Astrophysics & Cosmology with Galaxy Clusters: a Simulator's Perspective

Stefano Borgani
Dept. of Physics
University of Trieste
(also INAF & INFN - Trieste)

- I. How much should we trust simulations?
- II. What simulations are useful for?
 - II.a Calibration of mass proxies
 - II.b Universality of pressure profiles
 - II.c Effect of gas-dynamics on the halo mass function

In collab. with: A. Bonafede, W. Cui, K. Dolag, D. Fabjan, M. Killedhar, M. Meneghetti, E. Rasia, G. Murante, B. Sartoris, L. Tornatore

Part 1: Why should we trust simulations?

The role of hydrodynamic simulations

Movie by K. Dolag

- → Define what's the regime where clusters are best modeled (and understood)
- → Understand and calibrate systematics and biases in mass measurements
- → Define and test "mass proxies": robustness and intrinsic scatter

(e.g. SB & Kravtsov '09)

Gas Density Profiles

Croston et al. 08: comparison of XMM data with simulations.

See also Nagai et al. 07

→ Excellent agreement, at least outside the cool core regions.

Temperature Profiles

Loken et al. '02; SB et al. 04; Nagai et al. 07; Pratt et al. '07; Leccardi & Molendi '08:

- 1. Central profiles in simulations steep and negative
- Strong disagreement with data
- → Requires introducing AGN feedback (e.g., Sijacki et al. 2007)
- 2. Excellent agreement outside the cool core regions!

Pressure Profiles

Arnaud et al. 2010:

- P-profiles from simulations: SB et al. '04 (SPH), Nagai et al. 07 (AMR), Piffaretti & Valdarnini 09 (SPH)
- Observed pressure profiles for REXCESS clusters (XMM)
- → Excellent agreement out to R₅₀₀
- Simulations to extrapolate at larger radii

Part 2: What simulations are useful for?

Does hydrostatic equilibrium hold?

Hydrostatic equilibrium (HE):

$$M_{hyd}(< r) = -\frac{rkT}{G\mu m_p} \frac{d \ln(nkT)}{d \ln(r)}$$

- → HE violated at the ~10% level within r₅₀₀
- → Larger deviations at larger radii (>R₅₀₀)
- → Larger scatter in the core regions (<0.15R₅₀₀)
- See also Rasia et al. 2006, Nagai et al. 2007, Morandi et al. 2007, Piffaretti & Valdarnini 2008
- Level of HE violation in simulations comparable to the X-ray/lensing mass ratio (e.g. Zhang et al. '10; talk by A. Mahdavi)

Tracing the origin of HE violation

Non-thermal pressure support from subsonic turbulent motions e.g. Rasia et al. 04, 06, Faltenbacher et al. 05, Lau et al. 09

Lau et al. 09:

Different contribution to total mass estimate from HE equation

- → Non-thermal contributions increasing at larger radii
- → At R₅₀₀ : <10% for relaxed clusters and ~15% for unrelaxed clusters

Mass proxies: X-ray "pressure"

Kravtsov et al. '06

X-ray "pressure":

$$Y_X = M_{gas}T_X$$

- → T_X computed by excising r < 0.15 r₅₀₀
- 1. Similar to Compton-y from SZ observations.
- 2. Very small intrinsic scatter: ~ 5-7 %!
- 3. About 15 % offset wrt Chandra results.

Testing the robustness of mass proxies

Fabjan et al. '11; Bonafede et al. in prep

<u>Increase the statistics of simulated</u> <u>clusters:</u>

- Use a 1 h⁻¹ Gpc box simulated at low res. with 1024³ DM parts
- 29 Lagrangian regions around as many massive clusters
- → 25 clusters with M₂₀₀>10¹⁵ h⁻¹ M_☉
- Non-radiative and radiative runs

<u>Increase the variety of ICM physical</u> processes:

- 18 clusters/groups with 7 different physics:
- Changing artificial viscosity
- Including thermal conduction
- Changing feedback strength and source (SN and AGN)

See talk by S. Gottloeber

Scaling relations @ z=0

(see also Stanek et al. 09)

Self-similar:
$$M_{tot,500} = C_Y E(z)^{-2/3} Y_X^{3/5}$$

- Weak (but sizeable) sensitivity to ICM physics
- Always close to self-similar prediction

Self-similar:

$$M_{tot,500} = C_{Mg} M_{gas,500}$$

- More sensitive to ICM physics
- → Larger deviations from self-similar slope for the radiative runs

Distribution of the intrinsic scatter

- Scatter always very small and almost Gaussian-distributed
- → Slightly smaller scatter for M_{gas} M₅₀₀
- Slightly large scatter in non-raditive runs

Stability against changing the ICM physics

$$Y_X$$

$$M_{tot,500} = C_Y E(z)^{-2/3} Y_X^{\alpha}$$

- Weak dependence of normalization on ICM physics
- → Slope always very close to selfsimilar

$$\mathsf{M}_{\mathsf{gas}}$$

$$M_{tot,500} = C_{Mg} M_{gas,500}^{\alpha}$$

ovisc: nr-standard viscosity lvisc: nr-reduced viscosity

csf: cooling+SF

csfc: cooling+SF+conduction csf-m-nf: chemical enrichment

csf-m-w: chemical enrichment+winds csf-m-agn: chemical enrichment+AGN

- → More sensitive dependence of amplitude on ICM physics
- → Larger deviations from selfsimilar slope in radiative runs

Evolution of scaling relations...

$$M_{tot,500} = C_Y E(z)^{-2/3} Y_X^{\alpha}$$

- → Normalization and slope in agreement with self-similar predictions!
- → Same evolution of radiative and non-radiative physics

$$M_{gas}$$

$$M_{tot,500} = C_{Mg} M_{gas,500}^{\alpha}$$

- → Self-similarity only for non-radiative physics
- → No significant evolution of slope and normalization

Next: mimicking X-ray observations

Rasia et al. in prep

- → Event files from X-MAS Chandra simulator (Rasia et al. 08) with 100 ks exp. time
- → [0.7-2] keV X-ray image (16 x 16 arcmin²)

... and X-ray/lensing mass comparison

Meneghetti et al. in prep

HST-ACS lensing of a massive simulated cluster at z=0.25

Based on the SkyLens tool (Meneghetti et al. 2008)

At R₂₀₀:

Relaxed clusters:

- → Negligible bias: < 3%
- → Intrinsic scatter: ~ 20%

Unrelaxed clusters:

- → Non-negligible bias: ~15%
- → Intrinsic scatter: ~ 25%

How universal is the Universal Pressure Profile?

Relevant for:

- Deprojection of Y_{SZ} in observations of galaxy clusters
- 2. Templates for SZ power spectrum (see D.Nagai's and N.Battaglia's talk)
- → Massive clusters: Quite close to UPP at r < r₅₀₀
- → Redshift evolution: ~ self similar at r < r₅₀₀
- Significant effect of clumping for r > r₅₀₀

Pressure maps

→ Pressure clumping decreased by (over)cooling in small halos: removal of gas with short cooling time.

Effect of changing the physics

- Cooling + SF: reduce the effect of gas clumping
- Gas converted into stars
- AGN feedback: increase pressure at $r > r_{500}$
- → IGM pressurized at the peak of BH accretion before cluster assembly (see also Battaglia et al. '10)
- Stronger clumping in NR runs

Effect of gas-dynamics on the MF

Stanek et al. '09:

- GADGET Millennium gas simulations (non-radiative and radiative/pre-heated)
- Comparison with DM results using the Tinker et al. fitting function
- Comparison with ART simulations by rescaling to account for different cosmological parameters
- → MF variations of 10% (and more)

Summary

- 0.1 < R/R₅₀₀ < 1: Gas dynamics relatively simple <u>and well</u> described by cosmological hydro simulations
- Simulations useful to calibrate them as cosmological tools:
- 1. Level of violation of hydrostatic equilibrium
- 2. Definition and calibration of robust and stable mass proxies
- 3. Accurate calibration of the halo MF including effect of baryons required

A lesson for future (beyond eROSITA) X-ray cluster surveys:

- Detect ~10³ photons for ~ 10⁴ clusters to measure mass proxies
- Resolve cluster cores at high redshift to reduce scatter in the M-X calibration:
 - 10 arcsec @ $z=1 \rightarrow 110 h^{-1} kpc$ comoving