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1.   Sketch the theory of the formation and Bose condensation
of diatomic molecules in a model for an interacting two
component degenerate atomic Fermi gas.

2. Within a simple microscopic model, I will argue that there is
no fundamental difference between a molecular Bose
condensate of real molecules and superfluid state
composed of Cooper pairs.



I will discuss four topics:

1. Two body effects : Recall what a Feshbach
resonance is between two atoms in a vacuum.

     This is the key in recent experiments involving the
formation of diatomic molecules in a Fermi gas.

2.  Review the BCS theory of superconductivity
     without a  Feshbach resonance. The formation of
     Cooper pairs in a Fermi gas is due to many-body

effects. The BCS quasiparticles are Fermions
moving in a Bose condensate of Cooper pairs.

All my work is done in close collaboration with
Prof. Yoji Ohashi, University of Tsukuba, Japan



3. Discuss the transition from the usual BCS state of 
    large overlapping Cooper pairs to a BEC gas with 
    small Cooper pairs. This BCS-BEC crossover arises 
    when  one increases the attractive interaction between
    the atoms.This crossover is the region which is now 
    accessible to experimental study for the first time.  

4. Discuss an interacting Fermion-Boson model which 
    incorporates the creation of molecules by a two-body
    Feshbach resonance and from many-body(BCS) 
    effects. Within this two-channel model, we show 
    there is no fundamental difference between a Bose 
    condensate  of molecules and a BCS superfluid phase.
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2n µ B - B0

6Li  Hulet et al
 Molecules only form when 
 a > 0 . This is equivalent to 
 2n < 0 or B < B0

By slowly ramping to just below the resonance (a > 0), 
long-lived dimer molecules appear which thermalize 
with the rest of the atoms and form a molecular Bose 
condensate if the temperature is below TBEC .

Feshbach resonance: two body physics



 BCS theory of superconductors 

ß A two component Fermi gas (electrons in metals, 3He 
atoms or alkali atoms) with an attractive s-wave 
interaction is unstable to the formation of a bound 
state ( S = 0) of two Fermions . This Cooper pair 
is a many-body effect, and only arises in a degenerate 
Fermi gas with a Fermi surface. It does NOT depend 
on the interatomic potential having a bound state.

ß Once these Cooper pairs (Bosons) form at TBCS , they 
produce a Cooper pair condensate. The remaining 
Fermi atoms swim around in this condensate soup, and 
develop a gap D  in their single particle energy spectrum. 
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This is the essence of the famous BCS theory(1957) of 
superconductivity in interacting Fermi gases with an 
attractive interaction - U. The order parameter fC
describes bound states ( S = 0) of two Fermions, which 
are all Bose-condensed into the same state. This MFA
does not allow Cooper pairs to be out of the condensate.

Cooper pairs



This BCS mean field approximation can be 
diagonalized by the Bogoliubov transformation, 
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where the BCS quasiparticles have an  energy 
given by 

The energy of unpaired atoms in the superfluid 
gas is   

† 

Eatom (q) = m + Eqp (q)



 Haussmann,1993

As the magnitude of the attractive interaction is increased, 
the Cooper pairs become more tightly bound and eventually
we pass over to a region described as a dilute gas of small 
Cooper pair molecules. This is the famous BCS-BEC
crossover, first studied in Eagles in 1969 and in the 1980s by 
Leggett( at T=0) and Nozieres (at Tc). At the same time, the 
spectral weight of the Fermi atoms decreases, as they form 
Cooper pairs. 

The BCS-BEC Crossover



Sa de Melo , Randeria and 
Engelbrecht, PRL, 1993.

Engelbrecht, Randeria and
Sa de Melo,  PRB, 1997

Dashed line shows the smooth
decrease in size of the bound
state pair as we go from BCS to
BEC regions

In current language, these results are for a single channel.

T*

1/kFas



Model for interacting Fermi atoms and 
molecules - the two channel model.

We need a microscopic model that includes: 
¸ Feshbach resonance in the two-body potential
¸ BCS Cooper pair formation
¸ BCS-BEC crossover as interaction increases

The model (due to Timmermans, Holland and 
coworkers) explicitly includes the Fermi atoms, the
Bosonic dimers formed from these atoms, and
and the Feshbach resonance coupling term. This
is now referred to as the two-channel model.



ß The atom-molecule interaction is denoted by gr
ß  The non-resonant attractive interaction is - U

The molecular bound state energy 2n can be tuned.
Molecules(with finite lifetime) start to form when 
2n ≤ 2eF and will not be able to decay when 2n < 0. 



 A crucial feature of this Hamiltonian is that the 
 b-molecules are formed from the Fermi atoms. 
 There is thus only one chemical potential, with
     
       H - mN = H - mNF - 2mNB , with   mB = 2m. 

This coupled Hamiltonian modifies the effect of the
bare two-body Feshbach resonance. Two atoms 
are now part of an interacting system in the 
presence of a filled Fermi sea.



First thing to do is to solve our coupled FB model
in a mean field approximation, allowing for Cooper
pairs and a Bose condensate of b-molecules:

     fC  = Cooper pair condensate 
     fm  = Molecular condensate
 
  Both condensates are dependent on each other. 
  We end up with a BCS-type theory but now with 
   a composite order parameter:
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˜ D = UfC - gfm

This order parameter is the sum of contributions 
from two mechanisms:

Pair wavefunction =  Open (scattering) channel
  +  Closed(molecular) channel

However, they are strongly coupled to each other
and one determines the other:

The number of Bose condensed b-molecules is 
given by Nb = fm2

 . The number of Cooper pairs
not so easy to calculate.
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The composite BCS order parameter reduces to: 
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The physics  is clear. The attractive interaction - U 
between the Fermi atoms in the open channel is now 
renormalized to Ueff by the resonant coupling to
 the b-molecules in the closed channel. 

One can speak in terms of a Bose condensate of BCS
Cooper pairs or in terms of a molecular BEC of
b-molecules, on both sides of the Feshbach resonance.



Note we are now dealing with a renormalized 
Feshbach resonance for atoms interacting in a
superfluid Fermi gas, not two atoms in a vacuum. 
The b-molecules are described by a propagator

† 

Do(0,0) = -
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For coupling to Cooper pairs with q = 0, w = 0, 
this b-molecule propagator reduces to
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D0(q,w) =
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w - Eq
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The b-molecule energy spectrum is also modified by
self-energy effects due to coupling to Cooper pairs
outside the condensate. This is important at finite T.



† 

It is no surprise that the renormalized energy gap
is given by a BCS-type gap equation but now with 
an enhanced attractive interaction

We already see the possibility that TC will be large.
However,  m is very dependent on the value of 2n .



To calculate the chemical potential m and the order 
parameter      in a self-consistent way, one has to 
include the fluctuations around the MFA : 

¸ The Cooper pairs outside the BCS condensate
      - Nozieres and Schmitt-Rink (1985) at Tc .
¸  The b-molecules outside the molecular condensate
      - Ohashi and Griffin (2002) at Tc .
¸ Both effects below Tc by Ohashi and Griffin (2003).

The number of b-molecules and Cooper pairs is 
self-consistently adjusted as 2n is decreased,
                 
        NF = Natoms + 2NCooper pairs + 2Nb-molecules
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The relative weight of the b-molecules and the Cooper pairs
in the composite Bose condensate is shown (uniform gas).

Ohashi and Griffin , PRA, 2003



Narrow 
resonance

Broad 
resonance

Uniform gas at TC
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Trapped gas at T = 0. All b-molecules are in
condensate. The Cooper pairs are included in
Fermi contribution. For N =10, 900 atoms.
O&G, cond-mat/ 0402031



Results for a trapped gas at Tc  

Note that Tc /TF  is 0. 5 for a trapped gas, not 0. 2 

O&G, PRA, 2003
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n /eF



Ohashi & Griffin , PRA, 2003 : Narrow resonance case

Composite order parameter
as a function of n  and T.

Number of Bose-condensed
molecules in the BCS (n  > 0)
and BEC (n  < 0) regions.



 The crossover between the two regions is smooth. 

    Falco and Stoof ( PRL, 2004) have given a simplified version 
of the model worked out by O&G (PRL, 2002). F&S treated the 
finite-lifetime b-molecules which form on the BCS side ( a2b < 0) 
as a simple BEC of stable molecules,  ignoring the co-existence 
of  Cooper pairs. Comment: It is not clear how experimentalists 
distinguish between long-lived molecules and stable molecules.

    In the F&S poor man’s calculation, there is sharp transition 
line when this BEC of b-molecules ceased to exist in the BCS
region (Z =0). The more detailed calculations of O&G show that 
is no such abrupt change and that a BEC of b-molecules and 
Cooper pairs co-exists on both sides of the resonance. However,
overall, we view our work as in agreement with that of  F&S.



Many-body effects modify the two-body Feshbach
resonance at 2n = 0 and as result the effective
attractive interaction is smooth through the crossover,
as in the single channel pure BCS case originally
discussed by Randeria and coworkers.

O&G, PRA, 2003



Broad and narrow resonance 
results plotted in terms of 
1/aeff instead of 1/a2b .

Uniform trap 
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Suggests universal behavior
when expressed in terms of 1/aeff



The recent JILA data in the “ BCS region”as defined
by a2b < 0. The bimodal profile clearly shows evidence
for the appearance of the Bose condensate of “Cooper”
pairs. However, equally exciting is the first observation
of a thermal gas of such pairs (never seen before in
BCS superconductors!).



Ohashi and Griffin,
cond-mat, Feb, 2004

Density of states of excitations in a trapped Fermi gas.
Eg is the energy gap of BCS excitations. Energy given 
In units of the isotropic trap frequency.

These results involve 
solving the de Gennes -
Bogoliubov equations
for a trapped Fermi gas
at T = 0,  for n/eF =1
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n =1.0eF
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Eatom (q) = m + (eq - m)2 + ˜ D 2( )
1/ 2

Note that in BCS side m > 0 while in BEC side m < 0

Uniform gas

rf-spectroscopy (Jin, Grimm) can be used to measure this single
particle gap by breaking up pairs ( Torma & Zoller, PRL 2000).

 

Excitation energy gap Single atom energy gap
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vF
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The BCS two particle continuum starts at 2D.
The Anderson-Bogoliubov collective mode
can exist undamped within this energy gap. It 
is an oscillation of the Cooper pair condensate

fi 2D

This is for a uniform BCS superfluid. The analogous
AB modes have been recently worked out for trapped 
Fermi atoms, through the BCS-BEC crossover.



O&G, Fermi
Gas Conference,
Levico , 2004

Collective modes(collisionless) in a trapped 
(isotropic) Fermi Gas

Note the interesting minimum in the two-
particle excitation energygap just above the
Feshbach resonance and the resulting
suppression of the monopole frequency.



Conclusions

ßThere is no qualitative difference between the 
predictions of single channel and two channel models 
of the BCS-BEC crossover within a MFA extended
to finite temperatures.

ßThere is no fundamental difference between a 
molecular condensate in the BEC limit and a Cooper 
pair condensate in the BCS limit . In particular, the
single particle excitations have the usual BCS 
Bogoliubov spectrum and the condensate collective 
modes behave smoothly through the crossover region.



ßAt this level, we have a good  understanding of the
BCS-BEC crossover with a Feshbach resonance,
building naturally on the original ideas of Eagles,
Leggett, Nozieres and Randeria.

The next step in understanding the two channel
model we have been using might be to work explicitly 
with a three component Fermi gas involving three 
hyperfine atomic states: a, b and c (Leggett, 2004). 

•The open channel involves the states a and b, as before.
•The closed channel describing the b-molecules is now 
   described by the states a and c.


