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Infinitely-many-alleles-model: unique mutations
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Sample configuration of alleles 4 Ay, 1 Ag, 4 A3, 3 Ay, 3 As.




Ewens’ sampling formula (1972)
n sampled genes

Probability of a sample having k types with bj types represented
g times,)» jb; =mn, and > b; =k, is

n! 1 ok
161 .nbn byleibyl 0O +1)---(0+n—1)

Example: Sample 4 Ay, 1 A9, 4 A3, 3 Ay, 3 As.
by =1, b0 =0, bg =2, by = 2.
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Old and New lineages
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Old and new lineages, Watterson (1984)
n sample genes traced to m ancestral genes.

Probability of having n; genes of type [ for [ =1,... K,
types 1,...,m ancestral and types m + 1,...,k mutant.

(n — m)!@k_m H}zl ny! Hé{:erl(nl — 1)!
?:m—kl 7;(6 + 1= 1)

Kingman's (1982) partition formula when 6 = 0.



History
Hoppé's (1987) urn model

1. Start with 1 black ball of mass @ in the urn.

2. Select a ball from the urn. If it is black return it with a ball
of a new colour, if not add a ball of mass 1 of the same colour

as the ball drawn.

3. Stop when n non-black balls and randomly label them 1,2,....k
if k different colours.



The Chinese restaurant process

Imagine people 1,2,....n arriving sequentially at an initially
empty restaurant with a large number of tables.

Person 7 sits at the same table as person 7 (with probability
1/(j—1+480), for each i < j), or else sits at an empty table (with
probability /(7 — 1 + 6)). The distribution of the configuration
of the number of people at the tables ny,n9,... is the Ewens’
sampling formula




Random permutations, Joyce and Tavaré (1987)

In Hoppé’'s urn model label the balls according to the order that
they enter the urn. If ball £'s colour was determined by choosing

ball 7 insert it in a cycle to the left of j.
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(12 11 5 2)(3)(15 10 7 1)(14 9 6)(13 8 4)



Random permutations

If 77 is a permutation with k& cycles
Qk
00 +1)---(6+n—1)

The number of permutations with by cycles of length 1, by cycles
of length 2,...,b, cycles of length n is

Py(mn = )

n!

oy
?:1] 7b,!

Ewens sampling formula is
ok n!

60 +1)---(0+n—1) H}szljbjbj!




Birth Process with Immigration, Joyce and Tavaré (1987)

Immigrants enter the population according to a Poisson Process
of rate @, then reproduce according to a binary branching process.

If each immigrant is a new type and offspring are the same type as
their parents, then the sequence of states the branching process
with immigration moves through has the same distribution as
those generated by Hoppé's urn.

End History



Forest of non-mutant ancestral lineages, to defining mutations
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Ancestral lineages are |lost back in time by coalescence or muta-

tion at rates (%) and % while 7 non-mutant lineages.



Ewens' sampling formula derivation: Griffiths and Lessard (2005)

n! -
T assignments of k types

1
%

p 1.1 if types are unlabelled
15y,

xn! arrangements of loss by mutation or coalescence

0 . . . . j—1 .
Xi(i+9—1) if the 2 gene lost is the last of its type or G+0—1) it
it is the jth last of its type forz =1,...,n.

Probability of a sample having k types with bj types represented
7 times is
n! 1 ok
101...nbn Byl byl 60 +1)---(0+n—1)




Next event back in time
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1 0 j—1 -1
1 O0+1—1 1—1  O0+1—1

Probability of a mutation on a particular lineage when 72 ancestor
lineages.

Probability of a coalescence in a group of 7 lineages when 1
ancestor lineages.



Combinatorial arrangement of age-ordered frequencies

21 19 23 24 15 16
1 n
Allocate genes ni,...,n. to ordered events from 1 to n in the

ancestral lines starting from the oldest type.

nm genes are allocated in positions > 2.

A particular labelling is possible if and only if for each

1 < m < n events in positions 21 = 1,...,%m — 1 are labelled

from nq, ..., 1.

That is, if and only if 1, — 1 < ZV 1 Ny.



21 19 23 24 15 6
1 n

—1<ZV 1 nyforlgmgn
The probability of an arrangement is

m

k
1 Z :
Tl Hl i (D M = )iy i+ 1]
m=

r=1

...0.000.***000.00.0

1 n



Variable population size

A(t) is the relative population size at time ¢ back to the present
Size.

Rate of coalescence at time ¢t when ¢ ancestor lines is <i))\(t)_1

2
and the rate of mutation is %
Tn,Tyn_1,...,17 are times when ancestor lines are lost by mu-

tation or coalescence.

Age-ordered Sampling formula

n! . gk—1 Héﬂzz )\(Til)
i .
(T, ) & \TTaloA) + i 1

1



Age-ordered sampling formula

n! . gk—1 Hfzg A(Til)
i :
(Hf: ) nz) Z ! N o[ON(Ty) + i — 1]

1

Constant population size, Donnelly and Tavaré (1986), A(t) = 1
(n —1)! 6"
ng - (ng +ng_1)---(ngp+---+nz) 6---(0+n-1)

Za._”l. "2 L ey
. " on omg+nz+ooong ngog+ng

is the size-biassed probability of an age-ordering 1,2,....n



Record indices and record heights in an urn model

Balls labelled 1,2,...,n in an urn.
Sk [
[
S3 L
[
Ball no ®
S2 o
s1 e
[
Draw %1 12 13 ik

Age-ordered allele frequencies ni,n9,...,nL given their ances-
tral lines are lost by mutation when %1,19,...,1 genes are dis-
tributed as the increments s1,59 — s1,...,8n — S;,—1 In the urn

model given 11,19, ...,1% (Griffiths and Lessard, 2004).



Age ordered sample frequencies
Random permutation (2,1,3,6,5,4,8,7).

Record Epoch
Record Value
Sample frequency

NN~
= W W
w o
N 00 N




Age-ordered population frequencies { X;;m > 1}

Partial sums { > ; X, m > 1} given iy,19, ... are distributed
as record values in a sequence of independent uniform random

variables {U;;l > 1} given they occur at record epochs i1, i9, . . ..

Random Partition

Xm=Em-1 ]] @1 —¢), m>1

[=m
where {£;;1 > 1} are independent with £y = 1, and for m > 1,
&m has a density
(imr1 — 1)1 —2)m+172 0 < 2z < 1



Random Partition Xy = &n_1[[72,, (1 — &), m > 1 where
{&;1 > 1} are independent with £y = 1, and for m > 1, &, has
a density

(img1 — 1)1 —2)"mH72, 0 < 2 < 1

Markov chain {i;;7 > 1}, where i1 = 1 and

. . a b— 2 0
P(ij=0blij_1=a)= : , b>a
0+ a 0+b—2 60+b—1
GEM distribution Unconditional age-ordered distribution of pop-
ulation frequencies in a constant sized population model.

Xm = Zm(l — Zm—l)(l _Zl)7 y T Z 17
where {Z;;7 > 1} are independent with density

01—t o0<z<1



Pitman’'s two parameter Ewens sampling formula
The Chinese restaurant construction

Imagine people 1,2,....,n arriving sequentially at an initially
empty restaurant with a large number of tables.

Before the n + 1th person arrives suppose there are k occupied
tables.

Person n -+ 1 sits at the same table as person 7 with probability
(n; —a)/(n+0), for each © < n + 1, or else sits at an empty
table with probability (9 —+ ka)/(n —+ 9).



The distribution of the configuration of the number of people

at the tables ny,n9,... is the two-parameter Ewens’ sampling
formula
nl 1 0+ arallii (I - )i
101 ... nbn bi! - bp! 00 +1)---(0+n—1)

where ()14 = H?:_Ol(:v +ta). Usually 0 < a < 1.



Limit Frequencies in age-order

X1 =B1,X9=(1-B1)B2, X3 =(1—B1)(1—B9)Bs3, ... where
{B,} is an independent sequence and B; has a Beta (1—«, 0+1i«)
distribution.

T his Beta distribution form characterizes the product distribution
form which is invariant under size-biassing.



Limit age-ordered frequencies given record indices
Let {ij,j = 1,2,...} be the limit sequence of record indices and

X1, X9,... be the age-ordered limit frequencies. A representa-
tion is
o
X;=¢_1]] @—¢&m)
m=j

where {§;} are independent, {y = 1 and for j > 1, §; is Beta
(1 — Oé,ij+1 —jOA — 1).

{i5,7 =1,2,...} is a Markov chain with

’I:‘
125 41(0 + a(l = 1))
0+

Pi(iji1 15) = (5 = ad) (i, —i,-1)

Griffiths and Spano (2007).



Poisson Dirichlet Process
{z(;)} is a point process on (0,1),

1

/N A4 AN A4
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Relative frequencies in the Ewens sampling formula converge in
distribution to the Poisson Dirichlet Process.

Kingman (1993), Poisson Processes; Arratia, Barbour and Tavaré
(2003), Logarithmic combinatorial structures; Pitman (2006),
Combinatorial stochastic processes



Definition Let {Y;} be a non-homogeneous Poisson process with
mean measure density

Oy~ te Y, y >0, (0 >0),

and Y = Z;";le. Then the Poisson Dirichlet point process is

defined as
Y@
{X(i) Ty }
Y has a Gamma () distribution and is independent of {X(i)}-




Multidimensional frequency spectra hy

P(Points in (x1,z1 + dzq),. .., (xr, x) + dzy))
= hp(x1,...,x)dxy - dxy,
k
= 0F(zy .. xp) (1 — Zazi)e_ld:vl - dxy
1
for x1,...,xp > 0, Zlfxz < 1.

Ewens sampling formula from the PD(6) distribution

n! . .
/ | yxll"'ajkkhk(xla-..,Zk)dajl-..dwk
nl....nk.

n! ok
nl---nk.9(9+1)---(9—|—n—1)




Size-Biassed Poisson Dirichlet

Let {Z;} be iid random variables with density
0(1—2)"1 0<z<1,
and

X1 =4,
X2 :Z2(1_Zl)7
X3 =231 - 2Z2)(1 = Z3),. ..

then { X} is distributed as a Poisson Dirichlet process.
This is a size-biassed representation of the process.

An important result is that the size-biassed distribution is the
age-ordered distribution of allele frequencies.



Coalescent lineage distributions

Forest of non-mutant ancestral lineages

[

Ir _=T—|J:_I

A?(t) is the number of edges in the forest at time ¢ back,
with A% (0) = n. It is possible that n = co.



Mutant family sizes in the Poisson Dirichlet process

In an infinite-leaf coalescent tree the joint distribution of family
sizes from non-mutant lineages at time ¢ back, given AY_(t) =
is Dirichlet

'6+1)

I'(0)
New mutant family sizes, scaled to have a total frequency 1,
have an independent PD(#) distribution. The total frequency

of old mutations Y is Beta ([,60), and total frequency of new
mutationsis 1 — Y.

[
(l—azl—---—a:l)e_l,()<2xj<1
1



Poisson Dirichlet random measure

o0
p=) g
=1

where {z;} is PD(f) and independent of {{;} which are i.i.d.
vg € P(S), with S a compact metric space.

Stationary distribution of the random measure

[Tg () = Plp € )

Fleming-Viot process with type space S, and mutation operator

(AP@) =5 [ (7€) — F(a))vo(de)

2



Denote 1, (y1,--.,yn) as the empirical measure of points
yl?"'ayne S!

—1
The Fleming-Viot process with type space S and mutation op-
erator A has transition function P(t, u,dv) for given p € P(S)

P(t,pu,.) = ab(t)g,, ()
+ ;::1 dn(t) /Sn p(dyy X - -+ X dyn)

Hn+9,(n—|—9)_1{nnn(y1,...,yn)—l—QyO} ()

Ethier and Griffiths (1993). A review paper is Ethier and Kurtz
(1993), Fleming-Viot Processes in Population Genetics.



Lineage distribution, sample of n genes
(2k+60 —1)(J + 0) —1)"[k)
gHk — )+ 0)w)

for 7 =0,1,...,n, where pk(t) g k(k+0-1)t/2
and a(j>:a( 1)---(a+j—1), bjj=0bb—-1)---(b—j+1)

P(AY() =4) = Y pl(t)(—1)F
k=j

{AY(t), t > 0} is a death process with edges lost by coalescence
or mutation at rate()—l—j2 17=n,n—1,...,1.

If = 0 then AU(%) is the number of edges at time ¢ back in the
Ccoalescent tree.



Lineage distribution, infinite-leaf coalescent tree

>0 CR2E4+0—-1)(J+0) (11
PAL () = 5) = 3 ) (~1)k7 (k=1)
(A% (t) = J) k:jpk( )(—1) ik — 7)!
where
pZ(t) _ e—k(k—l—@—l)t/Q

{AY_(t),t > 0} is a death process with edges lost by coalescence
or mutation at rate j(j +60 —1)/2, 7 =...5,4,3,2,1.

Functional form of pz(t) suggests a connection with Brownian
motion. Griffiths (2006).



Complex variable representations: X; is N(0,t) and Z; = e’

The distribution of the number of non-mutant ancestor lineages
in the population at time ¢ back is

bt L2+ 6) 1 (pZ)’ (1 — pZy)
P(A%(1) = §) = I'(j + 0)3! EL/Z(l ‘|‘PZt)2‘7+9}

1
for 7 =0,1,... where Z; = exp(1.X¢) and p = e 30t




Time to the most recent common ancestor

The distribution of the time to the most recent common ancestor
of the population 7° is

o o % (1 _ 5Zt)
P <t) =B oy sz

where 3 = e~ L.

The distribution of the time to the most recent common ancestor
of a sample T} is

P(T,,?L < t) — e%tE [\/Z(l _ Zt)(l . VZt)n—Q}

where V' is independent of Z; with a Beta (2, n — 2) distribution.



Age of a mutation in the population

The distribution of the age of a mutation £y, observed to be of
frequency p in the current population is

B eé (1 - ZQ)
P(gp < t) _ 2(1 _ p)E{\/ZR(Zi,p)}

where

R(Zy,p) = [(1+ Z0)% — 4(1 — p) Z)?
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