Scatter and bias in Weak Lensing Mass Estimates

Matthew Becker & Andrey Kravtsov
The University of Chicago

2010, ApJ submitted arXiv/1011.1681

A Lightening Review of Weak Lensing Cluster Mass Estimates

background
galaxies
(assumed to be
oriented randomly)

cluster images of background galaxies (definitely not oriented randomly)

Mass along the line-of-sight will deflect the paths of photons traveling between a source and the observer through the geodesic and Einstein equations from General Relativity. Small deflections which result in changes to the shapes of galaxies are known as **weak lensing** (W).

Galaxy clusters introduce a net tangential alignment in the weakly lensed images of background galaxies. They do not produce patterns with handedness.

- 1) Measurements of the mean tangential shear can tell you about the mass of the cluster.
- 2) You need to measure the shapes of galaxies accurately which is very difficult. (Not what an N-body simulator generally worries about though.)
- 3) Mass projected along the line-of-sight along with the cluster and modeling errors create scatter and bias in WL masses. We will focus on this issue here.

WL estimate of M_{500c}

- We attempt to calibrate the M_{WL}-M_{TRUE} relation directly in DMonly N-body simulations. (Sensitive to mass only, so robust to the gross effects of galaxy formation?)
- Get the WL mass from fitting the reduced shear profile for each cluster with NFW prediction (radial range 1 to 20 arcminutes, 15 logarithmic bins)
- NO SHAPE NOISE in this plot (WL mass estimates are intrinsically noisy!)
- For $M_{500c} > 2x10^{14}$ M_{sun}/h at z=0.25 find ~20% intrinsic scatter, -5% bias

The WL Mass Error Budget

The line-of-sight integration length is measured from behind the cluster to in front of it (so that 200 Mpc/h is -100 Mpc/h to 100 Mpc/h.

Quibbling over where to put the boundaries between the colors is a little silly.

source	scatter	bias
halo shape	~16%	-5%
correlated LSS	≤ 8%	0%
random projections	up to 18%	0%
shape noise	31%	0%
total	36-40%	-5%

Notes:

- 1) Some of this was known before, but we put it all together.
- 2) We assume typical ground-based source density (10 gals/arcmin²) and shape noise (0.4 per component).
- 3) Add scatter numbers in quadrature down table.
- 4) Add bias linearly down table.
- 5) Random projections affect small mass halos more (They produce less shear). The largest halos have very little extra the scatter due to random projections.
- 6) The solid lines to the left are based on an analytic model by Hoekstra (2003) for scatter due to random projections.

Modeling Errors Create Bias

1-halo regime

- seems to be OK

transition region

- hard to model
- details probably depend on halo finding and definitions

2-halo regime

- easy to model, but does it make sense to do so for a single cluster?
- might be better to do a stacked analysis