Structure of Massive Galaxies : Observation v.s Simulation

Song Huang 黄崧 (UC Santa Cruz, @dr_guangtou)

and the HSC Collaboration

17/05/10 KITP

8.2 m Subaru Telescope
104 CCDs — 1.7 deg²
5-band (grizy)
Average i-band seeing 0.6"
1400 deg² eventually
i-band 5-sigma limit: ~26.4 mag
i-band surface brightness limit: ~28.5 mag/arcsec²

What We Can Learn?

•What is the total stellar mass of a galaxy?

See my talk next week •Do the structure of massive galaxies depend on their DM environment?

Comparisons with numerical simulations

 Galaxy-halo connection with the help of weak lensing analysis

See Alexie Leauthaud's talk next week

What We Get from HSC

Mass within 10 kpc: Proxy of mass formed in-situ at high-redshift

Mass within 100 kpc: Proxy of the "total stellar mass"; Better than cModel and single Sersic fit

Stellar Halos of Massive Galaxies are NOT Self-Similar

The "Two-Phase" Formation of Massive Galaxies

Rodriguez-Gomez+ (2016)

Observation v.s Simulation

- Can we use the comparisons of mass profiles to constrain models for AGN feedback models or satellites disruption?
- What's the best way to estimate stellar mass? Which aperture mass shows the best correlation with halo properties?
- Can we use mass within different apertures to trace the in-situ and ex-situ components? the assembly history?

Comparison with Hydrodynamic Simulations

Bahamas Project: McCarthy et al. (2017)

Horizon-AGN: Dubois et al. (2014) http://www.horizon-simulation.org/about.html

MassiveBlack II: Khandai et al. (2015) http://mbii.phys.cmu.edu/

	Bahamas	Horizon-AGN	MassiveBlack II
Size	400 Mpc/h	100 Mpc/h	100 Mpc/h
Code	GADGET-3	RAMSES	P-GADGET
N particle	$2 \ge 1024^3$	(DM) 1024 ³	$2 \ge 1792^3$
Particle Mass (Solar Mass)	M _{DM} =3.9x10 ⁹ /h Mgas=7.7x10 ⁸ /h	M _{DM} =8.0x10 ⁷ /h	M _{DM} =1.1x10 ⁷ /h Mgas=2.2x10 ⁶ /h
Resolution (kpc)	Softening Length 4 kpc	Min Cell Size 1 kpc	Softening Length 1.85/h kpc
Cosmology	WMAP9 & Planck13	WMAP7	WMAP7
Ingredients	Stellar + AGN Feedback	Stellar + AGN Feedback	Stellar + AGN Feedback

Consistent 2-D Photometry on Simulated Galaxies log(M*/M_{sun})>11.6 Central Only; Random Projection

Comparison with Hydrodynamic Simulations Bahamas at z=0.37

In collaboration with Ian McCarthy

Comparison with Hydrodynamic Simulations Horizon-AGN at z=0.37

In collaboration with Sébastien Peirani

Comparison with Hydrodynamic Simulations Horizon-AGN at z=0.37

In collaboration with Sébastien Peirani

Comparison with Hydrodynamic Simulations MassiveBlack-II at z=0.30

Fraction of "Ex situ" Stars

Fraction of "Ex situ" Stars

However, observational constraints are difficult.....

Fraction of "Ex situ" Stars

Relationships between $M_{\rm Halo},\,M_{100\,\rm kpc}$ and $M_{10\,\rm kpc}$

Relationships between M_{Halo} , $M_{100 \, kpc}$ and $M_{10 \, kpc}$

Relationships between $M_{Halo},\,M_{100\,kpc}$ and $M_{10\,kpc}$

Thank You Very Much ! Enjoy HSC !