Dynamics of adaptation in asexual and sexual populations

Joachim Krug
Institute of Theoretical Physics, University of Cologne

- Clonal interference in asexual populations
- Adaptation in the house-of-cards model
- Effects of recombination in an empirical fitness landscape

The Muller-Fisher mechanism for the advantage of sex

J.F. Crow \& M. Kimura, Am. Nat. 99, 439 (1965)

- Dynamics of an adapting population:

periodic selection

The Muller-Fisher mechanism for the advantage of sex

- Clonal interference slows down the adaptation of asexual populations

The Wright-Fisher model

- Constant population size N, discrete non-overlapping generations
- Each individual chooses an ancestor from the preceding generation
- Individual i is chosen with probability $\sim w_{i} \quad$ Wrightian fitness
- Mutations occur with probability U per individual and generation

Fixation

- When a single mutant of fitness w^{\prime} is introduced into a monomorphic population of fitness w, the outcome for $t \rightarrow \infty$ is either fixation (all w^{\prime}) or loss of the mutation (all w)
- Fixation probability for the Wright-Fisher model

$$
\pi_{N}(s) \approx \frac{1-e^{-2 s}}{1-e^{-2 N s}}, \quad s=\frac{w^{\prime}}{w}-1 \quad \text { selection coefficient }
$$

- Under strong selection: $(N|s| \gg 1)$ deleterious mutations $(s<0)$ cannot fix, while beneficial mutations $(s>0)$ fix with probability

$$
\pi(s)=1-e^{-2 s} \approx 2 s, \quad s \ll 1
$$

- Mean time to fixation of a beneficial mutation:

$$
t_{\mathrm{fix}} \approx \frac{\ln N}{s}
$$

Mutation and fitness model

- Infinite sites approximation:

Each mutation creates a new genotype, no recurrent mutations

- Multiplicative model: Fitness of offspring w^{\prime} related to parental fitness w by

$$
w \rightarrow w^{\prime}=w(1+s)
$$

with selection coefficient s chosen randomly from a distribution $P(s)$

- Extremal statistics arguments suggest that the distribution of selection coefficients for beneficial mutations is exponential:
H.A. Orr, Genetics 163, 1519 (2003)

$$
P_{b}(s)=s_{b}^{-1} e^{-s / s_{b}}, \quad s>0
$$

- Beneficial mutations occur with probability U_{b}

An empirical fitness distribution (VS virus)

Nature Reviews | Genetics
from: A. Eyre-Walker \& P.D. Keightley, Nat. Rev. Gen. 8, 610 (2007)

Contending mutations

- Beneficial mutations are most likely to get lost by genetic drift in the early (stochastic) regime of the fixation process
\Rightarrow mutations become contenders with probability $\pi(s) \approx 2 s$

- Probability distribution of contending mutations: $P_{c}(s) \sim s P_{b}(s) \sim s e^{-s / s_{b}}$

Periodic selection vs. clonal interference

- Contending mutations arise at rate $2 s_{b} N U_{b}=1 / t_{\text {mut }}$
- Periodic selection requires $t_{\text {fix }} \ll t_{\text {mut }}$

- In the periodic selection regime every contending mutation is fixed

$$
\Rightarrow \text { rate of adaptation } R=2 s_{b} / t_{\mathrm{mut}}=4 s_{b}^{2} N U_{b}
$$

- Beneficial mutations interfere when $t_{\text {fix }} \gg t_{\mathrm{mut}}$ or $2 N U_{b} \ln N \gg 1$
- Clonal interference is inevitable for large N

Wright-Fisher dynamics for $U_{b}=10^{-6}, s_{b}=0.02$

$$
N=10^{4}, 10^{5}, 10^{6}, 10^{7}
$$

The Gerrish-Lenski theory of clonal interference

P.J. Gerrish, R.E. Lenski, Genetica 102/103, 127 (1998)

- Key idea: A contending mutation s survives clonal competition if no superior mutation $s^{\prime}>s$ arises during the time to fixation of s.
- The survival probability is $\exp [-\lambda(s)]$ with

$$
\lambda(s)=N U_{b} t_{\mathrm{fix}} \int_{s}^{\infty} d s^{\prime} P_{c}\left(s^{\prime}\right)=\frac{N \ln N U_{b}}{s} \int_{s}^{\infty} d s^{\prime} \pi\left(s^{\prime}\right) s_{b}^{-1} \exp \left[-s^{\prime} / s_{b}\right]
$$

- GL theory does not (explicitly) account for the complex interaction of different clones. In particular, the possibility of beneficial mutations arising within a growing clone (multiple mutations) is ignored.
- Qualitative predictions:

Clonal interference reduces the rate of substition $E[k]$ but increases the mean selection coefficient of fixed mutations $E[s]$.

Summary so far:

D.E. Rozen, J.A.G.M. de Visser, P.J. Gerrish, Curr. Biol. 12, 1040 (2002)

Distribution of fixed mutations: Simulation

Distribution of mutational effects: Experiments (E. coli)

L. Perfeito et al., Science 317, 813 (2007)

A: $N=2 \times 10^{4}$
B: $N=10^{7}$

Measuring selection coefficients in evolution experiments
M. Hegreness et al., Science 311, 161 (2006)

Time

Time

GL-theory: Quantitative predictions for large N

C.O. Wilke, Genetics 167, 2045 (2004); S.C. Park \& JK, PNAS 104, 18135 (2007)

- Rate of substitution: $\gamma \approx 0.577215 \ldots$ Euler's constant

$$
E[k] \approx \frac{s_{b}}{\ln N}\left[\ln \left(U_{b} N \ln N\right)+\gamma-1\right] \rightarrow s_{b}
$$

- Mean selection coefficient of fixed mutations:

$$
E[s] \approx s_{b}\left[\ln \left(U_{b} N \ln N\right)+\gamma\right]
$$

- Rate of adaptation:
$E[w]$: mean population fitness

$$
R=\lim _{t \rightarrow \infty} \frac{\ln E[w]}{t} \approx E[s] E[k] \rightarrow s_{b}^{2} \ln \left(U_{b} N \ln N\right)
$$

- Logarithmic dependence on the mutation supply $N U_{b}$

Extremal statistics estimates

- Probability to find a selection coefficient larger than S :

$$
\operatorname{Prob}[s>S]=\int_{s}^{\infty} P_{b}(s) d s=e^{-s / s_{b}}
$$

- The largest selection coefficient $s_{\text {max }}$ in t generations is determined by

$$
\operatorname{Prob}\left[s>s_{\max }\right]=\frac{1}{N U_{b} t} \Leftrightarrow s_{\max }=s_{b} \ln \left(N U_{b} t\right)
$$

- Self-consistency requires that $t=t_{\text {fix }}\left(s_{\text {max }}\right)=\ln N / s_{\text {max }}$

$$
\Rightarrow s_{\max }=s_{b} \ln \left(N U_{b} \ln N / s_{\max }\right) \Rightarrow s_{\max }=E[s] \approx s_{b} \ln \left(N U_{b} \ln N\right)
$$

- Rate of substitution:

$$
E[k]=\frac{1}{t_{\text {fix }}\left(s_{\max }\right)}=\frac{s_{\max }}{\ln N} \approx \frac{s_{b}}{\ln N} \ln \left(N U_{b} \ln N\right)
$$

Other mutation distributions

- Extremal statistics for $P_{b}(s) \sim \exp \left[-\left(s / s_{b}\right)^{\beta}\right]$ yields

$$
s_{\max } \sim s_{b}(\ln N)^{1 / \beta}, \quad E[k] \sim s_{b}(\ln N)^{1 / \beta-1}, \quad R \sim s_{b}^{2}(\ln N)^{2 / \beta-1}
$$

- Compare to behavior for mutations of single strength $P_{b}(s)=\delta\left(s-s_{0}\right)$:

$$
R \approx \frac{2 s_{0}^{2} \ln N}{\ln ^{2}\left(U_{b} / s_{0}\right)} \sim s_{0}^{2} \ln N
$$

M.M. Desai \& D.S. Fisher, Genetics 176, 1759 (2007)

- Adaptation driven by
(i) single mutations of large effect for $\beta<1$
(ii) multiple mutations of average effect for $\beta>1$
- The "standard case" $\beta=1$ is marginal

Rate of adaptation: Simulations

Simulations for other mutation distributions

C.A. Fogle, J.L. Nagle, M.M. Desai, arXiv:0804.1116v1

Rate of adaptation: Experiments

J.A.G.M. de Visser et al., Science 283, 404 (1999)

Selection coefficient of fixed mutations: Simulations

Selection coefficient of fixed mutations: Experiments

J.A.G.M. de Visser \& D.E. Rozen, J. Evol. Biol. 18, 779 (2005)

Coefficient of variation from simulations

Reconstruction of model parameters from experiments?

L. Perfeito et al., Science 317, 813 (2007)

- Figure shows simulated parameters consistent with experiments

Reconstruction of model parameters from experiments?

M. Hegreness et al., Science 311, 161 (2006)

- Estimate of U_{b} and s_{b} depends on the choice of $P_{b}(s)$!

The role of multiple mutations

Structure of the substitution process

- In the presence of multiple mutations, the process of origination of fixed mutations must be distinguished from the process of fixation:

Fig. 1. A diagram of the trajectories of mutations that ultimately fix in the population.
J.H. Gillespie, Genetics 134, 971 (1993)

Fixation of multiple mutations

Fixation: Change in the genotype of the most recent common ancenstor

Mutation and fixation processes [$N=10^{9}$]

Rate of substitution: Simulations

Distribution of the number of simultaneously fixed mutations

- Geometric distribution $J(k)=q(1-q)^{k-1}$ with mean $1 / q$
- Geometric distribution with $q(N)=2 /(2+N U)$ is exact in the neutral case (Watterson, 1982)
- Stronger effect of multiple mutations for $P_{b}(s)=\boldsymbol{\delta}\left(s-s_{0}\right)$

The rhythm of microbial adaptation

P.J. Gerrish, Nature 413, 299 (2001)

- Statistics of the number $n(t)$ of substitution events up to time t ?
- The index of dispersion of the substitution process is the ratio of the variance of $n(t)$ to the mean:

$$
I=\frac{\operatorname{Var}[n(t)]}{E[n(t)]}
$$

- In the periodic selection regime $I=1$ (Poisson statistics)
- GL-theory predicts a universal, sub-Poissonian limit in the clonal interference regime:

$$
\lim _{N \rightarrow \infty} I(N)=2 e^{-\gamma}-1 \approx 0.123
$$

The rhythm of origination and fixation

- Origination process becomes regular $(I \rightarrow 0)$ for large N
- Index of dispersion of fixation process $I \approx 1-q \rightarrow 1$ for $N \rightarrow \infty$

Fitness landscapes and epistasis

- So far: Fitness effects of different beneficial mutations are independent
- Epistasis implies interactions between the effects of different mutations
- General setting: Genome of L binary loci (sites) $i=1, \ldots, L$ at which a mutation can be present $\left(\sigma_{i}=1\right)$ or absent $\left(\sigma_{i}=0\right)$
- A fitness landscape is a function $w(\sigma)$ on the set of 2^{L} genotype sequences $\sigma=\left(\sigma_{1}, \ldots, \sigma_{L}\right)$
- In the absence of epistatic interactions $w(\sigma)=\prod_{i=1}^{L} \omega_{i}\left(\sigma_{i}\right)$
- What is the effect of epistasis on asexual and sexual adaptation?
- How epistatic are real fitness landscapes?

The house-of-cards model

> S.C. Park, JK, JSTAT (2008) P04014

- Infinite sites model with mutant fitnesses w drawn randomly and independently from mutation distribution $g(w)$ \Rightarrow maximally epistatic fitness landscape
- In the limit $N \rightarrow \infty$ the population fitness distribution evolves according to

$$
f_{t+1}(w)=(1-U) \frac{w f_{t}(w)}{\overline{w_{t}}}+U g(w) \quad \overline{w_{t}}: \text { mean fitness }
$$

- Mutation-selection balance for $g(w)$ with bounded support Kingman (1978)
- For unbounded $g(w) \sim \exp \left[-\left(w / w_{0}\right)^{\beta}\right]$ mean fitness grows as

$$
\overline{w_{t}} \approx C_{\beta} w_{0}(1-U) t^{1 / \beta} \quad 1-U: \text { mutational load }
$$

Finite populations and records

- At long times beneficial mutations are rare events:

$$
U_{b}(t)=U \operatorname{Prob}\left[w>\overline{w_{t}}\right]=U \int_{\overline{w_{t}}}^{\infty} d w g(w) \rightarrow 0 \text { for } t \rightarrow \infty
$$

- For $U \ll 1$ the effect of deleterious mutations can be neglected as well \Rightarrow approximation by a diluted record process w_{t}^{DRP}, in which mutants of fitness $w^{\prime}>w$ replace current genotype w with the fixation probability

$$
\pi(s)=1-e^{-2 s}, \quad s=w^{\prime} / w-1
$$

- To leading order $\overline{w_{t}^{\mathrm{DRP}}}$ is equal to the largest fitness value encountered up to time t [=standard record process], with corrections that can be systematically computed
- Deleterious mutations rescale the fitness according to

$$
\overline{w_{t}} \approx(1-U) \overline{w_{t}^{\mathrm{DRP}}} \approx(1-U) \ln (N U t) \text { for } g(w)=e^{-w}
$$

Simulations: Finite vs. infinite populations

$$
U=0.01, N=10^{3}, 10^{5}, 10^{7}, 10^{9}, \infty
$$

Comparison to the diluted record process

- scaled time $\tau=N U t$
- fitness variance $\kappa_{2} \rightarrow$ const.

Diluted record process: Bounds and approximations

mean field approximation: lower bound

Finite populations at arbitrary U

Bimodality of fitness distribution

- Asymptotic decomposition

$$
f_{t}(w) \approx U g(w)+(1-U) T_{t}(w)
$$

with a "traveling wave" contribution $T_{t}(w)$ holds for finite and infinite populations

Empirical fitness landscapes for Aspergillus niger

J.A.G.M. de Visser, S.C. Park, JK, arXiv:0807.3002

Figures courtesy of Mycology Online \& N.D. Read (Edinburgh)

- 7 marker mutations known to be individually deleterious
- Fitness measurements of 186 strains, including 2 complete sets of $2^{5}=32$ combinations of $L=5$ binary mutations J.A.G.M. de Visser et al. (1997)

The A. niger fitness landscape: An artist's impression

The A. niger fitness landscape: Arrow graph

- Ruggedness: Several local fitness maxima (underlined)
- Most paths $11111 \rightarrow 00000$ are selectively inaccessible

Effect of recombination on adaptation

- Free recombination: Offspring choses each locus at random from one of the two parents; e.g.,

$$
\left.\begin{array}{l}
11101 \\
10100
\end{array}\right\} \Rightarrow 11101101011110010100
$$

with equal probability

- Recombination occurs with probability r per individual and generation

Expectation from two-locus models:
I. Eshel, M.W. Feldman, Th. Pop. Biol. 1, 88 (1970)

- Recombination speeds up (slows down) adaptation in the presence of negative (positive) epistasis
- Transition from a lower to a higher fitness peak can be completely suppressed by recombination

Multiplicative landscape: Fisher-Muller-effect

Infinite populations in the A. niger landscape

