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Observations: Filaments in NGC 1275

HX emission: Fabian, et al Nature (2008)
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Clusters are globally thermally stable, but
sometimes locally thermally unstable
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Physics and Model

Physics: Pure hydrodynamics plus heating & cooling:

ds l /

(Constant per unit mass)

Globally Thermally Stable
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: Ty ¥ mnkpT _ 5T'/2
Cooling Time:  tcool = I 7S] = 5 mAg (Pure Bremsstrahlung)

go

Assume: © =L —H, H xn®

1/2
Free-fall Time: g = (ﬁ)

Locally thermally /96 0
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Thermal Instability ~—1 (2 d1n A a) cT (% - a) 1

Growth Rate: g OlnT

Multiphase Structure when: tcool X i
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Multiphase Structure

Homogeneous Multiphase

Cooling Structure
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Multiphase Structure Quantitatively

(Density Perturbations)
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Multiphase Structure Quantitatively

(Density Perturbations) (Cold Fraction)
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Multiphase Structure Quantitatively

(Density Perturbations) (Cold Fraction)
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Multiphase Structure Quantitatively
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Suppression of Mass Accretion Rate
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In real cluster models get 0.01-0.1 suppression as well.
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Suppression of Mass Accretion Rate
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Not such a crazy Ansatz
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Tantalizing Hints in Real Data
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Tantalizing Hints in Real Data
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Claim: Thermal instability requires convective 8s <0
instability in a stratified atmosphere or
Assume: Heating is a state function,i.e. H = H(n,T)

Resolution: If heating is a function of position,i.e. H = H(n,T,7)
then convectively stable atmospheres can be thermally unstable.

Binney, Nipoti, & Fraternali (2009)
Malagoli, Rosner, & Bodo (1987)

Claim: Thermal instability requires convective instability in a
stratified atmosphere

Assume: Perturbations to a cooling flow solution: 'H = ()
Include conduction, but conduction is neither globally thermally

stable, nor locally stable on scales bigger than Ar (the Field length).

Resolution: Cooling flows don’t exist, so this is not appropriate.
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Summary and Conclusions

Galaxy clusters are globally thermally stable, and
sometimes locally thermally unstable.

If tT1 < tg, then multiphase structure is formed.

A reasonable heating model can reduce the mass fluxes
to values below the cooling flow value.

It will be a lot of work figuring out this reasonable and
robust heating model.
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