Codon Usage in Bacteria and Mitochondria

Paul Higgs Wenli Jia Wenqi Ran

Inspiring Innovation and Discovery

Dept of Physics and Astronomy McMaster University

Supported by Canada Research Chairs and NSERC.

The Bottom Line Now (in case we don't reach it...)

Synonymous codons are not used with equal frequency – Is this translational selection or biased mutation?

Bacteria - Ran and Higgs (2008) Mol. Biol. Evol.

- Comparison of high and low expression genes demonstrates translational selection
- Significant translational selection in most bacteria varies with growth rate
- Fast multiplying bacteria need fast translation therefore they have duplicate tRNAs and stronger codon bias.
- Coevolution of tRNAs and codon usage creates multiple stable states in the same organism

Mitochondria - Jia and Higgs (2008) Mol. Biol. Evol.

- Mutation strong enough to cause large amino acid frequency variation as well as synonymous substitutions.
- Mutation is context dependent leads to dinucleotide correlations
- Mutation varies between strands and along a strand
- Mutational effects dominate translational selection in determining codon usage

tRNA structure

Translation = Protein synthesis courtesy of 'Molecular Biology Online' http://www.rothamsted.ac.uk/notebook/index.html

@Rothamsted Experimental Station, 1997, 1998

Standard Genetic Code

Phe	UUU	Ser U	JCU	Tyr	UAU	Cys UGU
Phe	UUC	Ser U	JCC	Tyr	UAC	Cys UGC
Leu	UUA	Ser U	JCA	*	UAA	* UGA
Leu	UUG	Ser U	JCG	*	UAG	Trp UGG
Leu	CUU	Pro C	CCU	His	CAU	Arg CGU
Leu	CUC	Pro C	CCC	His	CAC	Arg CGC
Leu	CUA	Pro C	CCA	Gln	CAA	Arg CGA
Leu	CUG	Pro C	CCG	Gln	CAG	Arg CGG
Ile	AUU	Thr A	ACU	Asn	AAU	Ser AGU
Ile	AUC	Thr A	ACC	Asn	AAC	Ser AGC
Ile	AUA	Thr A	ACA	Lys	AAA	Arg AGA
Met	AUG	Thr A	ACG	Lys	AAG	Arg AGG
Val	GUU	Ala G	CU	Asp	GAU	Gly GGU
Val	GUC	Ala G	CC	Asp	GAC	Gly GGC
Val	GUA	Ala G	CA	Glu	GAA	Gly GGA
Val	GUG	Ala G	CG	Glu	GAG	Gly GGG

How many different tRNAs do we need ?

Two codon U+C families

Two codon A+G families

codon	anticodon
Glu GAA	UUC
Glu GAG	CUC

Always a wobble-G tRNA only

Always a wobble-U tRNA Sometimes a wobble-C tRNA

How many different tRNAs do we need ?

Four-codon families

codon	anticodon
Gly GGU	
Gly GGC	GCC
Gly GGA	UCC
Gly GGG	CCC

Occasionally just wobble-U. Often wobble-U + wobble-G. Sometimes wobble-U G and C Arginine is a special case in bacteria

How many tRNA gene copies are present in genomes?

Organism	# gene copies	# different anticodons	minimum doubling time (hrs)
animal mitochondria	22	22	-
Buchneria aphidicola	31	29	36
Agrobacterium tumefaciens	53	39	3
Corynebacterium glutamicum	60	42	1.2
Escherichia coli	86	39	0.35
Vibrio vulnificus	112	32	0.16
Saccharomyces cerevisiae	273	41	-
Caenorhabditis elegans	605	47	-
Human	448	49	-

Evidence for Translational selection #1

More gene copies \rightarrow More tRNA molecules \rightarrow More rapidly multiplying bacteria

Selection-Mutation-Drift Theory

Li (1987), Shields (1990), Bulmer (1991)

In absence of selection the relative frequency of C is

$$\frac{n_C}{n_U + n_C} = \theta$$

In presence of selection the relative frequency of C is

$$\frac{n_C}{n_C + n_U} = \phi(S) = \frac{\theta \exp(S)}{\theta \exp(S) + 1 - \theta}$$

where $S = 2N_{e}s$.

 $S = \ln \left(\frac{\phi(S)}{1 - \phi(S)} \frac{1 - \theta}{\theta} \right)$

Estimate S from sequence data - U+C families Assume S is negligible in low expression genes, but significant in high expression genes.

$$\frac{n_C^{low}}{n_U^{low} + n_C^{low}} = \theta \qquad \frac{n_C^{high}}{n_U^{high} + n_C^{high}} = \phi(S) \qquad S = \ln\left(\frac{\phi(S)}{1 - \phi(S)} \frac{1 - \theta}{\theta}\right) = \ln\left(\frac{n_C^{high} n_U^{low}}{n_U^{high} n_C^{low}}\right)$$

		θ	φ	S	NG	
Mycoplasma penetrans	Asn	0.236	0.403	0.78	1	<i>S</i> is positive in all these
	Asp	0.140	0.201	0.43	1	examples
Agrobacterium tumefaciens	Asn	0.561	0.841	1.42	1	
	Asp	0.491	0.764	1.21	2	C codon is always
Sinorhizobium meliloti	Asn	0.649	0.817	0.88	1	preferred.
	Asp	0.642	0.732	0.42	2	-
Corynebacterium glutamicum	Asn	0.666	0.952	2.29	2	
	Asp	0.444	0.722	1.18	2	
Escherichia coli	Asn	0.550	0.875	1.74	4	
	Asp	0.372	0.657	1.17	3	$\int b_{CU}$
Bacillus subtilis	Asn	0.435	0.775	1.50	4	
	Asp	0.360	0.470	0.45	4	
Schizosaccharomyces pombe	Asn	0.343	0.718	1.58	6	$C \leftarrow U$
	Asp	0.292	0.438	0.64	8	$ D_{GC}$
Saccharomyces cerevisiae	Asn	0.410	0.860	2.18	10	
	Asp	0.350	0.578	0.93	16	
Caenorhabditis elegans	Asn	0.378	0.575	0.80	20	
	Asp	0.324	0.559	0.97	27	

Relate codon usage to translation kinetics

Rate of translation of a codon depends on:

- tRNA concentration $c_0 N_G$
- and a rate constant for anticodon-codon matching $k_0 b_{GC}$

Selection strength proportional to difference in translation times.

$$S = \sigma(t_U - t_C) = K \left(\frac{1}{N_G b_{GU}} - \frac{1}{N_G b_{GC}} \right)$$

 $K \equiv \sigma / k_0 c_0$

Single constant K determines magnitude of selection

Test our theory using data on 80 bacterial genomes (Ran & Higgs, 2008) Estimate K from an average of all the U+C amino acids.

In rapidly multiplying bacteria translational speed is important – K is larger. Faster translation requires more tRNAs and more biased codon usage.

Estimate S from sequence data – A+G families

		θ	φ	S	NU:NC
Mycoplasma penetrans	Gln	0.063	0.017	-1.33	1:0
	Glu	0.094	0.033	-1.11	1:0
Deinococcus radiodurans	Gln	0.828	0.900	0.63	1:1
	Glu	0.561	0.376	-0.75	1:0
Agrobacterium tumefaciens	Gln	0.831	0.982	2.40	1:1
	Glu	0.427	0.273	-0.69	2:0
Clostridium perfringens	Gln	0.138	0.029	-1.67	2:0
	Glu	0.230	0.189	-0.25	3:0
Lactobacillus plantarum	Gln	0.360	0.046	-2.45	2:1
	Glu	0.245	0.030	-2.35	2:1
Sinorhizobium meliloti	Gln	0.818	0.973	2.09	1:1
	Glu	0.579	0.384	-0.79	3:1
Corynebacterium glutamicum	Gln	0.615	0.974	3.16	1:2
	Glu	0.437	0.689	1.04	1:3
Escherichia coli	Gln	0.653	0.813	0.84	2:2
	Glu	0.311	0.244	-0.34	4:0
Bacillus subtilis	Gln	0.488	0.200	-1.34	4:0
	Glu	0.320	0.227	-0.47	6:0
Schizosaccharomyces pombe	Gln	0.285	0.156	-0.77	4:2
	Glu	0.322	0.565	1.01	4:6
Saccharomyces cerevisiae	Gln	0.307	0.009	-3.89	9:1
	Glu	0.300	0.028	-2.70	14:2
Caenorhabditis elegans	Gln	0.343	0.307	-0.16	20:7
	Glu	0.375	0.436	0.25	17:24

 $S = \ln \left(\frac{n_G^{high} n_A^{low}}{n_A^{high} n_G^{low}} \right)$ $\mathbf{A} \stackrel{b_{UA}}{\longleftarrow} \mathbf{U}$

Positive *S* means G is preferred. Negative *S* means A is preferred.

This depends on which tRNA genes are present.

For A+G families, alternative stable states exist in the same organism at the same time

	Examples from	E. coli	
His CAU			
His CAC			
Gln CAA	NILL-NC -2.2	$\mathbf{S} > 0$	Gprafarrad
Gln CAG	100.10C - 2.2	$\mathbf{S} > 0$	O preferred
Asp GAU			
Asp GAC			
Glu GAA	$\mathbf{NU} \cdot \mathbf{NC} = 4 \cdot 0$	S < 0	A proformed
Glu GAG	100.10C - 4.0	S < 0	A prefetted

Coevolution of tRNAs and codon usage:

Codon usage adapts to current tRNA genes, AND tRNA genes must be stable to current codon usage.

Relate codon usage to translation kinetics

$$r_{A} = k_{0}c_{0}N_{U}b_{UA} \qquad \qquad A \xleftarrow{b_{UA}} U$$

$$r_{G} = k_{0}c_{0}(N_{U}b_{UG} + N_{C}b_{CG}) \qquad \qquad G \xleftarrow{b_{CG}} C$$

$$S(N_{U}, N_{C}) = \sigma(t_{A} - t_{G}) = K \left(\frac{1}{N_{U}b_{UA}} - \frac{1}{N_{U}b_{UG} + N_{C}b_{CG}}\right)$$

тт

Direction of selection depends on N's and b's

4 alternative states with $N_U + N_C = 4$ $N_{\rm U}:N_{\rm C} = 4:0$ 3:1 2:2 1:3 Vary $N_{\rm U}$: N_C by anticodon mutations.

$$S(N_{U}, N_{C}) = K \left(\frac{1}{N_{U}b_{UA}} - \frac{1}{N_{U}b_{UG} + N_{C}b_{CG}} \right) \qquad \phi = \frac{\theta \exp(S)}{\theta \exp(S) + 1 - \theta}$$

mean time per codon:
$$\bar{t}(\phi, N_{U}, N_{C}) = \phi t_{G} + (1 - \phi)t_{A} = \frac{1}{k_{0}c_{0}} \left(\frac{\phi}{N_{U}b_{UG} + N_{C}b_{CG}} + \frac{1 - \phi}{N_{U}b_{UA}} \right)$$

4 alternative states with N_U + N_C = 4 as with Gln and Glu in E, coli.
Vary N_U:N_C by anticodon mutations.
Red lines show stable states.
Red lines show stable states.

U + C case with variable tRNA copy number

Gene copy number can vary by duplication and deletion. g = net cost per gene. $f_a = \text{freq of amino acid}$ T = total translational cost.

$$T(\phi, N_G) = \frac{f_a K}{N_G} \left(\frac{\phi}{b_{GC}} + \frac{1 - \phi}{b_{GU}} \right) + g N_G$$

Gene duplication will be favoured in organisms where K is large (i.e. fast growing organims).

 b_{GU}

In these organisms we will see (i)more tRNA genes (ii)more biased codon usage

Test our theory using data on 80 bacterial genomes (Sharp et al. 2005) Estimate K from an average of all the U+C amino acids.

U+C amino acids in 80 bacterial genomes . Is sign of effect correctly predicted?

NG	tU	tC	tU-tC	Nobs	mean K	mean S	Nsign
1	2.50	1.00	1.50	207	0.61	0.75	193
2	1.25	0.50	0.75	94	1.82	1.19	94
3	0.83	0.33	0.50	57	2.08	1.03	56
4	0.63	0.25	0.38	23	3.38	1.67	23
5	0.50	0.20	0.30	10	3.00	1.37	9
6	0.42	0.17	0.25	3	4.80	1.07	3
7	0.36	0.14	0.21	1	4.74	3.10	1

A + G families – Allow both anticodon mutations and duplications/deletions of genes

Only stable regions are shown. Not all tRNA combinations have a stable region. Positions of stable regions depend on θ and on g/f_a

A + G families – Allow both anticodon mutations and duplications/deletions of genes. Vary θ with K fixed.

A + G amino acids in 80 bacterial genomes . Is sign of effect correctly predicted?

NU	NC	tA	tG	tA-tG	Nobs	mean K	mean S	Nsign
1	0	1.00	2.50	-1.50	46	0.32	-0.26	31
2	0	0.50	1.25	-0.75	21	1.80	-1.66	20
3	0	0.33	0.83	-0.50	16	2.21	-0.55	12
4	0	0.25	0.63	-0.38	15	2.85	-0.64	14
5	0	0.20	0.50	-0.30	8	3.35	-0.42	6
6	0	0.17	0.42	-0.25	5	3.55	-0.21	4
7	0	0.14	0.36	-0.21	2	4.16	0.07	1
1	1	1.00	0.71	0.29	47	0.64	0.73	37
2	1	0.50	0.56	-0.06	14	1.34	-0.40	8
3	1	0.33	0.46	-0.12	7	1.97	-0.64	5
1	2	1.00	0.42	0.58	5	1.32	2.68	5
2	2	0.50	0.36	0.14	3	1.83	0.48	3
4	2	0.25	0.28	-0.03	1	1.04	-0.23	1
7	2	0.14	0.21	-0.07	1	5.43	-0.19	1

Which values of b's best explain the data? Current work – Wenqi Ran.

A + G amino acids in 80 bacterial genomes . Fitness function w = +1 for every correctly predicted sign +1 for every case where observed tRNA configuration is stable to anticodon mutation

Values used in previous examples are close to optimal: $b_{UA} = 1$ (fixed), $b_{CG} = 1$, $b_{UG} = 0.4$

Experiments: Are preferred codons really translated faster?

Curran and Yarus (1989) – Frameshift method in E. coli.

C codons are more rapidly translated than U codons for Phe, His, Tyr, Cys

G codon is more rapidly translated than A for Gln

Sorensen and Pedersen (1991)

A codon is translated three times more rapidly than G for Glu

Complications

Rodnina et al (2001)

And what about accuracy...

Is selection strength proportional to expression level? Genes from yeast binned according to expression level X (Akashi). Assume S = kX. $\theta \exp(kX)$

$$\phi(X) = \frac{\theta \exp(kX)}{\theta \exp(kX) + 1 - \theta}$$

End of Part 1 -Commercial Break

Higgs and Attwood 2005

Pudritz, Higgs and Stone 2007

OGRe. search results

Click the box next to an organism to select it. Clicking on the organism's name will bring up a new window with the medline links (if available) and raw data for that particular genome. After selecting genomes choose to view them, view sequences or codon usage using the buttons at the bottom of the screen.

- Acipenser dabryanus Yangtze sturgeon mtDNA
- Acinonyx jubatus cheetah mtDNA
- Acipenser stellatus stellate sturgeon mtDNA
- Acipenser transmontanus white sturgeon mtDNA
- <u>Acropora tenuis</u> purple tipped acropora mtDNA
- 🗹 🛛 <u>Albinaria caerulea</u> door snail mtDNA
- Albula glossodonta roundjaw bonefish mtDNA
- Aldrovandia affinis Gilbert's halosaur mtDNA
- Alepocephalus tenebrosus California slickhead mtDNA
- <u>Alligator mississippiensis</u> American alligator mtDNA
- Allocyttus niger black oreo mtDNA
- <u>Alligator sinensis</u> Chinese alligator mtDNA
- Ambystoma mexicanum axolotl mtDNA

Species may be selected individually from an alphabetical list or by taxa

Information on gene sequences, gene order on genomes, codon usage etc.

http://ogre.mcmaster.ca

Currently >1200 animal mitochondrial genomes.

Large Scale – Evolution of Gene Order in Whole Genomes

On the ogre web site, a visual comparison can be made of any two selected species. Colour is used to indicate conserved blocks of genes.

OGRe. Genome Comparison

Sometimes things go crazy

Number of Break Points: 30 tRNAs included

Drosophila and Thrips are both insects

yet there are 30 breakpoints for only 37 genes

i.e. almost nothing in common.

			H	Iomo sap	oiens	Sti	rand $= +$	3624 co	dons			
F	UUU	69	S	UCU	29		Y	UAU	35	С	UGU	5
F	UUC	139	S	UCC	99		Y	UAC	89	С	UGC	17
L	UUA	65	S	UCA	81		*	UAA	4	W	UGA	90
L	UUG	11	S	UCG	7		*	UAG	3	W	UGG	9
L	CUU	65	P	CCU	37		Н	CAU	18	R	CGU	6
L	CUC	167	Ρ	CCC	119		Η	CAC	79	R	CGC	26
L	CUA	276	P	CCA	52		Q	CAA	82	R	CGA	28
L	CUG	42	Р	CCG	7		Q	CAG	8	R	CGG	0
Ι	AUU	112	Т	ACU	50		N	AAU	29	S	AGU	11
Ι	AUC	196	Т	ACC	155		Ν	AAC	131	S	AGC	37
M	AUA	165	Т	ACA	132	,	Κ	AAA	84	*	AGA	1
M	AUG	32	Т	ACG	10		Κ	AAG	9	*	AGG	0
V	GUU	22	A	GCU	39		D	GAU	12	G	GGU	16
V	GUC	45	A	GCC	123		D	GAC	51	G	GGC	87
V	GUA	61	A	GCA	79		E	GAA	63	G	GGA	61
V	GUG	8	Α	GCG	5		E	GAG	15	G	GGG	19

If there is no selection on codon usage, base frequencies at FFD sites are controlled by mutation. Base frequencies at 1st and 2nd positions are influenced by mutation *and* selection

Model fitting (Data from Fish) – assume a fraction of fixed sites and a fraction of neutral sites.

Selection at 1st position is weaker than at 2nd

Principal Component Analysis Projects the 8-d space into the two 'most important' dimensions.

Mutation pressure is sufficient to cause change in amino acid frequencies.

		Seco	nd Positi	on		
		Т	C	А	G	Third Pos.
F i	Т	F F	S S	Y Y	C C	T C
r s		L L	S S	Stop Stop	W W	A G
P O S	С	L L L L	P P P P	H H Q Q	R R R R	T C A G
i t i o	А	I I M M	T T T T	N N K K	S S Stop Stop	T C A G
	G	V V V V	A A A A	D D E E	G G G G	T C A G

Urbina et al (2006) J. Mol. Evol. Can predict which amino acid frequencies vary most in terms of distance matrix.

Context-dependent mutation

Frequency of U at FFD sites

Context-dependent mutation causes correlations between neighbouring bases (Jia and Higgs, 2008)

Frequency	ratios
$r(X_{2}Y_{3}) =$	$\frac{p(X_2Y_3)}{q(X_2)q(Y_3)}$

	Fish - 23							
UU	1.250	CU	0.939	GU	0.605			
UC	0.756	CC	1.205	GC	0.878			
UA	1.030	CA	0.938	GA	1.145			
UG	1.274	CG	0.554	GG	1.891			
	Mammals - 23							
UU	0.939	CU	1.101	GU	0.763			
UC	0.743	CC	1.163	GC	1.005			
UA	1.136	CA	0.906	GA	1.027			
UG	1.433	CG	0.552	GG	1.654			

4									
	Fish - 31								
UU	0.933	CU	1.162	AU	0.907	GU	0.911		
UC	0.918	CC	1.371	AC	0.739	GC	0.839		
UA	1.096	CA	0.849	AA	1.135	GA	0.758		
UG	1.049	CG	0.609	AG	1.228	GG	1.499		
	Mammals - 31								
UU	0.855	CU	1.082	AU	0.996	GU	1.115		
UC	0.994	CC	1.363	AC	0.797	GC	0.873		
UA	1.206	CA	0.945	AA	0.974	GA	0.776		
UG	0.856	CG	0.546	AG	1.293	GG	1.369		

Rank genes in order of increasing time spent single stranded COI < COII < ATP8 < ATP6 < COIII < ND3 < ND4L < ND4 < ND1 < ND5 <ND2 < Cytb ND6 is on the other strand

Base frequencies at FFD sites in each gene (averaged over mammals)

Deamination: C to U and A to G on the heavy strand

Can there be translational selection as well as mutational effects?

For all four codon families in mitochondria there is only 1 tRNA gene with wobble position U.

We expect minimal numbers of tRNA genes when translational selection is negligible.

This tRNA must be sufficiently versatile to translate all codons, but in priciple the U could prefer one codon over another.

Probably little selection, for Translational Speed, but if there were selection it should be the same in all families

Cannot use high/low expression comparison to detect selection for Speed.

But selection for Translational Accuracy can be detected by comparing conserved and variable sites (Akashi).

Homo sapiens Strand = $+$ 3624 codons											
F	UUU	69	S	UCU	29	Y	UAU	35	С	UGU	5
F	UUC	139	S	UCC	99 (Y	UAC	89	С	UGC	17
L	UUA	65	S	UCA	81	*	UAA	4	W	UGA	90
L	UUG	11	S	UCG	7	*	UAG	3	W	UGG	9
L	CUU	65	Р	CCU	37	Н	CAU	18	R	CGU	6
L	CUC	167	Р	CCC	119	Н	CAC	79	R	CGC	26
L	CUA	276	Р	CCA	52	Q	CAA	82	R	CGA	28
L	CUG	42	Р	CCG	7	Q	CAG	8	R	CGG	0
Ι	AUU	112	Т	ACU	50	Ν	AAU	29	S	AGU	11
Ι	AUC	196	Т	ACC	155	N	AAC	131	S	AGC	37
Μ	AUA	165	Т	ACA	132	K	AAA	84	*	AGA	1
Μ	AUG	32	Т	ACG	10	K	AAG	9	*	AGG	0
V	GUU	22	Α	GCU	39	D	GAU	12	G	GGU	16
V	GUC	45	A	GCC	123	D	GAC	51	G	GGC	87
V	GUA	61	A	GCA	79	E	GAA	63	G	GGA	61
V	GUG	8	Α	GCG	5	E	GAG	15	G	GGG	19

	Not significant $p > 0.05$	Significant 0.001	Highly significant $p \le 0.001$
	Total Fi	sh Species 214	
Expected No.	203.3	10.5	0.2
UN/CN/GN	0	0	214
UCN/CCN/ACN/GCN (SPTA blocks)	58	75	81

Chi squared tests for frequencies of bases at FFD sites

The FFD base is not independent of the second position base in every single species.

There are many species for which there is a difference between four-codon families with the same second base.

Likelihood-based tests for factors influencing codon usage

Z is the base at the fourfold degenerate site. It may depend on:

A - tRNA differences between amino acidsdata = numbers of codonsB - translational accuracy (conserved v. variable)<math>data = numbers of codonsD - gene position (time spent single stranded)probabilities from a<math>X - context dependent mutation (following 1st pos)theoretical model

$$\ln L = \sum_{A} \sum_{B} \sum_{D} \sum_{X} \sum_{Z} \left(n_{ABDX}^{\prime}(Z) \ln P_{ABDX}^{\prime}(Z) \right)$$

Use Akaike's Information Criterion as a means of Model Selection

$$AIC = 2(-ln L + #params)$$

Want to choose a model that has sufficient parameters to explain the trends in the data but not overfit. Minimize AIC \rightarrow Maximize likelihood subject to a penalty on too many parameters

Comparison of models using AIC

Data for SPTA blocks – Jia & Higgs (2008)

Model	∆AIC for <i>Homo sapiens</i>	Average ΔAIC	# of species for which $\Delta AIC < 0$	# of species for which this model is the best of 0 and single-factor models	# of species for which this model is the best of all models	# of species for which this factor is included in the best model
0	0.00	0.00		0	0	
Α	-2.02	-6.96	28	6	3	12
В	5.26	2.78	6	0	0	2
D	-3.06	-2.26	27	2	0	8
X	-19.08	-29.61	38	32	21	34
AB	12.45	3.97	15		1	
AD	4.30	-1.62	22		2	
AX	-6.49	-19.12	33		6	
BD	6.85	2.77	14		0	
BX	-2.24	-18.15	32		1	
DX	-17.50	-24.09	38		6	

Consider 40 unrelated independent species.

Factor X has the largest effect (context dependent mutation) in almost all species. The model chosen by AIC is either X alone or X in combination with another factor.

Conclusion – translational selection dominated by context-dependent mutation in mitochondria

Polymorphisms in Cucurbita

Pumpkin pumpkin big and round, I'm glad you grow upon the ground. I'm glad you don't grow in a tree for then you might fall down on me.

Human Genetics and Heredity

Hereditary Witch? Are you Born a Witch? June 28, 2005 9:40 AM

Can you be a Witch because your ancestry was one? I guess that my answer my seem odd to many since my own Mother and Great Grandmother both were practicing witches and the communities knew it. But NO, I don't personally think that you can be a witch simply because your mother, or father or Grandmother or heck your great great great grandmother was a Witch. I don't think it works that way.

Harry Potter: The study looked at how wizarding genes could be passed down the generations.

Now an analysis of wizardry, published in the British Medical Journal, has concluded that there is indeed good evidence that magical abilities are passed down the generations. Based on an analysis of the Harry Potter novels, Sreeram Ramagopalan, Dr Marian Knight, Prof George Ebers, and Dr Julian Knight of Oxford's Wellcome Trust Centre for Human Genetics, conclude that "magic shows strong evidence of heritability."

There really are Halloween Genes in Drosophila!

