

Kasia Bożek

HIV-host coevolution

Max-Planck Institute for Computer Sciences
Computational Biology and Applied Algorithmics
Saarbrücken, Germany

KITP, 25.11.2008

HIV drug therapy

Highly active antiretroviral therapy (HAART)

• ≥ 3 drugs, ≥ 2 classes

Highly active antiretroviral therapy (HAART)

- resistance tables of International AIDS Society
- based on clinical experience
- biaised, cannot express mutation interdependence

geno2pheno_[resistance]

based on phenotypic data of about 1000 viral variants

- uses different measures of information conter*
 - mutual information
 - distance from the decision boundary of Support Vector Machine (SVM) (Beerenwinkel, 2002)

geno2pheno - version 3.0 - Microsoft Internet Explorer

1. Identifier (optional):

nucleotide sequence:

5. Output:

6. Action:

2. Cutoffs:

File Edit View Favorites Tools Help

geno2pheno

[resistance]

geno2pheno

[coreceptor]

<u>Help</u>

Statistics

References

Contact

KLINISCHEund훊

UNIVERSITÄT

ERLANGEN-NÜRNBERE

karbabka Religio izzortioni En Retrochan

TO LOX geno2pheno® phenotype prediction from genotype Niko Beerenwinkel, Joach IV. Interpretation On submitting below an HIV-Birth date: Patient: Sampling date: HXB2, a list of mutations and Current therapy: Viral load: 0.0 2.0 4.0 8.0 10.0 12.0 [№] Features: ZDV ddC ddl d4T 3TC ABC NNTDF NVP 3. Pol-gene (PR and RT) DLV **EFV** SQV SQV/r 4. Sequence ambiguities: IDV IDV/r NFV ₫ APV/r LPV/r ATV/r You will ma intermediate

(*)number of standard deviations above mean of drug naive patients. Negative z-scores may

indicate hypersusceptibility.

rg

- modeling viral evolution (Beerenwinkel, 2003)
- mutagenetic trees (Beerenwinkel, 2005)
- therapy optimization (Altmann, 2007)
- debiasing clinical databases (Altmann, 2007)
- prediction of coreceptor usage (Sander, 2007)

Coevolution is process of reciprocal adaptive genetic change in two or more species.

Coevolution requires

- genetic variation
- reciprocal effects on the fitness of the 2 populations
- dependence of the outcome interaction on the genotypes involved

Coevolution can be studied in terms of

- paired phenotypic traits (resistance infectivity)
- interacting host and pathogen molecules
- genes, nucleotide sequences

Simian foamy viruses (SFV)

ubiquitous, non-pathogenic retroviruses that infect all primates.

Phylogenetical comparison of *SFV polymerase* and *mitochondrial cytochrome oxidase subunit II* from African and Asian monkeys and apes.

- congruent trees
- extremely low rate of SFV evolution: 10⁻⁸ substitutions per site per year (10⁻³ for HIV)
- cospeciation during 30 million years

Simian Immunodeficiency Viruses (SIVs)

primate lentiviruses infecting more than 36 different nonhuman primate species in Africa.

Cross-species transmission of *chimpanzee SIVcpz* and *sooty mangabey SIVsmm* generated HIV type 1 and 2 in human population.

Multiple simian-human transmissions are estimated for the beginning of the 20th century.

SIV-host coevolution?

- geographical distribution of infections
- closely related monkey species harbor closely related SIVs
- phylogenetical evidence for cross-species simian-simian transmission events
- all naturally infected monkey species do not develop AIDS

All naturally infected monkey species do not develop AIDS.

Differences in immune response:

- progressive loss of CD4+ T lymphocytes, chronic immune activation, gradual destruction of immune function in humans
- SIVs do not cause immunodeficiency in their natural hosts
- not associated with CD4 cell decline or function loss, no degenerative changes in lymph node architecture
- SIV establishes a persistent infection and high replication rate
- Long Term Non-Progressors low replication;
 monkeys high viremia but no immune activation

SIV/HIV - host coevolution

compare virus-host interacting proteins in SIV-primate and HIV-human infection in the search for:

- immune system footprints on the viral genome, adaptive changes that followed the interspecies transmission
- host interacting factors evolution
- potential reasons of HIV pathogenicity in humans

basing on:

big similarity of the primate genomes (98% for chimp-human)

analysis of:

- molecular coadaptation
- evolution of genes implicated in host-pathogen interaction

using coevolution as a *null hypothesis*

"Identification of Host Proteins Required for HIV Infection Through a Functional Genomic Screening" Brass AL et al. Science 2008

- large scale siRNA screen (over 21 000 siRNA pools)
- over 250 HIV-dependency factors (HDFs) identified (13% previously known)
- subcellular localization, biological process and function
- extensive exploitation of host cell functions by HIV
- potential therapeutic targets

HIV interactome – dependencies between detected HDFs and HIV proteins established using NCBI HIV interaction database, protein-ptorein interaction and homology information.

HIV-1, Human Protein Interaction Database

National Institute of Allergy & Infectious Diseases

- comprehensive database of the described interactions between HIV-1 and cellular proteins
- interactions reported in the scientific literature
- concise but detailed summary of all known interactions containing RefSeq, NCBI accession numbers, description of the protein-protein interaction, pubmed reference

- 109 complete SIV genomes in GenBank
- 22 HIV-2 genomes
- 1232 HIV-1 genomes
- filter:
 - species of interest
 - therapy-naive HIV strains
 - time and geography representative sample

Non-human primate genome sequencing project launched in 2006

- chimp 2003
- macaque 2006
- marmoset 2007
- orangutan 2008

9 other primate sequencing projects mentioned by ISC

- 3 sequenced species known to be infected by the virus
- 1439 host genes (NIAID)
- corresponding virus sequences (118 genomes of 4 species)
- protein-protein interactions

Approach & Results

Comparison of evolution of interacting host and viral proteins:

conservation of primate genomes

variability among and within viral genomes

"The degree of genomic diversity that HIV generates in a single infected individual can be greater than the worldwide diversity of influenza A virus during an epidemic." (Korber et al. 2001)

2 different measures of divergence

Hominids

Ancient Adaptive Evolution of the Primate Antiviral DNA-Editing Enzyme APOBEC3G

Sara L. Sawyer¹, Michael Emerman^{1,2}, Harmit S. Malik^{1*}

0.8 (35:11)

33 mya

1.2 (105:26)

(32:4)

 $\infty(3:0)$

∞ (7:0)

0.91 (10:3)

Host - APOBEC protein

 single-stranded DNA-editing enzyme causes hypermutation of HIV

N-terminus

- HIV-encoded virion infectivity factor (Vif) protein targets
 APOBEC3G for destruction
- species-specific interaction
- different members of APOBEC protein family subject to positive selection throughout history of primate evolution

Pan paniscus - bonobo

Homo sapiens* - human

Gorilla gorilla - gorilla

Lagothrix lagotricha - woolly monkey

Active

Site 2

Site2

Approach & Results

Positive selection of primate $TRIM5\alpha$ identifies a critical species-specific retroviral restriction domain

Sara L. Sawyer*, Lily I. Wu[†], Michael Emerman*[†], and Harmit S. Malik*[‡]

Host – TRIM5α protein

- restricts the virus in a species-specific manner
- interacts with viral capsid
- strong evidence of ancient positive selection in primate TRIM5α gene
- positive selection concentrated in the SPRY domain of the protein

Host – search for sites under positive selection

- big genome conservation and long coding sequences
- inference of sites under positive selection (*PAML*, *Zhang* et al. 2005)
 - statistical measure of dN/dS (ω) variation among sites allowing a subset of sites to have $\omega > 1$
 - maximum likelihood parameter fit
 - likelihood ratio test (LTR) to compare a null model that does not allow $\omega > 1$ with an alternative model that does
- 2 LRTs
 - M1a (Nearly-Neutral) M2a (Positive Selection)
 - M7 (beta) M8 (beta&ω)
- score based on the number of positively selected sites
- 152 out of 1182 genes under positive selection

Approach & Results

Host – positive selection vs. interaction grouping

Host – number of interactions

Host – positive selection vs. number of interactions

Host – positive selection in entire CDS

- estimation of synonymous and nonsynonymous substitution rates (Yang and Nielsen, 2000)
- conservative test genes positively selected among all 4 species
- out of 1152 genes:
 - 22 genes with $\omega > 1$
 - 769 genes with $\omega > 0$
 - TRIM5 $\alpha \omega > 1$
 - APOBEC genes $0.83 < \omega < 0.93$

Approach & Results

Virus

- more genomes
- large divergence within and among species
- short coding sequences

Approach & Results

Virus – interspecies divergence

Virus – positive selection among species

Host and Virus combined

Future work

- coherent model of host-virus coevolution based on evolution measures and interaction data
 - quantification of the extent of HIV/SIV-host coevolution
 - characterization of know examples of lack of adaptation (TRIM5α CA)
 - new potential "unadapted" interactions
 - quantification of the lack of adaptation
- How much time do the HIV and humans need to coadapt?
- To what extent can the HIV drive human evolution?
- Can we estimate viral pathogenicity from sequence-interaction-virulence data?
- ...

