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OUTLINE

• Present experiments with fermions: why interesting ?

• Feshbach resonance: which model for the interaction po-
tential ?

• A very simple model: a matter wave with one scattering
center in a box

• An exact time dependent solution for the unitary quan-
tum gas



PRESENT EXPERIMENTS ON FERMIONS

Typical ENS experimental parameters:

• fermionic 6Li atoms: F = 1/2 atomic ground state

• optical trapping, evaporative cooling:

N ∼ 105 kF ∼ 1.6×107m−1 kBTF ∼ 10µK T < 0.2TF

Why interesting ?

• strength and sign of interaction tunable with magnetic
field

• scattering length a > 0: a 2-body bound state
Bose condensate of dimers

• scattering length a < 0: Cooper pairs
BCS state = condensate of pairs

• intermediate regime: a = ±∞
strongly interacting regime kF |a| > 1 stable



WHAT IS A FESHBACH RESONANCE ?

Schematic view:
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Low energy scattering properties: B0 = 820 Gauss

• scattering length

a(B) = abg

(

1 −
∆B

B −B0

)



• Scattering amplitude for k× true potential range � 1:

fk '
−1

−νC−1 + ik + h̄2k2/2mC

with effective detuning

ν = εb(B) + ∆b ∝ B −B0 for B → B0

and C > 0 coupling intensity

• Low k general scattering theory:

fk =
−1

a−1 + ik − 1
2k

2re + . . .

gives

a = −
C

ν
re = −

h̄2

mC
< 0

where re is effective range.



THE DILUTE GAS REGIME

Crucial assumption: gas dilute at the scale of re:

|re| � |a|, k−1
F .

→ zero range model potential possible
interactions characterized by a only

Talk of Dima Petrov: regime of gas with effective long
range interaction is possible

true range � k−1
F , |a| � |re|



WHICH MODEL FOR THE INTERACTION POTENTIAL ?

Requirements for non-perturbative N -body problem:

• hypothesis of thermal equilibrium applicable:

σ1,...,N ∝ e−βH

so that e.g. Quantum Monte Carlo can be used.
rules out the ‘true’ interaction potential

• leads to a well defined mathematical problem!
good idea to check on e.g. 2-body problem!

Example of an ill-defined problem:

• The Dirac delta interaction potential in 2D and 3D:

V (~r1 − ~r2) = gδ(~r1 − ~r2)



• 2-body Schrödinger’s equation in center of mass frame:

Eψ = −
h̄2

m
∆~r ψ + gδ(~r )ψ(~r )

• Either ψ(~r ) vanishes or diverges in ~r = ~0:

3D : ∆
−1

4πr
= δ(~r )

2D : ∆
log r

2π
= δ(~r ).



WHAT IS ψ IN THIS TALK ?

• for spinless bosons:

ψ(~r1, . . . , ~rN) = 〈~r1, . . . , ~rN |ψ〉

and is totally symmetric

• for spin 1/2 fermions:

ψ(~r1, . . . , ~rN) = 〈+ : ~r1, . . . ,+ : ~rn,− : ~rn+1, . . . ,− : ~rN |ψ〉

and is totally antisymmetric with respect to ~r1, . . . , ~rn
and with respect to ~rn+1, . . . , ~rN .



MODEL 1: FERMI PSEUDO-POTENTIAL

Definition:

〈~r1, ~r2|V |ψ〉 =
4πh̄2a

m
δ(~r1 − ~r2)ψreg(1 = 2)

where
ψreg(1 = 2) ≡ [∂r12(r12ψ(~r1, ~r2))]r12→0

for fixed center of mass position ~R12 of 1 and 2

Basic assumption:

• ψ diverges at most like Green’s function

ψ(~r1, . . . , ~rN) = O

(

1

rij

)

∀i 6= j

• regularisation operator removes the r−1
ij term



MODEL 1: FERMI PSEUDO-POTENTIAL

Advantages:

• Depends only on a

• Ideal for exact analytical calculations:

(∆ + k2)ψ(~r ) = 4πaψregδ(~r )

ψ(~r ) = ψ0(~r ) + 4πaψregG(r)

where ψ0 solves homogeneous equation, G(r) is Green’s
function

G(r) = −
exp(ikr)

4πr
.

Resulting unknown is a function of 3 less spatial coordi-
nates:

ψreg = ψ0,reg − ikaψreg.



MODEL 1: FERMI PSEUDO-POTENTIAL

Disadvantages:

• Not intuitive: 2-body bound state only for a > 0
∫

− h̄2

2mψ
∗∆ψ is not the kinetic energy

• A modified Hilbert space: equivalent to free waves with
boundary conditions

ψ(~r1, . . . , ~rN) = A(a−1 − r−1
ij ) + o(1)

when rij → 0 for fixed ~Rij = (~ri + ~rj)/2.

• Variational calculation more tricky:

– fermions: no Hartree-Fock, no BCS

– bosons: no Hartree-Fock, no Hartree-Fock-Bogoliubov,
no Jastrow (ψ = [r12r13r23]

−1 ∼ r−3
12 for ~R12 = ~r3)



WHEN THREE PARTICLES MEET

Follow general method in free space:

• formal integration of Schrödinger equation relatesψ(1, 2, 3)
to ψreg(i = j, k) and the Laplacian Green’s function

• Fermi or Bose symmetry: only ψreg(1 = 2, 3) required

• in the center of mass frame:

ψreg(1 = 2, 3) = ψreg(~u = ~R12 − ~r3)

• Fermions: when ~u = ~0 and r12 → 0:

ψ = −
a

r12
ψreg(~0 ) + o(1) → ψreg(~0 ) = 0.

• Bosons: same result using values ~u 6= ~0 and requirement
of finite ψreg(~0 ).

Never 3 particles at same point in model 1 !



MODEL 2: LATTICE MODEL

Definition: discrete δ on a lattice

• Spatial coordinates discretized on a grid:

~r =
∑

α=x,y,z

nαl~eα

• Usual kinetic energy h̄2k2/2m for wavevector ~k, but

~k ∈ D ≡ [−π/l, π/l[3.

• Interaction potential:

V (~r1 − ~r2) =
g0

l3
δ~r1, ~r2

• l-dependence in exact state should disappear if

kF l � 1.



MODEL 2: LATTICE MODEL

How to choose the coupling constant g0?

• Exact scattering matrix on the grid:

Tgrid(E+iη) =
|~r = 0〉〈~r = 0|

g−1
0 −

∫

D d
3k(2π)−3(E + iη − h̄2k2/m)−1

• Adjust g0 to have scattering length a on the grid:

g−1
0 = g−1 −

∫

D

d3k

(2π)3
m

h̄2k2

g0 =
g

1 − 2.442 a/l
.

similar to ‘usual’ prescription (see e.g. Randeria).

• l � |a| gives g0 = −5.14 h̄2l/m < 0:
not hard sphere but attractive for |a| = ∞



MODEL 2: LATTICE MODEL

Advantages:

• Regular Hilbert space: for fermions, BCS ansatz can be
used

• Link with Hubbard Hamiltonian theory possible

• Negative coupling constant g0 < 0:

– The gas clearly experiences attraction

– Quantum Monte Carlo possible for fermions: no sign
problem



MODEL 2: LATTICE MODEL

Disadvantages for bosons: 3 particles can be on same site:

• breaks equivalence with model 1: has Efimov states not
present in model 1

ψreg(1 = 2, 3)
!

→ ∞ for ~r3 → ~R12.

ψ

[

~r1, ~r2, ~r3 =
1

2
(~r1 + ~r2)

]

!
∼

1

r212

for r12 → 0.

• breaks usability of thermodynamics: spectrum not bounded
from below for l → 0:

E0 ≤ −N
2πh̄2

2.442ml2
(N − 2.918)

as obtained from variational ansatz |N : ~r = ~0〉.



A NAIVE BUT INSTRUCTIVE MODEL
For a given spin ↑ fermion:

• effect of nearest ↓ modeled by scattering center

• effect of otherN/2−1 ↓ modeled by box of size ∼ ρ−1/3

• effect of other N/2 − 1 ↑: Fermi statistics, modeled by
φ = 0 boundary conditions

Trick used in Jastrow MC calculations, see Pandharipande:
short range correlations crucial for kF |a| > 1

R

regδg ( r )



Relating the model to observables of the gas:

• Energy of the gas vs energy in the box:

E =
1

2
Nε

• Density of the gas vs radius in the box:

a = 0 :
3

5
NεF =

1

2
N
h̄2

m

(

π

R

)2

kFR =
√

5/3π.

Solving the one-body problem:

−
h̄2

m
∆φ = εφ ∂r ln(rφ)r=0 = −

1

a

• Positive energies ε = h̄2k2/m :

φ(r) ∝
sin[k(r −R)]

r
tan kR = ka



• Negative energies ε = −h̄2κ2/m:

φ(r) ∝
sinh[k(r −R)]

r
tanhκR = κa

PREDICTIONS OF NAIVE MODEL
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PREDICTIONS OF NAIVE MODEL

Ground branch:

• Connecting two interesting regimes:

– kFa → 0−: weakly attractive Fermi gas
BCS phase in a full N -body theory

– kFa → 0+:dilute gas of dimers
BEC of dimers in a full N -body theory

• Is stable. Even in unitary limit. Thanks to Fermi pres-
sure.

• Energy less than the ideal Fermi gas. For a = ±∞:
effective attraction.

• Crucial idea: adiabatic following
degenerate Fermi gas → BEC of dimers

BEC of dimers → condensate of “Cooper” pairs



Upper branch:

• kFa → 0+: weakly repulsive Fermi gas.

• For bosons: the standard state of BEC’s !

• Is metastable. Relaxes to ground branch by three-body
collisions:

3 atoms → 1 dimer + 1 atom

A second way to produce a BEC of dimers.



EXPERIMENTAL RESULTS AT ENS

Measuring the expansion energy of the gas:

• expansion with fixed a:

Eexpansion = Ekin + Einter

• expansion with a = 0 possible: gives momentum distri-
bution

• Breaking the molecules just before imaging:

a > 0 → a < 0 then a = 0.





A BEC of dimers

6Li 7Li

100 200 300 0 100 200 300 

O
p

t
i
c
a

l
 
d

e
n

s
i
t
y
 
[
a

.
u

.
]

position [µm]

(a) (b)

amol

a
= 0.56+0.3

−0.2 vs theory 0.6.

Other groups:

• D. Jin, JILA (Boulder, USA), with 40K

• R. Grimm, Innsbruck, with 6Li

• W. Ketterle, MIT (Boston, USA), with 6Li

A condensate of pairs for kF |a| > 1 reported by D. Jin.



MORE DETAILS ON UNITARY LIMIT |a| = +∞

Known properties:

• Universality: depends only on T/TF

E(T = 0) = ηE(0)(T = 0)

• Effective attraction: η < 1 from Hartree-Fock

• Upper bound from BCS (Randeria):

η < 0.5906 . . .

• Fixed Node Green’s function Monte Carlo with trial
Jastrow-BCS wavefunction (Pandharipande):

η < 0.44 ± 0.01
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MORE DETAILS ON ADIABATIC FOLLOWING

Evolution of temperature:

• Gas thermally isolated: for slow change of a, isentropic
evolution:

S(N, Ti, ai) = S(N, Tf , af).

• Bose condensate limit:

kFa � 1 kBT � kBT
(0)
c � h̄2/ma2.

For kBT > µmol

S ' 1.8kBN

(

T

T
(0)
c

)3

• Ideal Fermi gas limit:

kF (−a) � 1 T > TBCS
c



S ' kBNπ
2 T

TF
• Moving from a > 0 to a < 0 can provide cooling.

2 3 4
T

BEC
/T

initial

0

0.01

0.02

0.03

0.04

0.05

0.005

T
fi

na
l/T

F

0.39

0.47

0.60

0.71

0.81

0.92

(k
F|a

|) c



MORE ABOUT BALLISTIC EXPANSION

A very common experimental procedure:

• prepare trapped gas in steady state

• switch off trapping potential abruptly

• gas freely expands for ∼ 20 ms

• laser beam absorption imaging gives integrated density:

signal(x, y) ∝

∫

dz ρ(x, y, z; t)

• used as a ‘magnification lens’: e.g. to reveal a vortex
lattice in a BEC (J. Dalibard)



MORE ABOUT BALLISTIC EXPANSION (2)

Is it a faithfull ‘magnifying lens’ ?

• Yes if expanded density can be related to in situ observ-
ables

• A non-trivial problem because of interactions

• A sufficient condition: existence of scaling relation

ρ(x, y, z; t) =
1

∏

α λα(t)
ρ0

[

x

λ1(t)
,
y

λ2(t)
,
z

λ3(t)

]

.



BRIEF HISTORY OF SCALING SOLUTIONS

• For an ideal gas in a harmonic potential

• For the Boltzmann equation in a harmonic isotropic po-
tential: Boltzmann

• For the Gross-Pitaevskii equation in a harmonic trap:

– in Thomas-Fermi regime: G. Shlyapnikov, E. Surkov,
Yu. Kagan (1996), R. Dum, Y. Castin (1996)

– in Thomas-Fermi regime for rotating traps: M. Ol-
shanii, P. Storey (2000), Y. Castin, S. Sinha (2001)

– in 2D in isotropic trap: G. Shlyapnikov, E. Surkov,
Yu. Kagan (1996)

• For superfluid hydrodynamics in a harmonic trap with
equation of state µ ∝ ργ: Stringari, Menotti (2002)



• for N -body Schrödinger equation of 1D gas of impene-
trable bosons in harmonic trap: is formally equivalent to
ideal Fermi gas: Girardeau

• For N -body Schrödinger equation in 2D, isotropic har-
monic trap, 1/r212 or δ( ~r12) interaction potential: Pitaevskii,
Rosch (1997).

• BUT required regularisation breaks scaling invariance:
Olshanii, Pricoupenko (2002) so Pitaevskii result applies
only to states with no particles at same point

ψ(. . . , ~ri = ~rj, . . .) = 0 ∀i 6= j

like Laughlin state.



SCALING SOLUTION FOR THE 3D UNITARY QUANTUM GAS

The problem in an isotropic trap:

• Free Schrödinger equation over domain rij 6= 0:

ih̄∂tψ =
N
∑

i=1

[

−
h̄2

2m
∆~ri

+
1

2
mω2(t)r2i

]

ψ

• plus contact conditions:

ψ(~r1, . . . , ~rN) =
A(~Rij, {~rk, k 6= i, j})

rij
+ o(1).

• Initially, stationary state in static trap ω = ω0 with en-
ergy E.



Ansatz: gauge plus scaling transform:

ψ(~r1, . . . , ~rN) =
e−iθ(t)

λ3N/2(t)
exp

[

imλ̇

2h̄λ

∑

r2j

]

ψ0(~r1/λ, . . . , ~rN/λ).

• scaling preserves contact conditions

• gauge transform preserves contact conditions:

r2i + r2j = 2R2
ij +

1

2
r2ij.

• solves free Schrödinger equation if

λ̈ =
ω2

0

λ3
− ω2(t)λ

θ(t) = E

∫ t

0

dτ

h̄λ2(τ )
.



CONSEQUENCES OF SCALING SOLUTION

• Linear response: undamped mode of frequency 2ω0

• Existence of lowering operator:

L− = −
3N

2
+

E

h̄ω0
−

N
∑

j=1

~rj · ∂~rj −
mω0

h̄

N
∑

j=1

r2j .

L−|ψ0〉 vanishes or has energy E − 2h̄ω0.

• Virial theorem (F. Chevy):

E = 2Eharm > 0

→ spectrum semi-bounded, stability

NB. For isotropic trap hydrodynamic prediction gives same
scaling as exact solution. For anisotropic traps experiments
in disagreement with hydrodynamics.



CONCLUSION AND PERSPECTIVES

• Crossover from BEC of composite bosons to BCS tran-
sition and strongly interacting regime is being studied
experimentally with gases of fermionic atoms

A challenge for theorists !

• To come: rotating superfluid Fermi gases, vortices

• To come: fermionic atoms in optical lattices and the
Hubbard model


