classification and statistical properties of radio galaxies with extended morphology at z<0.3

Yen-Ting Lin

Academia Sinica, Institute of Astronomy & Astrophysics Institute for the Physics & Mathematics of the Universe

Yue Shen, Michael Strauss, Gordon Richards, Ragnhild Lunnan 2010, ApJ 723, 1119

overview

- Fanaroff & Riley (74)
 - type I (edge-darkened); type II (edge-brightened)
 - dichotomy
- primary goal: origin(s) of different morphology?
 - best way to find distinct populations of radio galaxies (RGs)
 ⇒ new classification scheme
 - differences in the host galaxy properties and environment
- approach
 - use a simple, continuous parameterization (r_s) of morphology, applied to 1040 uniformly selected RGs
 - study physical properties as a function of r_s: are they bimodal?
 - including optical nuclear emission line properties separates
 RG populations better

results

- 3 types of RGs (with extended, "straight" morphology)
- accretion rate onto central engine is dominant in determining the morphology; galactic structure/density plays a minor role
- RG catalog publicly available

image credit: Leahy, Bridle, Strom

classification schemes and RG sample

- morphology-based scheme (FR, Owen & Laing 89): interactions of the jets with environments
- emission line-based scheme (e.g., Laing+94: HERG vs LERG): accretion processes onto super massive blackhole (SMBH)
- correspondence between FR I/II and HE/LE not perfect: many FR IIs have LE nuclei, while some FR Is are HERG
- a hybrid scheme may work better in revealing distinct populations of RGs
- classification may be subject to classifiers' experience/preference!
- cross-matched SDSS DR6 main sample with NVSS and FIRST surveys at 1.4 GHz to generate the largest radio galaxy catalog at z≤0.3 to date: 10,500 RGs stronger than 3 mJy, all brighter than M_∗ (massive!)
- selection of extended RGs
 - visually inspect all RGs to ensure correct match and fluxes
 - concentrate only on objects with more or less "straight" lobes (ignore wide angle tail and narrow angle tail sources) and large enough to be resolved
 - 1040 RGs satisfy these criteria
 - among the largest, homogeneously selected sample for studying FR I/II dichotomy

an objective classification scheme?

- measure the total size T and the separation between the highest surface brightness (HSB) spots on either side of the host galaxy, S
- use r_s=S/T to trace the RG population continuously
- in the original FR scheme, the two types are separated by r_s=0.5
- class a: lobe-dominated; ~2/3 of all sources
- class b: prominent jet coincide with host; ~1/3 of all sources
- later we will consider adding the OIII emission line as another classification criterion

an objective classification scheme?

- measure the total size T and the separation between the highest surface brightness (HSB) spots on either side of the host galaxy, S
- use r_s=S/T to trace the RG population continuously
- in the original FR scheme, the two types are separated by r_s=0.5
- class a: lobe-dominated; ~2/3 of all sources
- class b: prominent jet coincide with host; ~1/3 of all sources
- later we will consider adding the OIII emission line as another classification criterion

an objective classification scheme?

distribution of r_s

- two main classes
 - class a: lobe-dominated (red histogram; 64% of extended RGs)
 - class b: prominent jet (blue; 28%)
- identify the two peaks as FR I & II?
- if to stick with FR-like scheme
 ⇒ division at r_s=0.8 (a_{0.9} vs a_{<0.8}+b subsamples)

trends with r_s

- significant overlap in physical properties of subsamples
- class a objects with highest r_s seem to stand out from the rest (call them a_{0.9} afterwards)
- weak or no trends among the rest of class a (hereafter $a_{<0.8}$), as well as class b
- a_{0.9} vs other RGs
 - least massive, faintest host, smallest in size
- class b vs a_{<0.8}
 - slightly more concentrated, smaller in size, lower in total mass

trends with r_s

- significant overlap in physical properties of subsamples
- class a objects with highest r_s seem to stand out from the rest (call them a_{0.9} afterwards)
- weak or no trends among the rest of class a (hereafter a_{<0.8}), as well as class b
- a_{0.9} vs other RGs
 - least massive, faintest host, smallest in size
 - highest sSFR, youngest luminosity weighted stellar age
 - highest line luminosities and accretion rate/Eddington ratio
 - relatively sparse environments
 - highest radio power, largest linear size
- class b vs a_{<0.8}
 - slightly more concentrated, smaller in size, lower in total mass
 - slightly lower sSFR
 - less number of neighbors; similar to $a_{0.9}$
 - lowest in radio power and accretion rate/Eddington ratio

mean spectra

- 3 subsets with similar SMBH mass, dynamical mass and surface density
- 3 SMBH mass bins
- a_{0.9}: nucleus becomes less active with increasing mass
- intermediate and high mass a_{<0.8} and b: similar spectra
- lowest mass a_{<0.8} and
 b: signature of feedback?!

revision of the scheme

- if one is to stick with FR-like, morphology-based scheme
 - $a_{0.9} \text{ vs } a_{< 0.8} + b$
 - large overlap in physical properties among these subsets
- however, 46/85 of a_{0.9} objects have no detectable OIII line
- ~75% of a_{0.9} objects with OIII luminosity>10⁶L_{sun} show "hotspots" at the edge of lobes, while ~2/3 of a_{0.9} objects without OIII line have "weak" HSB spots
 - mechanism that creates the emission lines is physically related to the process responsible for generating the hotspots?
 - it is a_{0.9} objects with OIII line that make this subset stand out
- our "best" scheme
 - a_{0.9,em} (r_s>0.8, L_{OIII}>10⁶L_{sun}) relatively high accretion rate onto SMBH
 - a_{maj} (rest of class a) lower accretion rate
 - b low accretion rate, plus dense galactic structure
- simple morphological measure such as r_s has only limited use

origin of different morphologies?

- •__ a_{0.9,em}
 - (relatively) higher accretion rate (L_{OIII}/L_{Edd}>10⁻⁶)
 - accretion mode is the classical thin disk (fed by cold gas?)
 - can generate very well collimated jets; SMBH spin/ magnetic field may/must play some rule
- a_{maj}
 - lower accretion rate
 - probably powered by radiatively inefficient accretion flow (RIAF; fed by stellar mass loss?)
 - jets probably not well collimated
- b
 - lowest accretion rate; powered by RIAF
 - structure of the host galaxy or immediate surrounding probably slows down the jets significantly

some thoughts on feedback

- for a_{0.9,em}, the strong jets probably simply punctuate two small holes in the galaxy → not much feedback on the galaxy?!
- the a_{maj} RGs may be the most promising agent for keeping the ICM hot: high probability to be found in cluster center, higher radio power compared to class b, larger cross section of lobes
- for b: the cross section of the jets may be large enough to affect the host galaxy and stop star formation and nuclear activity? (Seyfert/LINER activity in class b is suppressed compared to RQ galaxies of similar mass and SED)

Radio Galaxy 3C296
Radio/optical superposition
Copyright (c) NRAO/AUI 1999

segregation in P-M plane?

 Owen and collaborators found sharp transition from FR I to II as a function of optical luminosity of the hosts

segregation in P-M plane?

- an independent sample with FR I/II classification (Gendre et al 10)
 - red: FR II; blue: FR I
 - discrepancy due to sample construction?

summary

- simple morphological measure such as r_s has only limited use
- 3 populations of extended RGs with ~straight morphology
 - a_{0.9,em}: on average, hosted by lower mass galaxies, live in relatively sparse environments, higher accretion rates onto SMBH
 - a_{maj}: rest of class a, the majority of RGs
 - b: with prominent jet; share similar properties with a_{maj}, but differ in neighbor counts and nuclear emission
- accretion rate onto SMBH may be the primary driver for different populations;
 galactic structure plays a minor role
- differences in jet-launching mechanism may have implications on feedback at galactic and sub-Mpc scales
 - for a_{0.9,em}, the strong jets probably simply punctuate two small holes in the galaxy → not much feedback on the galaxy?!
 - the a_{maj} RGs may be the most promising agent for keeping the ICM hot: high probability to be found in cluster center, higher radio power compared to class b, larger cross section of lobes
 - for b: affect the host galaxy and stop star formation and nuclear activity?