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Observations: Filaments in NGC 1275

Hα emission: Fabian, et al Nature (2008)
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Systematic Study of Hα with MMTF

McDonald, et al (2010), ApJ, 721, 1262
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Ṁcool � ṀCF → H �� L

Clusters are globally thermally stable, but 
sometimes locally thermally unstable
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Physics and Model
Physics: Pure hydrodynamics plus heating & cooling:
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Crazy Ansatz:
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(Constant per unit volume)
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(Constant per unit mass)

Globally Thermally Stable
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tcool/tff = 1/10

Multiphase Structure
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Multiphase Structure

(Density snapshot for volumetric or mass-weighted heating)
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Multiphase Structure Quantitatively
(Density Perturbations) (Cold Fraction)
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Multiphase Structure Quantitatively
(Density Perturbations) (Cold Fraction)

•Amplitude of δρ/ρ strong function of cooling versus gravity.
•Gas in the cold phase drops precipitously as tTI ~ tff.
•Waiting longer for weak cooling, does not change results.
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Suppression of Mass Accretion Rate

(Thick lines = outflow, Thin lines=inflow)

In real cluster models get 0.01-0.1 suppression as well. 
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Suppression of Mass Accretion Rate

Heating = Cooling No Heating, pure C.F.

Initial Central Entropy Ko (keV cm-2)
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Not such a crazy Ansatz

H→ H(1 + δ)
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Tantalizing Hints in Real Data

Clusters both in ACCEPT catalog and McDonald, et al (2010)
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Clusters both in ACCEPT catalog and McDonald, et al (2010)

•Suggests filaments occur below critical value of tcool/tcrit~8.
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Tantalizing Hints in Real Data

Clusters both in ACCEPT catalog and McDonald, et al (2010)

•Suggests filaments occur below critical value of tcool/tcrit~8.
•Good agreement with cluster model simulations.
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Resolution: If heating is a function of position, i.e.
then convectively stable atmospheres can be thermally unstable.

Binney, Nipoti, & Fraternali (2009)
Malagoli, Rosner, & Bodo (1987)
Claim:  Thermal instability requires convective instability in a 
stratified atmosphere
Assume: Perturbations to a cooling flow solution:
Include conduction, but conduction is neither globally thermally 
stable, nor locally stable on scales bigger than λF (the Field length).

H = 0

Resolution: Cooling flows don’t exist, so this is not appropriate.
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Summary and Conclusions

• Galaxy clusters are globally thermally stable, and 
sometimes locally thermally unstable.

• If tTI < tff, then multiphase structure is formed.

• A reasonable heating model can reduce the mass fluxes 
to values below the cooling flow value. 

• It will be a lot of work figuring out this reasonable and 
robust heating model.
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