# Thermal Instability and Multiphase Structure in the ICM

Ian Parrish UC Berkeley

Mike McCourt, Prateek Sharma, Eliot Quataert

KITP Program on Galaxy Clusters
March 3, 2011

#### Observations: Filaments in NGC 1275



Hα emission: Fabian, et al Nature (2008)



**Extended**Filaments



**Extended Filaments** 

Nuclear
Emission
(not filaments)



**Filaments** 

Extended

Nuclear **Emission** (not filaments)

Νο Ηα

Physics: Pure hydrodynamics plus heating & cooling:

$$\rho T \frac{ds}{dt} = \mathcal{H} - \mathcal{L}$$

Physics: Pure hydrodynamics plus heating & cooling:

$$\rho T \frac{ds}{dt} = \mathcal{H} - \mathcal{L}$$

What do observations tell us?

1) There is not a classical cooling flow (Sanders, Fabian, et al. 2010)

$$\dot{M}_{\rm cool} \ll \dot{M}_{\rm CF} \to \mathcal{H} \not\ll \mathcal{L}$$

Physics: Pure hydrodynamics plus heating & cooling:

$$\rho T \frac{ds}{dt} = \mathcal{H} - \mathcal{L}$$

What do observations tell us?

1) There is not a classical cooling flow (Sanders, Fabian, et al. 2010)

$$\dot{M}_{\rm cool} \ll \dot{M}_{\rm CF} \to \mathcal{H} \not\ll \mathcal{L}$$

2) There is evidence of cool gas & gas cooling: Hα, CO, UV, [O II], Fe XVII, even PAH's in Herschel. (See papers by Donahue, Edge, Fabian, Hicks, +++)

$$\mathcal{H} \not\equiv \mathcal{L}, \forall \vec{r}$$

Physics: Pure hydrodynamics plus heating & cooling:

$$\rho T \frac{ds}{dt} = \mathcal{H} - \mathcal{L}$$

What do observations tell us?

1) There is not a classical cooling flow (Sanders, Fabian, et al. 2010)

$$\dot{M}_{\rm cool} \ll \dot{M}_{\rm CF} \to \mathcal{H} \not\ll \mathcal{L}$$

2) There is evidence of cool gas & gas cooling: Hα, CO, UV, [O II], Fe XVII, even PAH's in Herschel. (See papers by Donahue, Edge, Fabian, Hicks, +++)

$$\mathcal{H} \not\equiv \mathcal{L}, \forall \vec{r}$$

3) We know  $\mathcal{L}(n,T)$  and have no idea of  $\mathcal{H}(n,T,\vec{r})$ 

Physics: Pure hydrodynamics plus heating & cooling:

$$\rho T \frac{ds}{dt} = \mathcal{H} - \mathcal{L}$$

What do observations tell us?

1) There is not a classical cooling flow (Sanders, Fabian, et al. 2010)

$$\dot{M}_{\rm cool} \ll \dot{M}_{\rm CF} \to \mathcal{H} \not\ll \mathcal{L}$$

2) There is evidence of cool gas & gas cooling: Hα, CO, UV, [O II], Fe XVII, even PAH's in Herschel. (See papers by Donahue, Edge, Fabian, Hicks, +++)

$$\mathcal{H} \not\equiv \mathcal{L}, \forall \vec{r}$$

3) We know  $\mathcal{L}(n,T)$  and have no idea of  $\mathcal{H}(n,T,\vec{r})$ 

## Clusters are globally thermally stable, but sometimes locally thermally unstable

Physics: Pure hydrodynamics plus heating & cooling:

$$\rho T \frac{ds}{dt} = \mathcal{H} - \mathcal{L}$$



Crazy Ansatz:

Physics: Pure hydrodynamics plus heating & cooling:

$$\rho T \frac{ds}{dt} = \mathcal{H} - \mathcal{L}$$



Crazy Ansatz:

$$\mathcal{H}(r) = \langle \mathcal{L}(r) \rangle$$

Physics: Pure hydrodynamics plus heating & cooling:

$$\rho T \frac{ds}{dt} = \mathcal{H} - \mathcal{L}$$



Crazy Ansatz:

$$\mathcal{H}(r) = \langle \mathcal{L}(r) \rangle$$

(Constant per unit volume)

Physics: Pure hydrodynamics plus heating & cooling:

$$\rho T \frac{ds}{dt} = \mathcal{H} - \mathcal{L}$$



Crazy Ansatz:

$$\mathcal{H}(r) = \langle \mathcal{L}(r) \rangle$$

(Constant per unit volume)

$$\mathcal{H}(r) = n \frac{\langle \mathcal{L}(r) \rangle}{\langle n \rangle}$$

(Constant per unit mass)

Physics: Pure hydrodynamics plus heating & cooling:

$$\rho T \frac{ds}{dt} = \mathcal{H} - \mathcal{L}$$



Crazy Ansatz:

$$\mathcal{H}(r) = \langle \mathcal{L}(r) \rangle$$

(Constant per unit volume)

$$\mathcal{H}(r) = n \frac{\langle \mathcal{L}(r) \rangle}{\langle n \rangle}$$

(Constant per unit mass)

Globally Thermally Stable

Cooling Time: 
$$t_{\rm cool}=\frac{\gamma}{\gamma-1}\frac{nk_BT}{n^2\Lambda(T)}=\frac{5}{2}\frac{T^{1/2}}{n\Lambda_0}$$
 (Pure Bremsstrahlung)

Free-fall Time: 
$$t_{\rm ff} = \left(\frac{2H}{g_0}\right)^{1/2}$$

Cooling Time: 
$$t_{\rm cool}=\frac{\gamma}{\gamma-1}\frac{nk_BT}{n^2\Lambda(T)}=\frac{5}{2}\frac{T^{1/2}}{n\Lambda_0}$$
 (Pure Bremsstrahlung)

Free-fall Time: 
$$t_{\rm ff} = \left(\frac{2H}{g_0}\right)^{1/2}$$

Assume:  $\Theta \equiv \mathcal{L} - \mathcal{H}$ ,  $\mathcal{H} \propto n^{\alpha}$ 

Cooling Time: 
$$t_{\rm cool}=\frac{\gamma}{\gamma-1}\frac{nk_BT}{n^2\Lambda(T)}=\frac{5}{2}\frac{T^{1/2}}{n\Lambda_0}$$
 (Pure Bremsstrahlung)

Free-fall Time: 
$$t_{\mathrm{ff}} = \left(\frac{2H}{g_0}\right)^{1/2}$$

Assume: 
$$\Theta \equiv \mathcal{L} - \mathcal{H}$$
,  $\mathcal{H} \propto n^{\alpha}$ 

Locally thermally unstable when: 
$$\left(\frac{\partial\Theta}{\partial T}\right)_P<0$$

Cooling Time: 
$$t_{\rm cool}=rac{\gamma}{\gamma-1}rac{nk_BT}{n^2\Lambda(T)}=rac{5}{2}rac{T^{1/2}}{n\Lambda_0}$$
 (Pure Bremsstrahlung)

Free-fall Time: 
$$t_{\rm ff} = \left(\frac{2H}{g_0}\right)^{1/2}$$

Assume: 
$$\Theta \equiv \mathcal{L} - \mathcal{H}$$
,  $\mathcal{H} \propto n^{\alpha}$ 

Locally thermally unstable when: 
$$\left(\frac{\partial\Theta}{\partial T}\right)_P<0$$

Thermal Instability 
$$\frac{\gamma-1}{\gamma}\left(2-\frac{\partial\ln\Lambda}{\partial\ln T}-\alpha\right)\frac{\mathcal{L}}{nT}=\left(\frac{3}{2}-\alpha\right)t_{\rm cool}^{-1}$$
 Growth Rate:

Cooling Time: 
$$t_{\rm cool}=\frac{\gamma}{\gamma-1}\frac{nk_BT}{n^2\Lambda(T)}=\frac{5}{2}\frac{T^{1/2}}{n\Lambda_0}$$
 (Pure Bremsstrahlung)

Free-fall Time: 
$$t_{\rm ff} = \left(\frac{2H}{g_0}\right)^{1/2}$$

Assume: 
$$\Theta \equiv \mathcal{L} - \mathcal{H}$$
,  $\mathcal{H} \propto n^{\alpha}$ 

Locally thermally unstable when: 
$$\left(\frac{\partial\Theta}{\partial T}\right)_P<0$$

Thermal Instability 
$$\frac{\gamma-1}{\gamma} \left(2 - \frac{\partial \ln \Lambda}{\partial \ln T} - \alpha\right) \frac{\mathcal{L}}{nT} = \left(\frac{3}{2} - \alpha\right) t_{\text{cool}}^{-1}$$
 Growth Rate:

Multiphase Structure when: 
$$t_{\rm cool} \ll t_{\rm ff}$$

$$t_{\rm cool}/t_{\rm ff} = 1/10$$



$$t_{\rm cool}/t_{\rm ff} = 1/10$$



Multiphase Structure

$$t_{\rm cool}/t_{\rm ff} = 10$$



$$t_{\rm cool}/t_{\rm ff} = 10$$



No Multiphase Structure

### Multiphase Structure



(Density snapshot for volumetric or mass-weighted heating)





•Amplitude of  $\delta \rho/\rho$  strong function of cooling versus gravity.



•Amplitude of  $\delta \rho/\rho$  strong function of cooling versus gravity.



- •Amplitude of  $\delta \rho/\rho$  strong function of cooling versus gravity.
- •Gas in the cold phase drops precipitously as  $t_{TI} \sim t_{ff}$ .



- •Amplitude of  $\delta \rho/\rho$  strong function of cooling versus gravity.
- •Gas in the cold phase drops precipitously as  $t_{TI} \sim t_{ff}$ .
- •Waiting longer for weak cooling, does not change results.

#### Suppression of Mass Accretion Rate



(Thick lines = outflow, Thin lines=inflow)

In real cluster models get 0.01-0.1 suppression as well.

#### Suppression of Mass Accretion Rate



#### Not such a crazy Ansatz



#### Tantalizing Hints in Real Data



Clusters both in ACCEPT catalog and McDonald, et al (2010)

#### Tantalizing Hints in Real Data



Clusters both in ACCEPT catalog and McDonald, et al (2010)

## Tantalizing Hints in Real Data



Clusters both in ACCEPT catalog and McDonald, et al (2010)

•Suggests filaments occur below critical value of t<sub>cool</sub>/t<sub>crit</sub>~8.

## Tantalizing Hints in Real Data



Clusters both in ACCEPT catalog and McDonald, et al (2010)

- •Suggests filaments occur below critical value of t<sub>cool</sub>/t<sub>crit</sub>~8.
- •Good agreement with cluster model simulations.

Balbus & Soker (1989)

#### Balbus & Soker (1989)

Claim: Thermal instability requires convective  $\frac{\partial s}{\partial r} < 0$  instability in a stratified atmosphere

#### Balbus & Soker (1989)

Claim: Thermal instability requires convective  $\frac{\partial s}{\partial r} < 0$  instability in a stratified atmosphere Assume: Heating is a state function, i.e.  $\mathcal{H} = \mathcal{H}(n,T)$ 

#### Balbus & Soker (1989)

Claim: Thermal instability requires convective  $\frac{\partial s}{\partial r} < 0$  instability in a stratified atmosphere

Assume: Heating is a state function, i.e.  $\mathcal{H} = \mathcal{H}(n,T)$ 

Resolution: If heating is a function of position, i.e.  $\mathcal{H} = \mathcal{H}(n, T, \vec{r})$  then convectively stable atmospheres can be thermally unstable.

#### Balbus & Soker (1989)

Claim: Thermal instability requires convective  $\frac{\partial s}{\partial r} < 0$  instability in a stratified atmosphere

Assume: Heating is a state function, i.e.  $\mathcal{H} = \mathcal{H}(n,T)$ 

Resolution: If heating is a function of position, i.e.  $\mathcal{H} = \mathcal{H}(n, T, \vec{r})$  then convectively stable atmospheres can be thermally unstable.

Binney, Nipoti, & Fraternali (2009) Malagoli, Rosner, & Bodo (1987)

#### Balbus & Soker (1989)

Claim: Thermal instability requires convective  $\frac{\partial s}{\partial r} < 0$  instability in a stratified atmosphere

Assume: Heating is a state function, i.e.  $\mathcal{H} = \mathcal{H}(n,T)$ 

Resolution: If heating is a function of position, i.e.  $\mathcal{H} = \mathcal{H}(n, T, \vec{r})$  then convectively stable atmospheres can be thermally unstable.

Binney, Nipoti, & Fraternali (2009)

Malagoli, Rosner, & Bodo (1987)

Claim: Thermal instability requires convective instability in a stratified atmosphere

#### Balbus & Soker (1989)

Claim: Thermal instability requires convective  $\frac{\partial s}{\partial r} < 0$  instability in a stratified atmosphere

Assume: Heating is a state function, i.e.  $\mathcal{H} = \mathcal{H}(n,T)$ 

Resolution: If heating is a function of position, i.e.  $\mathcal{H} = \mathcal{H}(n, T, \vec{r})$  then convectively stable atmospheres can be thermally unstable.

### Binney, Nipoti, & Fraternali (2009)

Malagoli, Rosner, & Bodo (1987)

Claim: Thermal instability requires convective instability in a stratified atmosphere

Assume: Perturbations to a cooling flow solution:  $\mathcal{H}=0$ 

#### Balbus & Soker (1989)

Claim: Thermal instability requires convective  $\frac{\partial s}{\partial r} < 0$  instability in a stratified atmosphere

Assume: Heating is a state function, i.e.  $\mathcal{H} = \mathcal{H}(n,T)$ 

Resolution: If heating is a function of position, i.e.  $\mathcal{H} = \mathcal{H}(n, T, \vec{r})$  then convectively stable atmospheres can be thermally unstable.

### Binney, Nipoti, & Fraternali (2009)

Malagoli, Rosner, & Bodo (1987)

Claim: Thermal instability requires convective instability in a stratified atmosphere

Assume: Perturbations to a cooling flow solution:  $\mathcal{H}=0$  Include conduction, but conduction is neither globally thermally stable, nor locally stable on scales bigger than  $\lambda_F$  (the Field length).

#### Balbus & Soker (1989)

Claim: Thermal instability requires convective  $\frac{\partial s}{\partial r} < 0$  instability in a stratified atmosphere

Assume: Heating is a state function, i.e.  $\mathcal{H} = \mathcal{H}(n,T)$ 

Resolution: If heating is a function of position, i.e.  $\mathcal{H} = \mathcal{H}(n, T, \vec{r})$  then convectively stable atmospheres can be thermally unstable.

# Binney, Nipoti, & Fraternali (2009)

Malagoli, Rosner, & Bodo (1987)

Claim: Thermal instability requires convective instability in a stratified atmosphere

Assume: Perturbations to a cooling flow solution:  $\mathcal{H}=0$  Include conduction, but conduction is neither globally thermally stable, nor locally stable on scales bigger than  $\lambda_F$  (the Field length). Resolution: Cooling flows don't exist, so this is not appropriate.

### Summary and Conclusions

- Galaxy clusters are globally thermally stable, and sometimes locally thermally unstable.
- If  $t_{Tl} < t_{ff}$ , then multiphase structure is formed.
- A reasonable heating model can reduce the mass fluxes to values below the cooling flow value.
- It will be a lot of work figuring out this reasonable and robust heating model.