bias on the halo (top panels) and galaxy (bottom panels) ages for di↵erent SHMRs
in di↵erent colors, as labeled. The left panels show our fiducial model of the center-of-mass velocity frame and the right panels display the
result for the halo velocity definition with 10% core (see Section 3.2).

ferent masses and for di↵erent SHMRs (solid lines with
di↵erent colors). The density profiles are normalized at
the virial radius R

vir

for better comparisons. The black
line in each panel is the average density profile for the
dark matter distributions in these halos.
We find that the satellite galaxies with higher SHMRs

have steeper density slopes and show better agreement
with the dark matter spatial distribution in the halos.
This is in line with the steeper density slope for subhalos
of higher masses in a host halo (see e.g., Figure 1 of Guo
et al. 2016). The satellite galaxy distribution is generally
steeper than that of the subhalos because of the existence
of the ‘orphan galaxies’, without surrounding subhalos
(see, e.g., Figure 2 in Vogelsberger et al. 2014b). But
for the galaxy samples considered in this paper (with
stellar mass larger than 109 h�1M�), the orphan galaxies
only occupy about 0.7% of the satellite galaxies. Thus,
they would not have any significant e↵ect on the satellite
density profiles.
The satellite galaxies with M

sat

/M
h

> 10�3 have con-

sistent spatial distributions with the dark matter parti-
cles, while the spatial profile of the satellites with a lower
SHMR is much shallower than that of the dark matter in
massive halos ofM

h

> 1013 h�1M�, as shown in the right
panel of Figure 8. For satellites with 10�4 < M

sat

/M
h

<
10�3, the density slope is slightly steeper in less mas-
sive halos in the left panel of Figure 8 than those in the
right panel, which is consistent with the weak mass de-
pendence of ↵

s

for satellites of the same SHMR shown in
Figure 2.
However, according to Figure 2, the average value of

↵
s

for satellite galaxies with 10�3 < M
sat

/M
h

< 10�2 is
about 0.8 (center-of-mass frame), i.e. �

s

= 0.8�
v

. These
satellite galaxies are moving at a speed about 0.8 times
that of the dark matter particles in the halo, although
their spatial distributions are consistent with those of the
dark matter. It seems inconsistent at first sight, since the
velocity bias between the satellite galaxies and the dark
matter will make the satellite galaxy distributions in the
next snapshot deviate from those of the dark matter.

Galaxy Velocity Bias in Illustris 9

Fig. 6.— Dependence of satellite velocity bias on the time after the satellite galaxies were accreted onto the halos for the center-of-mass
halo velocity (left) and 10% core velocity (right) frames. Lines with di↵erent symbols are for satellite galaxies of di↵erent SHMRs as
labeled.

Fig. 7.— Left: Dependence of ↵s on the distances of the satellite galaxies to the halo centers for the samples of di↵erent SHMRs. Right:
Average time after accretion for satellite galaxies at di↵erent radii in the halos. The lines with di↵erent symbols are for samples of di↵erent
SHMRs.

would be useful to study the evolution of the veolicity
of central and satellite galaxies in the halo frame. Note
that velocity bias is defined in a statistical sense, while
here we consider the velocity of each individual galaxy.
We still use the notation of ↵c and ↵s, with the definition
being ↵

c,s = |v
c,s � v

h

|/�
v

(in parallel to Equation 3).
We show an explicit example of the evolution histo-

ries of the velocity for a central galaxy and two of its
satellite galaxies in Figure 9. This central-satellite sys-
tem is in a halo of 1012 h�1M�, the SHMRs for the final
epoch (z = 0) of the central and satellite galaxies are
M

cen

/M
h

= 0.01, M
sat

/M
h

= 0.0025 and M
sat

/M
h

=
0.0025, respectively. The two satellite galaxies have sim-
ilar masses. The top panel shows the evolution of ↵

c

of
the central galaxy with the cosmic age for the center-of-
mass (solid line with filled circles) and 10% core (dot-
ted line with open circles) velocity frames, together with
the growth histories of the central galaxy stellar mass

(triangles) and the dark matter mass in the host halo
(squares). The evolution histories of the galaxy veloc-
ity for the two satellite galaxies are shown in the middle
and bottom panels, where we also show for comparison
the growth histories of the satellite galaxy stellar mass
and the dark matter mass of the corresponding subha-
los. The accretion epochs of these two galaxies onto the
host halo are also marked in the figure. Before these two
satellite galaxies fell into this host halo, they were the
central galaxies of the progenitor halos. The velocities
shown before the infall epoch are actually the values of
↵
c

for these two galaxies.
To aid the detailed comparisons, the spatial posi-

tions of the particles of the above system are shown
in Figure 10 starting from the cosmic age of 9.79 Gyrs
(z = 0.361), which is also indicated by the vertical dot-
ted lines in Figure 9. The corresponding cosmic age is
shown in the top right of each panel, while the redshift

Ye, Guo, ZZ, & Zehavi (2017)

Velocity Bias in the Illustris Simulation

cen v bias 
more affected by 

halo accretion/merger

sat v bias 
more affected by 

dynamics inside halos
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r · v = 0 (continuity)

Tightening Cosmological Constraints from Small- 
and Intermediate-Scale Redshift-Space Distortions

Dawson, et al. (2015)
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r · v = 0

•Probe structure growth rate 

•Test theories of gravity

•Constrain dark energy

(continuity)

Tightening Cosmological Constraints from Small- 
and Intermediate-Scale Redshift-Space Distortions

Dawson, et al. (2015)



Tightening Cosmological Constraints from Small- 
and Intermediate-Scale Redshift-Space Distortions

Dawson, et al. (2015)

f ⌘ d lnD

d ln a

large-scale 3D redshift 2PCF

amplitude =>

shape       =>

b�8

f

b

f�8} => 

insensitive to assembly bias



Xu & ZZ (in prep)

Assembly Effect on Halo Clustering and Kinematics

v12 at 6Mpc/h



Xu & ZZ (in prep)

Assembly Effect on Halo Clustering and Kinematics

v12 at 6Mpc/h



McCarthy & ZZ (in prep)

Assembly Effect on fσ8 Constraint from Small Scales

[McEwen & Weinberg (2016) 
on matter correlation from 
galaxy correlation function 

and galaxy lensing]

——   w/ assembly bias 
- - - - w/o assembly bias



Summary

• accurate and efficient modeling of small- and intermediate-scale 
redshift-space galaxy clustering by tabulating necessary 
information of halos in N-body simulations

• redshift-space clustering modeling of BOSS CMASS and SDSS 
Main galaxies to constrain galaxy kinematics inside halos (and 
tighten fσ8 constraints), with inferred velocity bias in broad 
agreement with predictions of hydro simulations 

• influence of assembly bias on fσ8 constraints and halo assembly on 
both halo clustering and kinematics


