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• ICM plasma is dilute and weakly 
magnetized-- charged particles are 
nearly freely streaming along the lines of 
magnetic field.

• Anisotropic conduction alters classic 
condition for convection.

• What are the implications for the ICM?

(Balbus 00)

Role of thermal conduction in dilute plasmas
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ABSTRACT

In dilute astrophysical plasmas, thermal conduction is primarily along magnetic field lines, and
therefore highly anisotropic. As a result, the usual convective stability criterion is modified from a
condition on entropy to a condition on temperature. For small magnetic fields or small wavenumbers,
instability occurs in any atmosphere where the temperature and pressure gradients point in the same
direction. We refer to the resulting convective instability as the magnetothermal instability (MTI).
We present fully three-dimensional simulations of the MTI and show that saturation results in an
atmosphere with different vertical structure, dependent upon the boundary conditions. When the
temperature at the boundary of the unstable layer is allowed to vary, the temperature gradient relaxes
until the unstable region is almost isothermal. When the temperature at the boundary of the unstable
region is fixed, the magnetic field is reoriented to an almost vertical geometry as a result of buoyant
motions. This case exhibits more vigorous turbulence. In both cases the resulting saturated heat flux
is almost one-half of the value expected if the conduction were purely isotropic, Q̃ ∼ χ∆T/L, where
χ is the thermal conductivity, ∆T is the fixed temperature drop across the simulation domain, and L
is the temperature gradient scale length. The action of the MTI results in dynamical processes that
lead to significant transport perpendicular to the initial direction of the magnetic field. The resulting
magnetoconvection in both cases amplifies the magnetic field until it is almost in equipartition with
sustained subsonic turbulence. These results are relevant to understanding measurements of the
temperature profiles of the intracluster medium of clusters of galaxies as well as the structure of
radiatively inefficient accretion flows.
Subject headings: accretion, accretion disks — convection — instabilities — MHD — galaxies: clusters

— stars: neutron

1. INTRODUCTION

In many astrophysical plasmas the collision frequency
is much smaller than the Larmor frequency, so that par-
ticles spiral around the magnetic field lines for very long
distances between collisions. As a result, transport of
heat and momentum by thermal conduction and viscos-
ity is highly anisotropic with respect to the magnetic
field orientation. In a dilute magnetized plasma, elec-
tron thermal conductivity parallel to the magnetic field
is many orders of magnitude larger than both the per-
pendicular electron conductivity and either component
of the ion conductivity provided ω ≤ νee # Ωe, where
νee is the electron collision frequency, Ωe is the electron
gyrofrequency, and ω is the frequency of a physical pro-
cess of interest. In this regime the plasma is decribed
by the equations of magnetohydrodynamics (MHD) with
the addition of Braginskii anisotropic transport terms
(Braginskii 1965). A Braginskii description is valid for
describing processes where the mean free path is a sub-
stantial fraction of the size of the system, but does not
permit an analysis of processes that occur on lengthscales
shorter than the mean free path, e.g. Landau damping.

These properties can have profound effects on the
resulting plasma dynamics. A striking example is
the magnetothermal instability (MTI) (Balbus 2000;
Parrish & Stone 2005). The magnetothermal instabil-
ity occurs as a result of heat flow parallel to the mag-
netic field in a statified atmosphere. The criterion
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for convective stability is modified from the well-known
Schwarzschild criterion (∂S/∂z > 0), where the entropy,
S = pρ−γ , to the Balbus criterion (∂ lnT/∂z > 0), where
p and T are the pressure and temperature respectively.
Atmospheres that have temperature (as opposed to en-
tropy) profiles decreasing upwards are unstable to the
MTI. In this situation the MTI is able to use the tem-
perature gradient as a source of free energy for the insta-
bility. The growth rate and saturation of this instability
in two dimensions has been explored in Parrish & Stone
(2005), hereafter PS. In PS we demonstrated that com-
putationally measured growth rates match theoretical
estimates from a WKB theory for a variety of bound-
ary and initial conditions. In addition, we showed that
MTI-unstable plasmas can produce vigorous convective
motions and a significant advective heat flux. The satu-
rated state for an adiabatic atmosphere in 2D was shown
to result in an isothermal atmosphere.

We are motivated to study the nonlinear regime of the
magnetothermal instability in three dimensions for sev-
eral reasons. First, the saturation mechanism in three
dimensions may be different from two dimensions. Sec-
ond, there is a potential for a magnetic dynamo in three
dimensions. Finally, the nature of convection is known
to be intrinsically different in three dimensions.

In this paper we present the saturation and heat trans-
port properties of the MTI in three dimensions. We
find the instability is capable of generating a magnetic
dynamo that greatly amplifies the initial field until it
is roughly in equipartition with the fluid turbulent ki-
netic energy. To estimate the efficiency of heat trans-
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which bears direct comparison with Equation (26). Here, ther-
mal conduction once again stabilizes radiative losses, but the
HBI terms, when they are in a stable configuration relative to
the convective processes discussed by Q08, actively destabilize
wave-like modes by reducing the suppression of thermal con-
duction. In regions of sharp temperature gradients, the effective
reduction factor for conductive stabilization can be large. In-
deed, in the chosen limit bz ! 1, we have R ∼ O(bz). Note that
wavenumbers with vanishing k · b are unaffected by conduction
and have an effective reduction factor of zero. In our example,
these are horizontal fluid displacements along the magnetic field
lines.

2.3.4. Destabilization of Wave Modes by a Negative Thermal Gradient

Next consider the case bz = 1, which would be HBI unstable
in the case of an increasing outward temperature profile. But let
us now assume that the temperature decreases outward. This
configuration is HBI stable. With bz = 1, if we restricted
ourselves only to the first two stability criteria, we would
conclude that this configuration is also MTI stable. In fact,
if the third stability criterion is imposed, this configuration is
subject to an interesting and powerful overstability, driven by
anisotropic thermal conduction, as we now show.

With bz = 1, we have K = −k2
⊥ and our third criterion

inequality (30) becomes

γ − 1
γ

T ΘT |P N2 + C
(

N2 + g
d ln T

dz

)
> 0. (36)

Once again, the thermal conduction is affected by a “reduction
factor,” though here the reduction factor R′ actively destabilizes
rather than merely suppresses dissipative destabilization. The
above inequality may be written as

T ΘT |P + κ(k · b)2R′ > 0, (37)

where

R′ = 1 −
[
γ − 1

γ

d ln P

d ln T
− 1

]−1

. (38)

The term inside the square brackets must always be positive
if N2 > 0, but if

1 <
γ − 1

γ

d ln P

d ln T
< 2, (39)

then R′ < 0 and buoyant modes are overstable, even if there is
no radiative loss term.

2.3.5. Summary

The MTI and HBI are evanescent instabilities present in dilute
plasmas when anisotropic heat flux is included in the physics.
The MTI is present when the thermal gradient decreases outward
and the field lines are insulating in the equilibrium configuration.
When the field lines open, the MTI is stabilized. The HBI is
present when the thermal gradient increases outward and the
field lines are open so that a heat flux is present in the equilibrium
configuration. The action of the HBI is to close the field lines,
which stabilizes the system.

We have found that the stable “end states” of these instabilities
are subject to further overstabilities. In the case of the HBI,
which is relevant for the cooling flow cores, a thermally unstable
radiative loss function and closed field lines together manifest

dT
dz

bz

Figure 1. Schematic map of the instabilities and overstabilities discussed in this
work.

as over stable buoyant oscillations. In the case of the MTI, a
sufficiently steep (but classically convectively stable) outwardly
decreasing thermal gradient produces overstable buoyant waves
when the magnetic field lines are open and conducting heat.

The overstabilities nominally depend on radiative losses, but
their effect should be thought of as dynamical: these are classical
g-waves that in principle could be driven to finite amplitudes
on thermal timescales (either radiative or conductive). Whether
they are best thought of a local WKB waves, global modes, or
both is not yet clear, and awaits numerical investigation.

3. DISCUSSION AND CONCLUSIONS

The implications of the Q08 finding that generic cluster (or
elliptical galaxy) cooling flows are convectively unstable have
yet to be grasped. A more complete linear theory is clearly a
starting point. Here, we have generalized the linear theory of
such systems to include the effects of both anisotropic thermal
conduction and optically thin radiative losses.

To recap, strict stability requires three criteria to be satisfied.
The first amounts to the classical Field criterion for thermal
instability in the presence of anisotropic conduction,

a1 ≡ T ΘT |P + κ(k·b)2 > 0 (Stability). (40)

The second criterion gives the MTI or HBI stability conditions
depending upon the orientation of the magnetic field (via K) and
the temperature gradient,

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0 (Stability). (41)

The third criterion has not, to our knowledge, been recognized
previously. For the two limiting cases considered in this work,
it takes the form

T ΘT |P +κ(k·b)2R > 0 (Stability; bz ≈ 0; dT /dr > 0),
(42)

T ΘT |P + κ(k·b)2R′ > 0 (Stability; bz ≈ 1; dT /dr < 0),
(43)

where 0 < R < 1 and −∞ < R′ < 1. Even once the
HBI (MTI) has been stabilized by the formation of horizontal
(vertical) magnetic fields during their nonlinear evolution, the
third criterion can be violated in some range of wavenumbers
leading to overstable g-modes.

(Balbus & Reynolds 10)
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gradient. We generalize the treatment of Q08 to include opti-
cally thin radiative losses. Our principal result is the finding of
new overstabilities of dynamical waves. More precisely, we find
that nominally stable configurations resulting from the nonlin-
ear evolution of the HBI (i.e., temperature increasing upward
and magnetic field essentially horizontal) generate overstable
g-modes via radiative losses. Nominally stable configurations
resulting from the nonlinear evolution of the MTI (i.e., tem-
perature decreasing upward and magnetic field essentially ver-
tical) generate overstable g-modes via anisotropic thermal
conduction. In addition to furnishing a more complete for-
mal picture of the stability properties of dilute plasma atmo-
spheres, these findings may have significant implications for
the physical behavior of the ICM and should guide future
simulations.

In the next section, we present the calculation in detail, and
in the final section of this Letter, we conclude with a brief
discussion of the implications of our findings.

2. ANALYSIS

We use the standard equations of MHD with the entropy
equation augmented with anisotropic thermal conduction along
magnetic field lines (Braginskii 1965) and radiative losses (e.g.,
Field 1965). The mass, momentum, induction, and entropy
equations are, respectively,

∂ρ

∂t
+ ∇·(ρv) = 0, (1)

ρ
Dv

Dt
= (∇×B)×B

4π
− ∇P + ρg, (2)

∂ B
∂t

= ∇×(v×B), (3)

D ln Pρ−γ

Dt
= −γ − 1

P
[∇· Q + ρL] , (4)

where ρ is the mass density, v is the fluid velocity, B is the
magnetic field, g is the gravitational acceleration, P is the gas
pressure, γ is the adiabatic index (5/3 for monotonic gas), Q
is the heat flux, and L is the radiative energy loss per unit mass
of fluid, whose form we will leave unspecified. For thermal
bremsstrahlung, a reasonable approximation is

ρL # 2 × 10−27n2
eT

1/2 erg cm−3 s−1, (5)

where ne is the electron number density. D/Dt is the Lagrangian
derivative, ∂/∂t + v·∇.

To define the heat flux Q, let b be a unit vector in the direction
of the magnetic field. Then (Balbus 2001),

Q = −χb(b·∇)T , (6)

where T is the kinetic gas temperature and χ is the thermal
conductivity (Spitzer 1982)

χ # 6 × 10−7T 5/2 erg cm−1 s−1 K−1. (7)

Finally, we follow Q08 and use the notation

κ ≡ χT/P (8)

for the thermal diffusion coefficient.

2.1. Equilibrium Background

We consider a gas stratified in the vertical z direction with
temperature profile T (z). The gas is not self-gravitating, so
that g is a specified function of position. We assume a highly
sub-thermal magnetic field. Thus, in equilibrium, the gas is in
hydrostatic balance,

dP

dz
= −ρg. (9)

The magnetic field is uniform with x and z components Bx and
Bz (in this way defining the x-axis), and unit vectors bx = Bx/B,
bz = Bz/B. In equilibrium, there is a thermal balance between
conductive heating and radiative losses,

− ∇· Q ≡
d2

(
b2

zχ
)
T

dz2
= ρL. (10)

2.2. Local WKB Perturbations

As in Q08, we consider plane wave disturbances of the
form exp(σ t + ik · r) where the wavenumber k has Cartesian
components (kx, ky, kz) and r is the position vector. We differ
in notation from Q08 by using σ , a formal growth rate, rather
than ω, an angular frequency. This ensures that all coefficients
in the final dispersion relation are real. We work in the WKB
(kr & 1) and Boussinesq limits (Q08).

We next consider the linearized equations when perturbations
δρ, δv, etc., are applied to the equilibrium state. The heart of
the problem is the entropy equation, so let us begin here. The
linearized form of Equation (4) is

− γ σ
δρ

ρ
+ δvz

d ln Pρ−γ

dz
= (γ − 1)

[
−∇·δ Q

P
− ΘT |P δT

]
,

(11)
where

Θ ≡ ρL/P, (12)

and

ΘT |P ≡
[
∂Θ
∂T

]

P

, (13)

that is, the derivative of Θ with respect to T with P held constant.
We have used the Boussinesq approximation in ignoring all
terms proportional to δP in Equation (11). In the process, we
have implicitly regarded Θ as a function of T and P (rather than
the more customary but less convenient T and ρ dependence).
The remaining linearized equations,

k · δv = 0, (14)

σδv = δρ

ρ2

dP

dz
− ik

(
δP

ρ
+

B·δB
4πρ

)
+

i(k · B)δB
4πρ

, (15)

σδB = i(k · B)δv, (16)

are, apart from notational convention, identical to Q08. The
entire system of equations differs from Q08 only by the Θ term.
The resulting dispersion relation is

(
σ +

γ − 1
γ

T ΘT |P + C
)

(σ 2 + (k · vA)2)

+
σk2

⊥N2

k2
+ CK

g

k2

d ln T

dz
= 0, (17)
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gradient. We generalize the treatment of Q08 to include opti-
cally thin radiative losses. Our principal result is the finding of
new overstabilities of dynamical waves. More precisely, we find
that nominally stable configurations resulting from the nonlin-
ear evolution of the HBI (i.e., temperature increasing upward
and magnetic field essentially horizontal) generate overstable
g-modes via radiative losses. Nominally stable configurations
resulting from the nonlinear evolution of the MTI (i.e., tem-
perature decreasing upward and magnetic field essentially ver-
tical) generate overstable g-modes via anisotropic thermal
conduction. In addition to furnishing a more complete for-
mal picture of the stability properties of dilute plasma atmo-
spheres, these findings may have significant implications for
the physical behavior of the ICM and should guide future
simulations.

In the next section, we present the calculation in detail, and
in the final section of this Letter, we conclude with a brief
discussion of the implications of our findings.

2. ANALYSIS

We use the standard equations of MHD with the entropy
equation augmented with anisotropic thermal conduction along
magnetic field lines (Braginskii 1965) and radiative losses (e.g.,
Field 1965). The mass, momentum, induction, and entropy
equations are, respectively,

∂ρ

∂t
+ ∇·(ρv) = 0, (1)

ρ
Dv

Dt
= (∇×B)×B

4π
− ∇P + ρg, (2)

∂ B
∂t

= ∇×(v×B), (3)

D ln Pρ−γ

Dt
= −γ − 1

P
[∇· Q + ρL] , (4)

where ρ is the mass density, v is the fluid velocity, B is the
magnetic field, g is the gravitational acceleration, P is the gas
pressure, γ is the adiabatic index (5/3 for monotonic gas), Q
is the heat flux, and L is the radiative energy loss per unit mass
of fluid, whose form we will leave unspecified. For thermal
bremsstrahlung, a reasonable approximation is

ρL # 2 × 10−27n2
eT

1/2 erg cm−3 s−1, (5)

where ne is the electron number density. D/Dt is the Lagrangian
derivative, ∂/∂t + v·∇.

To define the heat flux Q, let b be a unit vector in the direction
of the magnetic field. Then (Balbus 2001),

Q = −χb(b·∇)T , (6)

where T is the kinetic gas temperature and χ is the thermal
conductivity (Spitzer 1982)

χ # 6 × 10−7T 5/2 erg cm−1 s−1 K−1. (7)

Finally, we follow Q08 and use the notation

κ ≡ χT/P (8)

for the thermal diffusion coefficient.

2.1. Equilibrium Background

We consider a gas stratified in the vertical z direction with
temperature profile T (z). The gas is not self-gravitating, so
that g is a specified function of position. We assume a highly
sub-thermal magnetic field. Thus, in equilibrium, the gas is in
hydrostatic balance,

dP

dz
= −ρg. (9)

The magnetic field is uniform with x and z components Bx and
Bz (in this way defining the x-axis), and unit vectors bx = Bx/B,
bz = Bz/B. In equilibrium, there is a thermal balance between
conductive heating and radiative losses,

− ∇· Q ≡
d2

(
b2

zχ
)
T

dz2
= ρL. (10)

2.2. Local WKB Perturbations

As in Q08, we consider plane wave disturbances of the
form exp(σ t + ik · r) where the wavenumber k has Cartesian
components (kx, ky, kz) and r is the position vector. We differ
in notation from Q08 by using σ , a formal growth rate, rather
than ω, an angular frequency. This ensures that all coefficients
in the final dispersion relation are real. We work in the WKB
(kr & 1) and Boussinesq limits (Q08).

We next consider the linearized equations when perturbations
δρ, δv, etc., are applied to the equilibrium state. The heart of
the problem is the entropy equation, so let us begin here. The
linearized form of Equation (4) is

− γ σ
δρ

ρ
+ δvz

d ln Pρ−γ

dz
= (γ − 1)

[
−∇·δ Q

P
− ΘT |P δT

]
,

(11)
where

Θ ≡ ρL/P, (12)

and

ΘT |P ≡
[
∂Θ
∂T

]

P

, (13)

that is, the derivative of Θ with respect to T with P held constant.
We have used the Boussinesq approximation in ignoring all
terms proportional to δP in Equation (11). In the process, we
have implicitly regarded Θ as a function of T and P (rather than
the more customary but less convenient T and ρ dependence).
The remaining linearized equations,

k · δv = 0, (14)

σδv = δρ

ρ2

dP

dz
− ik

(
δP

ρ
+

B·δB
4πρ

)
+

i(k · B)δB
4πρ

, (15)

σδB = i(k · B)δv, (16)

are, apart from notational convention, identical to Q08. The
entire system of equations differs from Q08 only by the Θ term.
The resulting dispersion relation is

(
σ +

γ − 1
γ

T ΘT |P + C
)

(σ 2 + (k · vA)2)

+
σk2

⊥N2

k2
+ CK

g

k2

d ln T

dz
= 0, (17)
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gradient. We generalize the treatment of Q08 to include opti-
cally thin radiative losses. Our principal result is the finding of
new overstabilities of dynamical waves. More precisely, we find
that nominally stable configurations resulting from the nonlin-
ear evolution of the HBI (i.e., temperature increasing upward
and magnetic field essentially horizontal) generate overstable
g-modes via radiative losses. Nominally stable configurations
resulting from the nonlinear evolution of the MTI (i.e., tem-
perature decreasing upward and magnetic field essentially ver-
tical) generate overstable g-modes via anisotropic thermal
conduction. In addition to furnishing a more complete for-
mal picture of the stability properties of dilute plasma atmo-
spheres, these findings may have significant implications for
the physical behavior of the ICM and should guide future
simulations.

In the next section, we present the calculation in detail, and
in the final section of this Letter, we conclude with a brief
discussion of the implications of our findings.

2. ANALYSIS

We use the standard equations of MHD with the entropy
equation augmented with anisotropic thermal conduction along
magnetic field lines (Braginskii 1965) and radiative losses (e.g.,
Field 1965). The mass, momentum, induction, and entropy
equations are, respectively,

∂ρ

∂t
+ ∇·(ρv) = 0, (1)

ρ
Dv

Dt
= (∇×B)×B

4π
− ∇P + ρg, (2)

∂ B
∂t

= ∇×(v×B), (3)

D ln Pρ−γ

Dt
= −γ − 1

P
[∇· Q + ρL] , (4)

where ρ is the mass density, v is the fluid velocity, B is the
magnetic field, g is the gravitational acceleration, P is the gas
pressure, γ is the adiabatic index (5/3 for monotonic gas), Q
is the heat flux, and L is the radiative energy loss per unit mass
of fluid, whose form we will leave unspecified. For thermal
bremsstrahlung, a reasonable approximation is

ρL # 2 × 10−27n2
eT

1/2 erg cm−3 s−1, (5)

where ne is the electron number density. D/Dt is the Lagrangian
derivative, ∂/∂t + v·∇.

To define the heat flux Q, let b be a unit vector in the direction
of the magnetic field. Then (Balbus 2001),

Q = −χb(b·∇)T , (6)

where T is the kinetic gas temperature and χ is the thermal
conductivity (Spitzer 1982)

χ # 6 × 10−7T 5/2 erg cm−1 s−1 K−1. (7)

Finally, we follow Q08 and use the notation

κ ≡ χT/P (8)

for the thermal diffusion coefficient.

2.1. Equilibrium Background

We consider a gas stratified in the vertical z direction with
temperature profile T (z). The gas is not self-gravitating, so
that g is a specified function of position. We assume a highly
sub-thermal magnetic field. Thus, in equilibrium, the gas is in
hydrostatic balance,

dP

dz
= −ρg. (9)

The magnetic field is uniform with x and z components Bx and
Bz (in this way defining the x-axis), and unit vectors bx = Bx/B,
bz = Bz/B. In equilibrium, there is a thermal balance between
conductive heating and radiative losses,

− ∇· Q ≡
d2

(
b2

zχ
)
T

dz2
= ρL. (10)

2.2. Local WKB Perturbations

As in Q08, we consider plane wave disturbances of the
form exp(σ t + ik · r) where the wavenumber k has Cartesian
components (kx, ky, kz) and r is the position vector. We differ
in notation from Q08 by using σ , a formal growth rate, rather
than ω, an angular frequency. This ensures that all coefficients
in the final dispersion relation are real. We work in the WKB
(kr & 1) and Boussinesq limits (Q08).

We next consider the linearized equations when perturbations
δρ, δv, etc., are applied to the equilibrium state. The heart of
the problem is the entropy equation, so let us begin here. The
linearized form of Equation (4) is

− γ σ
δρ

ρ
+ δvz

d ln Pρ−γ

dz
= (γ − 1)

[
−∇·δ Q

P
− ΘT |P δT

]
,

(11)
where

Θ ≡ ρL/P, (12)

and

ΘT |P ≡
[
∂Θ
∂T

]

P

, (13)

that is, the derivative of Θ with respect to T with P held constant.
We have used the Boussinesq approximation in ignoring all
terms proportional to δP in Equation (11). In the process, we
have implicitly regarded Θ as a function of T and P (rather than
the more customary but less convenient T and ρ dependence).
The remaining linearized equations,

k · δv = 0, (14)

σδv = δρ

ρ2

dP

dz
− ik

(
δP

ρ
+

B·δB
4πρ

)
+

i(k · B)δB
4πρ

, (15)

σδB = i(k · B)δv, (16)

are, apart from notational convention, identical to Q08. The
entire system of equations differs from Q08 only by the Θ term.
The resulting dispersion relation is

(
σ +

γ − 1
γ

T ΘT |P + C
)

(σ 2 + (k · vA)2)

+
σk2

⊥N2

k2
+ CK

g

k2

d ln T

dz
= 0, (17)

MHD equations of magnetized plasma
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gradient. We generalize the treatment of Q08 to include opti-
cally thin radiative losses. Our principal result is the finding of
new overstabilities of dynamical waves. More precisely, we find
that nominally stable configurations resulting from the nonlin-
ear evolution of the HBI (i.e., temperature increasing upward
and magnetic field essentially horizontal) generate overstable
g-modes via radiative losses. Nominally stable configurations
resulting from the nonlinear evolution of the MTI (i.e., tem-
perature decreasing upward and magnetic field essentially ver-
tical) generate overstable g-modes via anisotropic thermal
conduction. In addition to furnishing a more complete for-
mal picture of the stability properties of dilute plasma atmo-
spheres, these findings may have significant implications for
the physical behavior of the ICM and should guide future
simulations.

In the next section, we present the calculation in detail, and
in the final section of this Letter, we conclude with a brief
discussion of the implications of our findings.

2. ANALYSIS

We use the standard equations of MHD with the entropy
equation augmented with anisotropic thermal conduction along
magnetic field lines (Braginskii 1965) and radiative losses (e.g.,
Field 1965). The mass, momentum, induction, and entropy
equations are, respectively,

∂ρ

∂t
+ ∇·(ρv) = 0, (1)

ρ
Dv

Dt
= (∇×B)×B

4π
− ∇P + ρg, (2)

∂ B
∂t

= ∇×(v×B), (3)

D ln Pρ−γ

Dt
= −γ − 1

P
[∇· Q + ρL] , (4)

where ρ is the mass density, v is the fluid velocity, B is the
magnetic field, g is the gravitational acceleration, P is the gas
pressure, γ is the adiabatic index (5/3 for monotonic gas), Q
is the heat flux, and L is the radiative energy loss per unit mass
of fluid, whose form we will leave unspecified. For thermal
bremsstrahlung, a reasonable approximation is

ρL # 2 × 10−27n2
eT

1/2 erg cm−3 s−1, (5)

where ne is the electron number density. D/Dt is the Lagrangian
derivative, ∂/∂t + v·∇.

To define the heat flux Q, let b be a unit vector in the direction
of the magnetic field. Then (Balbus 2001),

Q = −χb(b·∇)T , (6)

where T is the kinetic gas temperature and χ is the thermal
conductivity (Spitzer 1982)

χ # 6 × 10−7T 5/2 erg cm−1 s−1 K−1. (7)

Finally, we follow Q08 and use the notation

κ ≡ χT/P (8)

for the thermal diffusion coefficient.

2.1. Equilibrium Background

We consider a gas stratified in the vertical z direction with
temperature profile T (z). The gas is not self-gravitating, so
that g is a specified function of position. We assume a highly
sub-thermal magnetic field. Thus, in equilibrium, the gas is in
hydrostatic balance,

dP

dz
= −ρg. (9)

The magnetic field is uniform with x and z components Bx and
Bz (in this way defining the x-axis), and unit vectors bx = Bx/B,
bz = Bz/B. In equilibrium, there is a thermal balance between
conductive heating and radiative losses,

− ∇· Q ≡
d2

(
b2

zχ
)
T

dz2
= ρL. (10)

2.2. Local WKB Perturbations

As in Q08, we consider plane wave disturbances of the
form exp(σ t + ik · r) where the wavenumber k has Cartesian
components (kx, ky, kz) and r is the position vector. We differ
in notation from Q08 by using σ , a formal growth rate, rather
than ω, an angular frequency. This ensures that all coefficients
in the final dispersion relation are real. We work in the WKB
(kr & 1) and Boussinesq limits (Q08).

We next consider the linearized equations when perturbations
δρ, δv, etc., are applied to the equilibrium state. The heart of
the problem is the entropy equation, so let us begin here. The
linearized form of Equation (4) is

− γ σ
δρ

ρ
+ δvz

d ln Pρ−γ

dz
= (γ − 1)

[
−∇·δ Q

P
− ΘT |P δT

]
,

(11)
where

Θ ≡ ρL/P, (12)

and

ΘT |P ≡
[
∂Θ
∂T

]

P

, (13)

that is, the derivative of Θ with respect to T with P held constant.
We have used the Boussinesq approximation in ignoring all
terms proportional to δP in Equation (11). In the process, we
have implicitly regarded Θ as a function of T and P (rather than
the more customary but less convenient T and ρ dependence).
The remaining linearized equations,

k · δv = 0, (14)

σδv = δρ

ρ2

dP

dz
− ik

(
δP

ρ
+

B·δB
4πρ

)
+

i(k · B)δB
4πρ

, (15)

σδB = i(k · B)δv, (16)

are, apart from notational convention, identical to Q08. The
entire system of equations differs from Q08 only by the Θ term.
The resulting dispersion relation is

(
σ +

γ − 1
γ

T ΘT |P + C
)

(σ 2 + (k · vA)2)

+
σk2

⊥N2

k2
+ CK

g

k2

d ln T

dz
= 0, (17)

mass

momentum

induction

entropy

Spitzer conduction
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where

N2 = − 1
ργ

dP

dz

d ln Pρ−γ

dz
= g

d ln P (1−γ )/γ T

dz
, (18)

C =
(

γ − 1
γ

)
κ(k·b)2, (19)

K =
(
1 − 2b2

z

)
k2
⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P

∣∣∣∣

)−1

, (35)
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where
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dz
, (18)
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(

γ − 1
γ

)
κ(k·b)2, (19)

K =
(
1 − 2b2

z

)
k2
⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P

∣∣∣∣

)−1

, (35)
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where

N2 = − 1
ργ

dP

dz

d ln Pρ−γ

dz
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d ln P (1−γ )/γ T

dz
, (18)

C =
(

γ − 1
γ

)
κ(k·b)2, (19)

K =
(
1 − 2b2

z

)
k2
⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P

∣∣∣∣

)−1

, (35)
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where
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K =
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1 − 2b2

z

)
k2
⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(
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)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
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d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or
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+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥
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N2 − CK
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k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1
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Then, K = k2

⊥, and our inequality reduces to
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T ΘT |P N2 + C
(

N2 − g
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dz

)
> 0. (31)

But
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and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C
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dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
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γ
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This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where
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There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or
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+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P

∣∣∣∣

)−1

, (35)
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gradient. We generalize the treatment of Q08 to include opti-
cally thin radiative losses. Our principal result is the finding of
new overstabilities of dynamical waves. More precisely, we find
that nominally stable configurations resulting from the nonlin-
ear evolution of the HBI (i.e., temperature increasing upward
and magnetic field essentially horizontal) generate overstable
g-modes via radiative losses. Nominally stable configurations
resulting from the nonlinear evolution of the MTI (i.e., tem-
perature decreasing upward and magnetic field essentially ver-
tical) generate overstable g-modes via anisotropic thermal
conduction. In addition to furnishing a more complete for-
mal picture of the stability properties of dilute plasma atmo-
spheres, these findings may have significant implications for
the physical behavior of the ICM and should guide future
simulations.

In the next section, we present the calculation in detail, and
in the final section of this Letter, we conclude with a brief
discussion of the implications of our findings.

2. ANALYSIS

We use the standard equations of MHD with the entropy
equation augmented with anisotropic thermal conduction along
magnetic field lines (Braginskii 1965) and radiative losses (e.g.,
Field 1965). The mass, momentum, induction, and entropy
equations are, respectively,

∂ρ

∂t
+ ∇·(ρv) = 0, (1)

ρ
Dv

Dt
= (∇×B)×B

4π
− ∇P + ρg, (2)

∂ B
∂t

= ∇×(v×B), (3)

D ln Pρ−γ

Dt
= −γ − 1

P
[∇· Q + ρL] , (4)

where ρ is the mass density, v is the fluid velocity, B is the
magnetic field, g is the gravitational acceleration, P is the gas
pressure, γ is the adiabatic index (5/3 for monotonic gas), Q
is the heat flux, and L is the radiative energy loss per unit mass
of fluid, whose form we will leave unspecified. For thermal
bremsstrahlung, a reasonable approximation is

ρL # 2 × 10−27n2
eT

1/2 erg cm−3 s−1, (5)

where ne is the electron number density. D/Dt is the Lagrangian
derivative, ∂/∂t + v·∇.

To define the heat flux Q, let b be a unit vector in the direction
of the magnetic field. Then (Balbus 2001),

Q = −χb(b·∇)T , (6)

where T is the kinetic gas temperature and χ is the thermal
conductivity (Spitzer 1982)

χ # 6 × 10−7T 5/2 erg cm−1 s−1 K−1. (7)

Finally, we follow Q08 and use the notation

κ ≡ χT/P (8)

for the thermal diffusion coefficient.

2.1. Equilibrium Background

We consider a gas stratified in the vertical z direction with
temperature profile T (z). The gas is not self-gravitating, so
that g is a specified function of position. We assume a highly
sub-thermal magnetic field. Thus, in equilibrium, the gas is in
hydrostatic balance,

dP

dz
= −ρg. (9)

The magnetic field is uniform with x and z components Bx and
Bz (in this way defining the x-axis), and unit vectors bx = Bx/B,
bz = Bz/B. In equilibrium, there is a thermal balance between
conductive heating and radiative losses,

− ∇· Q ≡
d2

(
b2

zχ
)
T

dz2
= ρL. (10)

2.2. Local WKB Perturbations

As in Q08, we consider plane wave disturbances of the
form exp(σ t + ik · r) where the wavenumber k has Cartesian
components (kx, ky, kz) and r is the position vector. We differ
in notation from Q08 by using σ , a formal growth rate, rather
than ω, an angular frequency. This ensures that all coefficients
in the final dispersion relation are real. We work in the WKB
(kr & 1) and Boussinesq limits (Q08).

We next consider the linearized equations when perturbations
δρ, δv, etc., are applied to the equilibrium state. The heart of
the problem is the entropy equation, so let us begin here. The
linearized form of Equation (4) is

− γ σ
δρ

ρ
+ δvz

d ln Pρ−γ

dz
= (γ − 1)

[
−∇·δ Q

P
− ΘT |P δT

]
,

(11)
where

Θ ≡ ρL/P, (12)

and

ΘT |P ≡
[
∂Θ
∂T

]

P

, (13)

that is, the derivative of Θ with respect to T with P held constant.
We have used the Boussinesq approximation in ignoring all
terms proportional to δP in Equation (11). In the process, we
have implicitly regarded Θ as a function of T and P (rather than
the more customary but less convenient T and ρ dependence).
The remaining linearized equations,

k · δv = 0, (14)

σδv = δρ

ρ2

dP

dz
− ik

(
δP

ρ
+

B·δB
4πρ

)
+

i(k · B)δB
4πρ

, (15)

σδB = i(k · B)δv, (16)

are, apart from notational convention, identical to Q08. The
entire system of equations differs from Q08 only by the Θ term.
The resulting dispersion relation is

(
σ +

γ − 1
γ

T ΘT |P + C
)

(σ 2 + (k · vA)2)

+
σk2

⊥N2

k2
+ CK

g

k2

d ln T

dz
= 0, (17)

plane wave disturbances ∝

dispersion relation

stable solutions require

thermal stability (Field criterion)

stable to thermal/heat flux driven instabilities

stable to cooling/heat flux driven overstabilities 



“Instability” vs. “overstability”

L98 BALBUS & REYNOLDS Vol. 720

gradient. We generalize the treatment of Q08 to include opti-
cally thin radiative losses. Our principal result is the finding of
new overstabilities of dynamical waves. More precisely, we find
that nominally stable configurations resulting from the nonlin-
ear evolution of the HBI (i.e., temperature increasing upward
and magnetic field essentially horizontal) generate overstable
g-modes via radiative losses. Nominally stable configurations
resulting from the nonlinear evolution of the MTI (i.e., tem-
perature decreasing upward and magnetic field essentially ver-
tical) generate overstable g-modes via anisotropic thermal
conduction. In addition to furnishing a more complete for-
mal picture of the stability properties of dilute plasma atmo-
spheres, these findings may have significant implications for
the physical behavior of the ICM and should guide future
simulations.

In the next section, we present the calculation in detail, and
in the final section of this Letter, we conclude with a brief
discussion of the implications of our findings.

2. ANALYSIS

We use the standard equations of MHD with the entropy
equation augmented with anisotropic thermal conduction along
magnetic field lines (Braginskii 1965) and radiative losses (e.g.,
Field 1965). The mass, momentum, induction, and entropy
equations are, respectively,

∂ρ

∂t
+ ∇·(ρv) = 0, (1)

ρ
Dv

Dt
= (∇×B)×B

4π
− ∇P + ρg, (2)

∂ B
∂t

= ∇×(v×B), (3)

D ln Pρ−γ

Dt
= −γ − 1

P
[∇· Q + ρL] , (4)

where ρ is the mass density, v is the fluid velocity, B is the
magnetic field, g is the gravitational acceleration, P is the gas
pressure, γ is the adiabatic index (5/3 for monotonic gas), Q
is the heat flux, and L is the radiative energy loss per unit mass
of fluid, whose form we will leave unspecified. For thermal
bremsstrahlung, a reasonable approximation is

ρL # 2 × 10−27n2
eT

1/2 erg cm−3 s−1, (5)

where ne is the electron number density. D/Dt is the Lagrangian
derivative, ∂/∂t + v·∇.

To define the heat flux Q, let b be a unit vector in the direction
of the magnetic field. Then (Balbus 2001),

Q = −χb(b·∇)T , (6)

where T is the kinetic gas temperature and χ is the thermal
conductivity (Spitzer 1982)

χ # 6 × 10−7T 5/2 erg cm−1 s−1 K−1. (7)

Finally, we follow Q08 and use the notation

κ ≡ χT/P (8)

for the thermal diffusion coefficient.

2.1. Equilibrium Background

We consider a gas stratified in the vertical z direction with
temperature profile T (z). The gas is not self-gravitating, so
that g is a specified function of position. We assume a highly
sub-thermal magnetic field. Thus, in equilibrium, the gas is in
hydrostatic balance,

dP

dz
= −ρg. (9)

The magnetic field is uniform with x and z components Bx and
Bz (in this way defining the x-axis), and unit vectors bx = Bx/B,
bz = Bz/B. In equilibrium, there is a thermal balance between
conductive heating and radiative losses,

− ∇· Q ≡
d2

(
b2

zχ
)
T

dz2
= ρL. (10)

2.2. Local WKB Perturbations

As in Q08, we consider plane wave disturbances of the
form exp(σ t + ik · r) where the wavenumber k has Cartesian
components (kx, ky, kz) and r is the position vector. We differ
in notation from Q08 by using σ , a formal growth rate, rather
than ω, an angular frequency. This ensures that all coefficients
in the final dispersion relation are real. We work in the WKB
(kr & 1) and Boussinesq limits (Q08).

We next consider the linearized equations when perturbations
δρ, δv, etc., are applied to the equilibrium state. The heart of
the problem is the entropy equation, so let us begin here. The
linearized form of Equation (4) is

− γ σ
δρ

ρ
+ δvz

d ln Pρ−γ

dz
= (γ − 1)

[
−∇·δ Q

P
− ΘT |P δT

]
,

(11)
where

Θ ≡ ρL/P, (12)

and

ΘT |P ≡
[
∂Θ
∂T

]

P

, (13)

that is, the derivative of Θ with respect to T with P held constant.
We have used the Boussinesq approximation in ignoring all
terms proportional to δP in Equation (11). In the process, we
have implicitly regarded Θ as a function of T and P (rather than
the more customary but less convenient T and ρ dependence).
The remaining linearized equations,

k · δv = 0, (14)

σδv = δρ

ρ2

dP

dz
− ik

(
δP

ρ
+

B·δB
4πρ

)
+

i(k · B)δB
4πρ

, (15)

σδB = i(k · B)δv, (16)

are, apart from notational convention, identical to Q08. The
entire system of equations differs from Q08 only by the Θ term.
The resulting dispersion relation is

(
σ +

γ − 1
γ

T ΘT |P + C
)

(σ 2 + (k · vA)2)

+
σk2

⊥N2

k2
+ CK

g

k2

d ln T

dz
= 0, (17)
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if σ is ... 

 ... real and  >0, instability   ... complex and |σ|>0, overstability  

time time

velocity 
perturbation



Stability criteria

thermal stability (Field criterion):

thermal/heat flux driven instabilities:

radiative cooling/heat flux driven overstabilities:

No. 1, 2010 RADIATIVE AND DYNAMIC STABILITY OF A DILUTE PLASMA L99

where

N2 = − 1
ργ

dP

dz

d ln Pρ−γ

dz
= g

d ln P (1−γ )/γ T

dz
, (18)

C =
(

γ − 1
γ

)
κ(k·b)2, (19)

K =
(
1 − 2b2

z

)
k2
⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P

∣∣∣∣

)−1

, (35)
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where

N2 = − 1
ργ

dP

dz

d ln Pρ−γ

dz
= g

d ln P (1−γ )/γ T

dz
, (18)

C =
(

γ − 1
γ

)
κ(k·b)2, (19)

K =
(
1 − 2b2

z

)
k2
⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P
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)−1
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where

N2 = − 1
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dz
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dz
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C =
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κ(k·b)2, (19)

K =
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⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P

∣∣∣∣

)−1

, (35)
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where

N2 = − 1
ργ

dP

dz

d ln Pρ−γ

dz
= g

d ln P (1−γ )/γ T

dz
, (18)

C =
(

γ − 1
γ

)
κ(k·b)2, (19)

K =
(
1 − 2b2

z

)
k2
⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P

∣∣∣∣

)−1

, (35)
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)
κ(k·b)2, (19)

K =
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1 − 2b2

z

)
k2
⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
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d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P

∣∣∣∣

)−1

, (35)
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where
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C =
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γ − 1
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)
κ(k·b)2, (19)

K =
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1 − 2b2

z
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⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P

∣∣∣∣

)−1

, (35)= f (dlnT, dlnp) < 1 “reduction factor”
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gradient. We generalize the treatment of Q08 to include opti-
cally thin radiative losses. Our principal result is the finding of
new overstabilities of dynamical waves. More precisely, we find
that nominally stable configurations resulting from the nonlin-
ear evolution of the HBI (i.e., temperature increasing upward
and magnetic field essentially horizontal) generate overstable
g-modes via radiative losses. Nominally stable configurations
resulting from the nonlinear evolution of the MTI (i.e., tem-
perature decreasing upward and magnetic field essentially ver-
tical) generate overstable g-modes via anisotropic thermal
conduction. In addition to furnishing a more complete for-
mal picture of the stability properties of dilute plasma atmo-
spheres, these findings may have significant implications for
the physical behavior of the ICM and should guide future
simulations.

In the next section, we present the calculation in detail, and
in the final section of this Letter, we conclude with a brief
discussion of the implications of our findings.

2. ANALYSIS

We use the standard equations of MHD with the entropy
equation augmented with anisotropic thermal conduction along
magnetic field lines (Braginskii 1965) and radiative losses (e.g.,
Field 1965). The mass, momentum, induction, and entropy
equations are, respectively,

∂ρ

∂t
+ ∇·(ρv) = 0, (1)

ρ
Dv

Dt
= (∇×B)×B

4π
− ∇P + ρg, (2)

∂ B
∂t

= ∇×(v×B), (3)

D ln Pρ−γ

Dt
= −γ − 1

P
[∇· Q + ρL] , (4)

where ρ is the mass density, v is the fluid velocity, B is the
magnetic field, g is the gravitational acceleration, P is the gas
pressure, γ is the adiabatic index (5/3 for monotonic gas), Q
is the heat flux, and L is the radiative energy loss per unit mass
of fluid, whose form we will leave unspecified. For thermal
bremsstrahlung, a reasonable approximation is

ρL # 2 × 10−27n2
eT

1/2 erg cm−3 s−1, (5)

where ne is the electron number density. D/Dt is the Lagrangian
derivative, ∂/∂t + v·∇.

To define the heat flux Q, let b be a unit vector in the direction
of the magnetic field. Then (Balbus 2001),

Q = −χb(b·∇)T , (6)

where T is the kinetic gas temperature and χ is the thermal
conductivity (Spitzer 1982)

χ # 6 × 10−7T 5/2 erg cm−1 s−1 K−1. (7)

Finally, we follow Q08 and use the notation

κ ≡ χT/P (8)

for the thermal diffusion coefficient.

2.1. Equilibrium Background

We consider a gas stratified in the vertical z direction with
temperature profile T (z). The gas is not self-gravitating, so
that g is a specified function of position. We assume a highly
sub-thermal magnetic field. Thus, in equilibrium, the gas is in
hydrostatic balance,

dP

dz
= −ρg. (9)

The magnetic field is uniform with x and z components Bx and
Bz (in this way defining the x-axis), and unit vectors bx = Bx/B,
bz = Bz/B. In equilibrium, there is a thermal balance between
conductive heating and radiative losses,

− ∇· Q ≡
d2

(
b2

zχ
)
T

dz2
= ρL. (10)

2.2. Local WKB Perturbations

As in Q08, we consider plane wave disturbances of the
form exp(σ t + ik · r) where the wavenumber k has Cartesian
components (kx, ky, kz) and r is the position vector. We differ
in notation from Q08 by using σ , a formal growth rate, rather
than ω, an angular frequency. This ensures that all coefficients
in the final dispersion relation are real. We work in the WKB
(kr & 1) and Boussinesq limits (Q08).

We next consider the linearized equations when perturbations
δρ, δv, etc., are applied to the equilibrium state. The heart of
the problem is the entropy equation, so let us begin here. The
linearized form of Equation (4) is

− γ σ
δρ

ρ
+ δvz

d ln Pρ−γ

dz
= (γ − 1)

[
−∇·δ Q

P
− ΘT |P δT

]
,

(11)
where

Θ ≡ ρL/P, (12)

and

ΘT |P ≡
[
∂Θ
∂T

]

P

, (13)

that is, the derivative of Θ with respect to T with P held constant.
We have used the Boussinesq approximation in ignoring all
terms proportional to δP in Equation (11). In the process, we
have implicitly regarded Θ as a function of T and P (rather than
the more customary but less convenient T and ρ dependence).
The remaining linearized equations,

k · δv = 0, (14)

σδv = δρ

ρ2

dP

dz
− ik

(
δP

ρ
+

B·δB
4πρ

)
+

i(k · B)δB
4πρ

, (15)

σδB = i(k · B)δv, (16)

are, apart from notational convention, identical to Q08. The
entire system of equations differs from Q08 only by the Θ term.
The resulting dispersion relation is

(
σ +

γ − 1
γ

T ΘT |P + C
)

(σ 2 + (k · vA)2)

+
σk2

⊥N2

k2
+ CK

g

k2

d ln T

dz
= 0, (17)diffusivity (cm2/s) in terms 

of Spitzer conductivity
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where

N2 = − 1
ργ

dP

dz

d ln Pρ−γ

dz
= g

d ln P (1−γ )/γ T

dz
, (18)

C =
(

γ − 1
γ

)
κ(k·b)2, (19)

K =
(
1 − 2b2

z

)
k2
⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P

∣∣∣∣

)−1

, (35)
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where

N2 = − 1
ργ

dP

dz

d ln Pρ−γ

dz
= g

d ln P (1−γ )/γ T

dz
, (18)

C =
(

γ − 1
γ

)
κ(k·b)2, (19)

K =
(
1 − 2b2

z

)
k2
⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P

∣∣∣∣

)−1

, (35)
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where
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, (18)

C =
(

γ − 1
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)
κ(k·b)2, (19)

K =
(
1 − 2b2
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⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P

∣∣∣∣

)−1

, (35)
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where

N2 = − 1
ργ
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dz

d ln Pρ−γ

dz
= g

d ln P (1−γ )/γ T

dz
, (18)

C =
(

γ − 1
γ

)
κ(k·b)2, (19)

K =
(
1 − 2b2

z

)
k2
⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P

∣∣∣∣

)−1

, (35)
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where

N2 = − 1
ργ

dP
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d ln Pρ−γ

dz
= g

d ln P (1−γ )/γ T

dz
, (18)

C =
(

γ − 1
γ

)
κ(k·b)2, (19)

K =
(
1 − 2b2

z

)
k2
⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P
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)−1

, (35)
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where
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C =
(

γ − 1
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)
κ(k·b)2, (19)

K =
(
1 − 2b2
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)
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⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P

∣∣∣∣

)−1

, (35)
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where

N2 = − 1
ργ

dP

dz

d ln Pρ−γ

dz
= g

d ln P (1−γ )/γ T

dz
, (18)

C =
(

γ − 1
γ

)
κ(k·b)2, (19)

K =
(
1 − 2b2

z

)
k2
⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P

∣∣∣∣

)−1

, (35)
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where
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(

γ − 1
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)
κ(k·b)2, (19)

K =
(
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⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P
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)−1

, (35)

<
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where

N2 = − 1
ργ

dP

dz

d ln Pρ−γ

dz
= g

d ln P (1−γ )/γ T

dz
, (18)

C =
(

γ − 1
γ

)
κ(k·b)2, (19)

K =
(
1 − 2b2

z

)
k2
⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P

∣∣∣∣

)−1

, (35)
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where

N2 = − 1
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dz
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dz
, (18)

C =
(

γ − 1
γ

)
κ(k·b)2, (19)

K =
(
1 − 2b2
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)
k2
⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P
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)−1

, (35)
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C =
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K =
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This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P

∣∣∣∣

)−1

, (35)
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where

N2 = − 1
ργ

dP

dz

d ln Pρ−γ

dz
= g

d ln P (1−γ )/γ T

dz
, (18)

C =
(

γ − 1
γ

)
κ(k·b)2, (19)

K =
(
1 − 2b2

z

)
k2
⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P

∣∣∣∣

)−1

, (35)
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where
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dz
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d ln P (1−γ )/γ T

dz
, (18)

C =
(

γ − 1
γ

)
κ(k·b)2, (19)

K =
(
1 − 2b2
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)
k2
⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P

∣∣∣∣

)−1

, (35)

<
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where

N2 = − 1
ργ

dP

dz

d ln Pρ−γ

dz
= g

d ln P (1−γ )/γ T

dz
, (18)

C =
(

γ − 1
γ

)
κ(k·b)2, (19)

K =
(
1 − 2b2

z

)
k2
⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P

∣∣∣∣

)−1

, (35)

<
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where

N2 = − 1
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d ln Pρ−γ

dz
= g

d ln P (1−γ )/γ T

dz
, (18)

C =
(

γ − 1
γ

)
κ(k·b)2, (19)

K =
(
1 − 2b2

z

)
k2
⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P
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)−1

, (35)
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C =
(

γ − 1
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)
κ(k·b)2, (19)

K =
(
1 − 2b2
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)
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⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P

∣∣∣∣

)−1

, (35)
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where

N2 = − 1
ργ

dP

dz

d ln Pρ−γ

dz
= g

d ln P (1−γ )/γ T

dz
, (18)

C =
(

γ − 1
γ

)
κ(k·b)2, (19)

K =
(
1 − 2b2

z

)
k2
⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P

∣∣∣∣

)−1

, (35)
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(
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κ(k·b)2, (19)

K =
(
1 − 2b2

z

)
k2
⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P

∣∣∣∣

)−1

, (35)
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where

N2 = − 1
ργ

dP

dz
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dz
= g

d ln P (1−γ )/γ T

dz
, (18)

C =
(

γ − 1
γ

)
κ(k·b)2, (19)

K =
(
1 − 2b2

z

)
k2
⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P
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)−1

, (35)
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where

N2 = − 1
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dz
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, (18)

C =
(

γ − 1
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)
κ(k·b)2, (19)

K =
(
1 − 2b2

z

)
k2
⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
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, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ
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d ln T

d ln P

∣∣∣∣

)−1

, (35)
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K =
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This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
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)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
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d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
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k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥
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N2 − CK

g

k2

d ln T
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> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P

∣∣∣∣

)−1

, (35)
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where

N2 = − 1
ργ

dP

dz

d ln Pρ−γ

dz
= g

d ln P (1−γ )/γ T

dz
, (18)

C =
(

γ − 1
γ

)
κ(k·b)2, (19)

K =
(
1 − 2b2

z

)
k2
⊥ + 2bxbzkxkz. (20)

This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
g

k2

d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
g

k2

d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P

∣∣∣∣

)−1

, (35)
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This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
γ

)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
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d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
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d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK

g

k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(

N2 − g
d ln T

dz

)
> 0. (31)

But

N2 − g
d ln T

dz
= γ − 1

γ

1
Pρ

(
dP

dz

)2

, (32)

and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
C

ρPN2

(
dP

dz

)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(

1 +
∣∣∣∣

γ

γ − 1
d ln T

d ln P
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)−1

, (35)
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)
κ(k·b)2, (19)

K =
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This corresponds to Equation (13) of Q08, except, as noted,
for the single appearance of the radiative ΘT |P term. (A less
general version of this result was also presented in Balbus
& Reynolds 2008.) The dispersion characterizes the linear
response of a magnetized, thermally conducting radiative dilute
plasma to incompressible disturbances.

2.3. Stability

2.3.1. Recovery of the Conductive Field Criterion

Expanding the dispersion relation (17) leads to

σ 3 + a1σ
2 + a2σ + a3 = 0, (21)

where

a1 =
(

γ − 1
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)
T ΘT |P + C, (22)

a2 = k2
⊥

k2
N2 + (k · vA)2, (23)

a3 = CK
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d ln T

dz
+ (k · vA)2a1. (24)

There are stable solutions to this dispersion relation if and
only if the following three criteria are met:

a1 > 0, a3 > 0, a1a2 > a3. (25)

This follows from a Routh–Hurwitz analysis, but can be seen
more easily by inspection: the first two are in fact elementary,
while the third follows from self-consistently demanding purely
imaginary solutions to the cubic equation and then investigating
their behavior for infinitesimal real parts.

The physical interpretation of a1 > 0, or

T ΘT |P + (k·b)2κ > 0, (26)

is the magnetized conduction variation of the classical thermal
instability criterion (Field 1965). Only the component of k along
the field lines enters into the conduction term.

2.3.2. Recovery of the HBI and MTI

We next consider the physical interpretation of a3 > 0, or

CK
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d ln T

dz
+ (k · vA)2a1 > 0. (27)

In essence, this is the HBI/MTI criterion of Q08, but further
(de)stabilized when the flow is (un)stable by the isobaric Field
criterion. This is a true instability if a3 is negative, with
σ = −a3/a2 in the limit of large a2 > 0.

Equation (27) shows that thermal instability and the HBI/
MTI are intimately linked. To be definite, consider the behavior
of the HBI. The discussion of Q08 explains how the distortion

of field lines leads to conductive cooling of a downwardly dis-
placed fluid element (and vice versa for an upwardly displaced
element). It is this cooling that causes the convection associ-
ated with the HBI. With radiative losses present, the cooling
is enhanced on a downward displacement, and relative heat-
ing is present on an upward displacement. In fact, we may
imagine now slowly turning on the magnetic field from dy-
namically weak to strongly dominant. Then, the exponentially
growing instability transforms from the Q08 HBI to the classi-
cal (nonoscillatory) thermal instability. The role of the magnetic
field in mediating this transition is crucial.

2.3.3. Destabilization of Wave Modes by a Positive Thermal Gradient

We now return to the third criterion, a1a2 > a3. With a3 > 0,
this criterion is a more stringent stability criterion than the first
(a1 > 0), and hence replaces it.

When a2 is large and positive (e.g., either N2 or (k · vA)2

is dominant), the unstable roots depending on a1 will be
approximately

σ = ±ia
1/2
2 + (a3 − a1a2)/2a2. (28)

On the other hand, at large wavenumbers, we may have a1
and a3 as the dominant terms. If a3 and a1 are both positive (or
both negative), then the wavelike solutions will be

σ = ±i(a3/a1)1/2 + (a3 − a1a2)/2a2
1 . (29)

In either case above, the combination a3 − a1a2 determines
the stability of the mode.

After a cancellation of the magnetic tension terms, the
condition a1a2 − a3 > 0 becomes

a1
k2
⊥

k2
N2 − CK
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k2

d ln T

dz
> 0. (30)

Consider the limit bz # 1, which is HBI stable (a3 > 0)
for all but nearly axial wavenumbers, whose growth times then
become very long. (We cannot take bz = 0 exactly, since that
would preclude a static radiative equilibrium state. For bz finite,
Equation (10) shows that the equilibrium dT /dz scales as b−1

z .)
Then, K = k2

⊥, and our inequality reduces to

γ − 1
γ

T ΘT |P N2 + C
(
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d ln T
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)
> 0. (31)

But
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and assuming that N2 > 0, the inequality may be yet further
reduced:

T ΘT |P +
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ρPN2

(
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)2

> 0. (33)

Finally, substituting for C and N2 and simplifying, our
condition becomes

T ΘT |P + κ(k · b)2R > 0, (34)

where R is the reduction factor

R =
(
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Conclusions & prospects

• MHD overstabilities related to the well known MHD instabilities.

• Analytic theory: Need for thorough understanding of plasma processes (e.g., 
anisotropic viscosity). 

• Simulations: Understanding the relative importance of individual plasma 
instabilities/overstabilities and their connection. 

• Observations: Spectro-polarimetric measurements, measurements of 
temperature profiles and metallicity in cluster outskirts, measurements of 
turbulence, other yet to be realized methods...


