Precipitation & Feedback G M Voit / Michigan State University

How does AGN feedback regulate itself?

- What is the significance of $t_{cool}/t_{ff} \sim 10?$
- Why does the entropy gradient matter?

Precipitation & Feedback G M Voit / Michigan State University

- How does AGN feedback regulate itself?
- What is the significance of $t_{cool}/t_{ff} \sim 10?$
- Why does the entropy gradient matter?

Precipitation & Feedback G M Voit / Michigan State University

- How does AGN feedback regulate itself?
- What is the significance of $t_{cool}/t_{ff} \sim 10?$
- Why does the entropy gradient matter?

R

G M Voit

The Precipitation Hypothesis

Feedback from the central black hole maintains the CGM in a state marginally unstable to condensation

Cooling Time & Freefall Time

lower density

The Condensation Question

A gas blob cools on time scale *t*_c

It falls on time scale tff

Does its density contrast increase as it descends?

higher density

R

Gaspari+ 2012; Li & Bryan 2014a,b

G M Voit

Gaspari+ 2012; Li & Bryan 2014a,b

G M Voit

Gaspari+ 2012; Li & Bryan 2014a,b

G M Voit

Gaspari+ 2012; Li & Bryan 2014a,b

G M Voit

Gaspari+ 2012; Li & Bryan 2014a,b

G M Voit

Ballistic Condensation

Voit+ 16, arXiv:1607.02212

G M Voit

Ballistic Condensation

Voit+ 16, arXiv:1607.02212

G M Voit

Ballistic Condensation

Voit+ 16, arXiv:1607.02212

R

Cluster Cooling-Time Profiles

Precipitation Threshold in Ellipticals

Voit+ 15 (Apr 2015, ApJL), data: Werner+ 12,14

G M Voit

Precipitation Threshold in Ellipticals

Voit+ 15 (Apr 2015, ApJL) , data: Werner+ 12,14

G M Voit

$$\frac{t_{\rm cool}}{t_{\rm ff}} \gtrsim 10 \qquad n_e \lesssim \frac{3kT}{10 t_{\rm ff} \Lambda(T)}$$

$$L_X(< R) \lesssim \int_0^R 4\pi r^2 \Lambda \left(\frac{3kT}{10t_{\rm ff}\Lambda}\right)^2 dr$$
$$L_X(< R) \lesssim \frac{9\pi}{25} (kT)^2 \Lambda^{-1} \sigma_v^2 R$$

Precipitation & Feedback

R

Multiphase ACCEPT Clusters Δ Single Phase ACCEPT Clusters 10⁴⁶ **Multiphase Werner Ellipticals** Single Phase Werner Ellipticals NGC 4261 **MASSIVE Survey** ATLAS^{3D} Survey 10⁴⁴ **Nebular Emission** _{-x}(<R) (erg s⁻¹) **CO** Detection Milky Way 10⁴² 10⁴⁰ 10³⁸ 10⁴² 10⁴⁴ 10³⁸ 10⁴⁰ **10**⁴⁶ $(kT)^2 \Lambda^{-1} \sigma_v^2 R \text{ (erg s}^{-1})$

Meece, Voit, & O'Shea 2017

R

Meece, Voit, & O'Shea 2017

R

Meece, Voit, & O'Shea 2017

Meece, Voit, & O'Shea 2016

Meece, Voit, & O'Shea 2017

R