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OUTLINE

e Present experiments with fermions: why interesting ?

e Feshbach resonance: which model for the interaction po-
tential 7

e A very simple model: a matter wave with one scattering
center in a box

e An exact time dependent solution for the unitary quan-
tum gas



PRESENT EXPERIMENTS ON FERMIONS

Typical ENS experimental parameters:
e fermionic %Li atoms: F = 1/2 atomic ground state

e optical trapping, evaporative cooling:
N ~10° kp ~1.6x10'm™ ' kgTp ~ 10uK T < 0.2Tp
Why interesting ?

e strength and sign of interaction tunable with magnetic
field

e scattering length a > 0: a 2-body bound state
Bose condensate of dimers

e scattering length a < 0: Cooper pairs
BCS state = condensate of pairs

e intermediate regime: a = =00
strongly interacting regime kg|a| > 1 stable



WHAT IS A FESHBACH RESONANCE ?
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e Scattering amplitude for kX true potential range < 1:

—1
T = —vC~1 4+ ik + h%k2/2mC

with effective detuning

v =¢€p(B)+ Ap x B— By for B — By

and C > 0 coupling intensity

e Low k general scattering theory:

—1
f, =
“ T a1 ik — ke + ...
gives
¢ n <0
a —= —— r, — ——
v © mC

where 7¢ is effective range.



THE DILUTE GAS REGIME

Crucial assumption: gas dilute at the scale of r¢:
—1
rel < |al, kg™

— zero range model potential possible
interactions characterized by a only

Talk of Dima Petrov: regime of gas with effective long
range interaction is possible

true range < kp',|a| < |rel



WHICH MODEL FOR THE INTERACTION POTENTIAL ?

Requirements for non-perturbative IN-body problem:

e hypothesis of thermal equilibrium applicable:

—BH
o1,....N X € &

so that e.g. Quantum Monte Carlo can be used.
rules out the ‘true’ interaction potential

e leads to a well defined mathematical problem!
good idea to check on e.g. 2-body problem!

Example of an ill-defined problem:

e The Dirac delta interaction potential in 2D and 3D:
V(ri — 73) = g8(ri — 13)



e 2-body Schrodinger’s equation in center of mass frame:
2

h — —
B = ——Aptp + go(r)(7)
e Either ¢ (#) vanishes or diverges in ¥ = 0:

—1
3D : A—— = 4(7)
47r
|
oD : A—2L — §(7).
27




WHAT IS v IN THIS TALK ?

e for spinless bosons:
P(FLy ey TN) = (F1y- -, TN[Y)
and is totally symmetric
e for spin 1/2 fermions:
Y(r1ye ey TN) =(+ 1 TF1yee e+ 1Ty, — :Tpt1ye ey —  TN|Y)

and is totally antisymmetric with respect to 71,...,7n
and with respect to r,11,...,7N.



MODEL 1: FERMI PSEUDO-POTENTIAL

Arh2a
(7L 2V ) = = 57 — 12)tpreg(1 = 2)

where
¢reg(1 — 2) = [arlg(rl2¢(r—ia r—é))]r12—>0

for fixed center of mass position R_iz of 1 and 2

e ¢ diverges at most like Green’s function
1 L,
TZ]

[ ] [ ] _1
e regularisation operator removes the T term



MODEL 1: FERMI PSEUDO-POTENTIAL

e Depends only on a

e Ideal for exact analytical calculations:
(A + k) (7) = 4matpregd(7)
Y(7) = Yo(T) + 4marhregG(r)

where g solves homogeneous equation, G(r) is Green’s
function

exp(tkr
G(r) = — p(ikr)
47r
Resulting unknown is a function of 3 less spatial coordi-

nates:
77breg; — "pO,reg — ikaﬂbreg-



MODEL 1: FERMI PSEUDO-POTENTIAL

e Not intuitive: 2-body bound state only for a > 0
2
| —2’i—m¢*A¢ is not the kinetic energy

e A modified Hilbert space: equivalent to free waves with
boundary conditions

P(ris - rR) = At —r2h) + o(1)
when r;; — 0 for fixed Rz] (7s +75)/2.

e Variational calculation more tricky:

— fermions: no Hartree-Fock, no BCS

— bosons: no Hartree-Fock, no Hartree—Fock Bogollubov,
no Jastrow (v [r12r13r23] LN r12 for Ris = 73)



WHEN THREE PARTICLES MEET

Follow general method in free space:

e formal integration of Schrodinger equation relates ¥ (1, 2, 3)
to Yreg(t = J, k) and the Laplacian Green’s function

e Fermi or Bose symmetry: only ¥reg(1 = 2, 3) required

e in the center of mass frame:
¢reg(1 = 2, 3) = ¢reg(ﬁ = Rj2 — 'r_é)

e Fermions: when 4 = 0 and r12 — O:

P = —iTPreg((—j) +o(1) — ¢reg(6) = 0.
r12

e Bosons: same result using values uw # 0 and requirement
of finite 1Preg(0).

Never 3 particles at same point in model 1 !



MODEL 2: LATTICE MODEL

e Spatial coordinates discretized on a grid:

e Usual kinetic energy h2k?2 /2m for wavevector E, but

keD=[—=n/l,x/l>.
e Interaction potential:
V(’I“l — ’1“2) — l_36”°_ia7°_§

e [-dependence in exact state should disappear if

krpl < 1.



MODEL 2: LATTICE MODEL

e Exact scattering matrix on the grid:
|7 = 0) (7 = 0|

Tgria(E+in) = — .
i g 1_ [ d3k(2w)—3(E + in — h?k2/m)—1

e Adjust gg to have scattering length a on the grid:
1 d*k  m
Jdo =9 7 /D (27)3 h2k2
. g
1 —2.442a/l
similar to ‘usual’ prescription (see e.g. Randeria).

ol < |a| gives g9 = —5.14 h%l/m < 0:
not hard sphere but attractive for |a| = oo

go



MODEL 2: LATTICE MODEL
Advantages:

e Regular Hilbert space: for fermions, BCS ansatz can be
used

e Link with Hubbard Hamiltonian theory possible
e Negative coupling constant gg < O:

— The gas clearly experiences attraction

— Quantum Monte Carlo possible for fermions: no sign
problem



MODEL 2: LATTICE MODEL

3 particles can be on same site:

e breaks equivalence with model 1: has Efimov states not
present in model 1

! -
Ipreg(l — 2 3) _.> 0 fOI‘ ’I“_é — R]_2.
1
Y |11, 7,73 = —('r1 + 73)| ~ —— for r12 — O.
7“12
e breaks usability of thermodynamics: spectrum not bounded
from below for I — O:

27 h 2
Eqg < —N (N — 2.918)
2.442ml?

as obtained from variational ansatz |N : 7 = 0).




A NAIVE BUT INSTRUCTIVE MODEL

For a given spin T fermion:
e effect of nearest | modeled by scattering center
e effect of other N/2 —1 | modeled by box of size ~ p_l/3

e effect of other N/2 — 1 T: Fermi statistics, modeled by
¢ = 0 boundary conditions

Trick used in Jastrow MC calculations, see Pandharipande:
short range correlations crucial for kgp|a| > 1

7




e Energy of the gas vs energy in the box:

1
E = —Ne

2

e Density of the gas vs radius in the box:
0: °N LT <W>2 kpR = \/5/3
a=0: —Nep = — = .
5 1 2 m\R F
h2

1
——A¢p=¢€¢p OrIn(re)r=o= s

m
e Positive energies € = h?k?/m :

P(r) o sinfk(r — R)] tankR = ka




e Negative energies € = —h?k?/m:

P(r) o sinh{k(r — B)] tanh kR = ka
r

PREDICTIONS OF NAIVE MODEL




PREDICTIONS OF NAIVE MODEL

Ground branch:
e Connecting two interesting regimes:

—krpa — 07 : weakly attractive Fermi gas
BCS phase in a full N-body theory

— kpa — 0T:dilute gas of dimers
BEC of dimers in a full N-body theory

e Is stable. Even in unitary limit. Thanks to Fermi pres-
sure.

e Energy less than the ideal Fermi gas. For a = xo0:
effective attraction.

e Crucial idea: adiabatic following
degenerate Fermi gas — BEC of dimers
BEC of dimers — condensate of “Cooper” pairs



Upper branch:
e kpa — 07: weakly repulsive Fermi gas.
e For bosons: the standard state of BEC’s !

e Is metastable. Relaxes to ground branch by three-body
collisions:
3 atoms — 1 dimer + 1 atom

A second way to produce a BEC of dimers.



EXPERIMENTAL RESULTS AT ENS

Measuring the expansion energy of the gas:

e expansion with fixed a:

Eexpansion = Eyin + Einter

e expansion with a = 0 possible: gives momentum distri-
bution

e Breaking the molecules just before imaging:

a>0 — a<0 then a =0.
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e D. Jin, JILA (Boulder, USA), with 4°K
¢ R. Grimm, Innsbruck, with 9Li

e W. Ketterle, MIT (Boston, USA), with °Li
A condensate of pairs for kr|a| > 1 reported by D. Jin.



MORE DETAILS ON UNITARY LIMIT |a| = 400

e Universality: depends only on T /Tg
E(T =0) = nEO(T = 0)
e Effective attraction: n < 1 from Hartree-Fock

e Upper bound from BCS (Randeria):
n < 0.5906. ..

e FFixed Node Green’s function Monte Carlo with trial
Jastrow-BCS wavefunction (Pandharipande):

n < 0.44 + 0.01
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MORE DETAILS ON ADIABATIC FOLLOWING

e Gas thermally isolated: for slow change of a, isentropic
evolution:

S(N,T;,a;) = S(N, T, azr).
e Bose condensate limit:
kpa <1 kpT < kgT\? <« h2/ma?.
For kT > pmol

oo (1)
~ 1.8kpN | —
")

e Ideal Fermi gas limit:

kp(—a) < 1 T > T3¢



o T
S ~ kBNTl' —
TF
e Moving from a > 0 to a < 0 can provide cooling.
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MORE ABOUT BALLISTIC EXPANSION

A very common experimental procedure:
e prepare trapped gas in steady state
e switch off trapping potential abruptly
e gas freely expands for ~ 20 ms

e laser beam absorption imaging gives integrated density:
signal(z, y) /dz p(z,y, z;t)

e used as a ‘magnification lens’: e.g. to reveal a vortex
lattice in a BEC (J. Dalibard)



MORE ABOUT BALLISTIC EXPANSION (2)

Is it a faithfull ‘magnifying lens’ 7

e Yes if expanded density can be related to in situ observ-
ables

e A non-trivial problem because of interactions

e A sufficient condition: existence of scaling relation
1 €T (i z
PO ’ ’ .
[Ta2a(t) ~ [A1(t) A2(t) As3(t)

p(ma Y,z t) —



BRIEF HISTORY OF SCALING SOLUTIONS

e For an ideal gas in a harmonic potential

e For the Boltzmann equation in a harmonic isotropic po-
tential: Boltzmann

e For the Gross-Pitaevskii equation in a harmonic trap:

—in Thomas-Fermi regime: (. Shlyapnikov, E. Surkov,
Yu. Kagan (1996), R. Dum, Y. Castin (1996)

—in Thomas-Fermi regime for rotating traps: M. Ol-
shanii, P. Storey (2000), Y. Castin, S. Sinha (2001)

—in 2D in isotropic trap: G. Shlyapnikov, E. Surkov,
Yu. Kagan (1996)

e For superfluid hydrodynamics in a harmonic trap with
equation of state p oc p7: Stringari, Menotti (2002)



e for N-body Schrodinger equation of 1D gas of impene-
trable bosons in harmonic trap: is formally equivalent to
ideal Fermi gas: Girardeau

e For N-body Schrodinger equation in 2D, isotropic har-
monic trap, 1/ r%z or §(r712) interaction potential: Pitaevskii,

Rosch (1997).

e BUT required regularisation breaks scaling invariance:
Olshanii, Pricoupenko (2002) so Pitaevskii result applies
only to states with no particles at same point

Y(eeeyT; =75,...) =0 Vi#y
like Laughlin state.



SCALING SOLUTION FOR THE 3D UNITARY QUANTUM GAS

The problem in an isotropic trap:

e Free Schrodinger equation over domain r;; # O:

N
, 1
1=1

e plus contact conditions:

A Ri'a _’9k .9 .
’(b(’l?l,---,’rf\f) — ( . {rf 7! J}) | 0(1)°
(]

e Initially, stationary state in static trap w = wg with en-
ergy L.



. . e—10(t) imA
Y(F1y.0 0 TN) = NIN/2 (1) exp | o~

2.7

e scaling preserves contact conditions

Yo(ri/A, ..

e gauge transform preserves contact conditions:

1
2 2 2 2
ry +r; =2R;. + —7r;.
¢ J 2

17°

e solves free Schrodinger equation if

2

X =20 _ 2

)\3

mszéth

AX2(T)

s TN/ A).



CONSEQUENCES OF SCALING SOLUTION

e Linear response: undamped mode of frequency 2w

e Existence of lowering operator:

L _|1g) vanishes or has energy E — 2hwy.
e Virial theorem (F. Chevy):

E = 2FEham > 0
— spectrum semi-bounded, stability

NB. For isotropic trap hydrodynamic prediction gives same
scaling as exact solution. For anisotropic traps experiments
in disagreement with hydrodynamics.



CONCLUSION AND PERSPECTIVES

e Crossover from BEC of composite bosons to BCS tran-
sition and strongly interacting regime is being studied
experimentally with gases of fermionic atoms

A challenge for theorists !

e To come: rotating superfluid Fermi gases, vortices

e To come: fermionic atoms in optical lattices and the
Hubbard model



