Size Matters: Similarity and Variety
in Halos and Clusters
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halo model paradigm of cosmological large-scale structure (LSS)

LSS = a hierarchical web of quasi-equilibrium bound structures - halos - that
emerge via gravitational amplification from a noise field imposed during an early
epoch of inflation.

Halo Model’s key enabling ingredients:
— space density (aka, mass function), n(M, z)
— spatial N-point correlations (e.g., 2-pt bias function), b(M, z)

— internal halo structure (kinematics, thermodynamics), X(r/ra, M, z)




the lexicon

* Halo :
a self-bound, quasi-equilibrium structure comprised of multiple,
interacting fluids (dark matter, multi-phase baryons, and radiation)
formed via gravitational collapse within a cosmic web of random
noise.

* Cluster :

a redshift-space projection of a massive halo, and its line-of-sight
neighbors, with the resultant system containing multiple, bright
galaxies and other visible components (multi-phase baryons, non-
thermal matter, etc.).




cluster samples today are sparse relative to massive halos on the sky
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Fisher matrix motivation to understand scaling relations

Cunha + AE (2009)
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a PL+LN" multivariate signal model

*Power Law + Log-Normal




massive halo phenomenology: observable signal likelihoods

X-ray

halo of
mass M
redshift z

“Astrophysics 101”
|. Dimensional analysis => mean relations are power-laws

2. Central Limit Theorem => deviations are log-normal




PL+LN covariance model for halo signals

1 A Local Model for Multivariate Counts

Consider a mass function described locally as a power-law in mass with slope —a. Specifically,
using ¢ = In M, define the mass function, n(y, z), as the likelihood of finding a halo at redshift
z in the mass range p to p + dp within a small comoving volume dV/,

dp = n(M,2)dnMdV = AM™*dInM dV = Ae **dpdV. (1)
The local slope, ¢, and amplitude, A, implicitly depend on mass and redshift in a manner

dependent on cosmology (e.g., Tinker et al. 2008).

Consider a set of NV halo properties, S; € {Nga, Lx, Tk, Mgas, Yx, Ysz, - - -}, let s be a vector
containing their logarithms,
2

Assume that the mass scaling behavior of these properties are power-laws, so that the
mean In(signal) for a mass—complete sample scales as

S(u,2) = mp+b(2). ©)

The elements of vector m are the slopes of the individual mass-observable relations. (Note
that, at some fixed epoch, we can always choose units such that the intercepts b;(z) = 0.)

Assume that In(signal) deviations about the mean are Gaussian, described by a likelihood

plsl) = W op -5~ 906 -35),

where the covariance matrix has elements
\l’z_’l = <(S, - 51)(33 - ‘§J)>7

and the brackets denote an ensemble average over a (large) mass-complete sample.




PL+LN covariance model for halo signals

1.1 Multivariate Space Density

The space density as a function of the multivariate properties, s, is found by the convolution,
n(s) = [ dun(u) p(s|p). Using equations (1) and (4), the result is
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n(s) = 2

1
exp —E(sf\ll‘ls -

where ¥? is the multi-property mass variance defined by
¥ = (mfe~'m),
and the mean mass is
mi¥ls

miv-m
= [ig(s) — a2

i(s) a%?,

The first term, fig(s), is the mean mass for the case of a flat mass function, & = 0, which
corresponds to the mass expected from inverting the input log-mean relation.

The second term, @32, represents the mass shift induced by asymmetry in the convolution
when a > 0. (Low mass halos scattering up outnumber high mass systems scattering down.)
Note that the magnitude of this effect scales with the variance, not the rms deviation.

Applying Bayes’ theorem in the form p(uls) = p(s|x)n(u)/n(s) leads to the result that
the set of masses selected by a specific set of properties is Gaussian in the log with mean
given by equation (9) and variance, equation (7).




PL+LN covariance model for halo signals

1.1.1 Explicit expressions for the one-variable case

For a single property, s = In(S), with slope, m, and logarithmic scatter at fixed mass, o, the
mass variance at fixed S is )
¥2 — (5) . (10)

m

The mean mass for a sample complete in S is

A(s) = > —ax? (11)

The property space density function is

n(s)ds = (A/m) exp{—a (7% - a)?/?)} ds, (12)

which is a power-law in the original property, n(S) oc S~(@/™),

Note that the effective shift in mass, a¥?/2, is half that in the expression above. These
expressions are consistent, in that they address different questions. Equation (11) gives the
mean In(mass) of a signal-selected sample while equation (12) gives the In(mass) value that
matches the local space density — in number per volume per In(S) — of halos with property
value, S.




PL+LN covariance model for halo signals

1.1.2 Explicit expressions for the two-variable case

For two properties, we introduce the correlation coefficient, r = (4,d,), of the normalized
deviations, §; = (s; — §;)/0:, and write the covariance matrix,

o2  rojoy
U= 2 |,
rooy o

1 r
— — o2 N
R I S S
~fws &

The mass variance is now a harmonic mixture

and its inverse,

22 = (1-r)1 (0;12 N 270;110;2‘) ,

where 0,,; = 0;/m, is the mass scatter at fixed signal S;.
The zero-slope mean mass is
-2 -2 -1_-1
Ho(s1,85) = (81/m1)ai + (s2/ma)oy —r(s1/my + s2/ma)o i oy
o(81,82) = =5 =) o s
Ot + 0.5 — 21"0#10“2

and the joint space density is
A
\/27r(1 —12)0109

The first two terms in the exponent are analogous to those in the 1D expression, equation (12).
For “reasonable” choices of (S, S2) pairs — meaning values that pick out comparable mass
scales, s1/m; ~sy/my — the space density remains effectively power-law. The third term in
the exponent suppresses the number density for unreasonable pairings of s;/m,; and sy/m.,
those lying out in the wings of the bivariate Gaussian.

n(sy, $2) =

w2 (az_M)}.

exp | —afly +
[ 2 02,02




mass scatter for two-property joint selection




covariance and implied mass scatter from Millennium Gas Simulations

Stanek et al 2010
Figure from Allen, Evrard, Mantz 201 |

500 Mpc/h

€9 gas+DM particles preheating (200 kev-cm? @z=4)
mp(DM) ~ |.4el0 Msun gravity only

same cosmology as Mill Sim




PL+LN covariance model for halo signals

1.2 Property-selected samples

For a halo sample selected with some property, s;, we can now use Bayes’ theorem to find
the joint probability of those halos having a second property, s,, and mass, g. The result
can be expressed as a bivariate Gaussian in terms of the two-element vector, t = sy y,

exp [—1('5 _DE (- 1), (16)

pltls)) = 5

o
(2m)| g [1/2

where the mean mass, [i(s;), is defined by equation (11) and the mean of the non-selection
property is given by
52(s1) = mo(f(s1) + aroumos) . (17)

Note that, if » < 0, the non-selected property mean can be “doubly” biased low relative
to a simple my(s;/m;) expectation, with one shift coming from the extra (—aX?) term in
the mean mass and the second coming from the second term in the above expression.

The covariance in s; and p at fixed s; is given by

2 o~
‘il _ 53 T0210 2
fo-?l”p? 0'2 ’

p2

where the variance in s, at fixed s; is

2( 2 2
mj (%1 +00— 27‘0,‘10“2) .




scatter in second property for one-property selection




RASS analysis of maxBCG sample
Rykoff et al 2008a

variance in Lx at fixed Ngal OniyiNg, = 0.83+0.03




PL+LN covariance model for halo signals

The s;-mass correlation coefficient, 7, depends on both the intrinsic property correlation, r,
as well as the ratio of scatter in mass for the two properties,

7= %1/%a — : (19)
J1=12+ (0 /0,0 — 1)

If the selection property is an excellent mass proxy (c,; — 0), then # — —r.

If the selection property is a much poorer mass proxy compared to the second property,
then 7 — 1, irrespective of the intrinsic correlation, r.




first measurement of property covariance for clusters
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scatter in In(mass) at fixed Ngal

Rozo et al 2009

From SDSS-RASS:
¢ dn(N200)/dN200
* Lx—N2o00 scaling
slope, norm, scatter
* M200—N20o scaling
slope, norm
missing:
M200—N200 scatter
Ma200, Lx | N20o correlation

Extra information:
400d survey
Lx —Mso0 scaling
slope, norm, scatter

Vikhlinin et al 2008




what does a large covariance in mass and Lx mean?
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N2oo is a \
- poorer mas
| proxy than Lx

ratio of rms mass variance (Lx / Ngal)

OR
Na2oo is a comparable
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Planck measurements of Y for maxBCG sample

Planck Collaboration 201 |
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summary

era of large, overlapping multi-wavelength surveys
- is getting nearer
- will enable stringent tests of the basic PL+LN model
Are we doing all we can now?

note that
- selection effects (that include projection) must be carefully
modeled
- effect of projection on covariance measurements needs study

How to “world average” slopes, intercepts, covariance!?
What are the limits of the basic PL + LN model?




