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• Clonal interference in asexual populations

• Adaptation in the house-of-cards model

• Effects of recombination in an empirical fitness landscape
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The Muller-Fisher mechanism for the advantage of sex

J.F. Crow & M. Kimura, Am. Nat. 99, 439 (1965)

• Dynamics of an adapting population:

periodic selection



The Muller-Fisher mechanism for the advantage of sex

• Clonal interference slows down the adaptation of asexual populations



The Wright-Fisher model
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• Constant population size N, discrete non-overlapping generations

• Each individual chooses an ancestor from the preceding generation

• Individual i is chosen with probability ∼ wi Wrightian fitness

• Mutations occur with probability U per individual and generation



Fixation

• When a single mutant of fitness w ′ is introduced into a monomorphic
population of fitness w, the outcome for t → ∞ is either fixation (all w ′)
or loss of the mutation (all w)

• Fixation probability for the Wright-Fisher model (Kimura, 1962)

πN(s) ≈
1− e−2s

1− e−2Ns
, s =

w ′

w
−1 selection coefficient

• Under strong selection: (N|s| ≫ 1) deleterious mutations (s < 0) cannot fix,
while beneficial mutations (s > 0) fix with probability

π(s) = 1− e−2s ≈ 2s, s ≪ 1

• Mean time to fixation of a beneficial mutation:

tfix ≈
lnN

s



Mutation and fitness model

• Infinite sites approximation:
Each mutation creates a new genotype, no recurrent mutations

• Multiplicative model: Fitness of offspring w ′ related to parental fitness w by

w → w ′ = w(1+ s)

with selection coefficient s chosen randomly from a distribution P(s)

• Extremal statistics arguments suggest that the distribution of selection
coefficients for beneficial mutations is exponential:

H.A. Orr, Genetics 163, 1519 (2003)

Pb(s) = s−1
b e−s/sb, s > 0

• Beneficial mutations occur with probability Ub



An empirical fitness distribution (VS virus)

from: A. Eyre-Walker & P.D. Keightley, Nat. Rev. Gen. 8, 610 (2007)



Contending mutations

• Beneficial mutations are most likely to get lost by genetic drift in the early
(stochastic) regime of the fixation process

⇒ mutations become contenders with probability π(s) ≈ 2s
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• Probability distribution of contending mutations: Pc(s) ∼ sPb(s) ∼ se−s/sb



Periodic selection vs. clonal interference

• Contending mutations arise at rate 2sbNUb = 1/tmut

• Periodic selection requires tfix ≪ tmut

muttfixt

population fraction

0

1

t

• In the periodic selection regime every contending mutation is fixed

⇒ rate of adaptation R = 2sb/tmut = 4s2
bNUb

• Beneficial mutations interfere when tfix ≫ tmut or 2NUb lnN ≫ 1

• Clonal interference is inevitable for large N [provided Ub is constant!]



Wright-Fisher dynamics for Ub = 10−6,sb = 0.02
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The Gerrish-Lenski theory of clonal interference

P.J. Gerrish, R.E. Lenski, Genetica 102/103, 127 (1998)

• Key idea: A contending mutation s survives clonal competition if no
superior mutation s ′ > s arises during the time to fixation of s.

• The survival probability is exp[−λ (s)] with

λ (s) = NUb tfix

∫ ∞

s
ds ′ Pc(s

′) =
N lnNUb

s

∫ ∞

s
ds ′ π(s ′)s−1

b exp[−s ′/sb]

• GL theory does not (explicitly) account for the complex interaction of
different clones. In particular, the possibility of beneficial mutations arising
within a growing clone (multiple mutations) is ignored.

• Qualitative predictions:
Clonal interference reduces the rate of substition E[k] but increases the
mean selection coefficient of fixed mutations E[s].



Summary so far:

D.E. Rozen, J.A.G.M. de Visser, P.J. Gerrish, Curr. Biol. 12, 1040 (2002)



Distribution of fixed mutations: Simulation
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Distribution of mutational effects: Experiments ( E. coli)

L. Perfeito et al., Science 317, 813 (2007)

A: N = 2×104 B: N = 107



Measuring selection coefficients in evolution experiments

M. Hegreness et al., Science 311, 161 (2006)



GL-theory: Quantitative predictions for large N

C.O. Wilke, Genetics 167, 2045 (2004); S.C. Park & JK, PNAS 104, 18135 (2007)

• Rate of substitution: γ ≈ 0.577215... Euler’s constant

E[k] ≈
sb

lnN
[ln(UbN lnN)+ γ −1] → sb

• Mean selection coefficient of fixed mutations:

E[s] ≈ sb[ln(UbN lnN)+ γ]

• Rate of adaptation: E[w]: mean population fitness

R = lim
t→∞

lnE[w]

t
≈ E[s]E[k] → s2

b ln(UbN lnN)

• Logarithmic dependence on the mutation supply NUb



Extremal statistics estimates

• Probability to find a selection coefficient larger than S :

Prob[s > S ] =

∫ ∞

s
Pb(s)ds = e−s/sb

• The largest selection coefficient smax in t generations is determined by

Prob[s > smax] =
1

NUb t
⇔ smax = sb ln(NUbt)

• Self-consistency requires that t = tfix(smax) = lnN/smax

⇒ smax = sb ln(NUb lnN/smax) ⇒ smax = E[s] ≈ sb ln(NUb lnN)

• Rate of substitution:

E[k] =
1

tfix(smax)
=

smax

lnN
≈

sb

lnN
ln(NUb lnN)



Other mutation distributions

• Extremal statistics for Pb(s) ∼ exp[−(s/sb)
β ] yields

smax ∼ sb(lnN)1/β , E[k] ∼ sb(lnN)1/β−1, R ∼ s2
b(lnN)2/β−1

• Compare to behavior for mutations of single strength Pb(s) = δ (s− s0):

R ≈
2s2

0 lnN

ln2(Ub/s0)
∼ s2

0 lnN

M.M. Desai & D.S. Fisher, Genetics 176, 1759 (2007)

• Adaptation driven by
(i) single mutations of large effect for β < 1
(ii) multiple mutations of average effect for β > 1

• The “standard case” β = 1 is marginal



Rate of adaptation: Simulations
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Simulations for other mutation distributions

C.A. Fogle, J.L. Nagle, M.M. Desai, arXiv:0804.1116v1



Rate of adaptation: Experiments

J.A.G.M. de Visser et al., Science 283, 404 (1999)

non-adapted adapted



Selection coefficient of fixed mutations: Simulations
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Selection coefficient of fixed mutations: Experiments

J.A.G.M. de Visser & D.E. Rozen, J. Evol. Biol. 18, 779 (2005)



Coefficient of variation from simulations
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Reconstruction of model parameters from experiments?

L. Perfeito et al., Science 317, 813 (2007)

• N = 2×104 △ N = 107

• Figure shows simulated parameters consistent with experiments



Reconstruction of model parameters from experiments?

M. Hegreness et al., Science 311, 161 (2006)

• Estimate of Ub and sb depends on the choice of Pb(s)!



The role of multiple mutations



Structure of the substitution process

• In the presence of multiple mutations, the process of origination of fixed
mutations must be distinguished from the process of fixation:

J.H. Gillespie, Genetics 134, 971 (1993)



Fixation of multiple mutations

Fixation: Change in the genotype of the most recent common ancenstor

fixed fixed

t t+1



Mutation and fixation processes [ N = 109]
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Rate of substitution: Simulations
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Distribution of the number of simultaneously fixed mutation s
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• Geometric distribution J(k) = q(1−q)k−1 with mean 1/q

• Geometric distribution with q(N) = 2/(2+NU) is exact in the neutral case
(Watterson, 1982)

• Stronger effect of multiple mutations for Pb(s) = δ (s− s0)



The rhythm of microbial adaptation

P.J. Gerrish, Nature 413, 299 (2001)

• Statistics of the number n(t) of substitution events up to time t ?

• The index of dispersion of the substitution process is the ratio of the
variance of n(t) to the mean:

I =
Var[n(t)]
E[n(t)]

• In the periodic selection regime I = 1 (Poisson statistics)

• GL-theory predicts a universal, sub-Poissonian limit in the clonal
interference regime:

lim
N→∞

I(N) = 2e−γ −1 ≈ 0.123



The rhythm of origination and fixation
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• Origination process becomes regular (I → 0) for large N

• Index of dispersion of fixation process I ≈ 1−q → 1 for N → ∞



Fitness landscapes and epistasis

• So far: Fitness effects of different beneficial mutations are independent

• Epistasis implies interactions between the effects of different mutations

• General setting: Genome of L binary loci (sites) i = 1, ...,L at which a
mutation can be present (σi = 1) or absent (σi = 0)

• A fitness landscape is a function w(σ) on the set of 2L genotype sequences
σ = (σ1, ...,σL)

• In the absence of epistatic interactions w(σ) = ∏L
i=1 ωi(σi)

• What is the effect of epistasis on asexual and sexual adaptat ion?

• How epistatic are real fitness landscapes?



The house-of-cards model

S.C. Park, JK, JSTAT (2008) P04014

• Infinite sites model with mutant fitnesses w drawn randomly and
independently from mutation distribution g(w)
⇒ maximally epistatic fitness landscape

• In the limit N → ∞ the population fitness distribution evolves according to

ft+1(w) = (1−U)
w ft(w)

wt
+Ug(w) wt : mean fitness

• Mutation-selection balance for g(w) with bounded support Kingman (1978)

• For unbounded g(w) ∼ exp[−(w/w0)
β ] mean fitness grows as

wt ≈Cβ w0(1−U)t1/β 1−U : mutational load



Finite populations and records

• At long times beneficial mutations are rare events:

Ub(t) = U Prob[w > wt] = U
∫ ∞

wt

dw g(w) → 0 for t → ∞

• For U ≪ 1 the effect of deleterious mutations can be neglected as well
⇒ approximation by a diluted record process wDRP

t , in which mutants of
fitness w ′ > w replace current genotype w with the fixation probability

π(s) = 1− e−2s, s = w ′/w−1.

• To leading order wDRP
t is equal to the largest fitness value encountered

up to time t [=standard record process], with corrections that can be
systematically computed

• Deleterious mutations rescale the fitness according to

wt ≈ (1−U)wDRP
t ≈ (1−U) ln(NUt) for g(w) = e−w



Simulations: Finite vs. infinite populations
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Comparison to the diluted record process
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• scaled time τ = NUt

• fitness variance κ2 → const.



Diluted record process: Bounds and approximations
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Finite populations at arbitrary U
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Bimodality of fitness distribution

exponential g(w) Gaussian g(w)
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• Asymptotic decomposition

ft(w) ≈Ug(w)+(1−U)Tt(w)

with a “traveling wave” contribution Tt(w) holds for finite and infinite
populations



Empirical fitness landscapes for Aspergillus niger

J.A.G.M. de Visser, S.C. Park, JK, arXiv:0807.3002

Figures courtesy of Mycology Online & N.D. Read (Edinburgh)

• 7 marker mutations known to be individually deleterious

• Fitness measurements of 186 strains, including 2 complete sets of 25 = 32
combinations of L = 5 binary mutations J.A.G.M. de Visser et al. (1997)



The A. niger fitness landscape: An artist’s impression
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The A. niger fitness landscape: Arrow graph

• Ruggedness: Several local fitness maxima (underlined)

• Most paths 11111 → 00000 are selectively inaccessible



Effect of recombination on adaptation

• Free recombination: Offspring choses each locus at random from one of
the two parents; e.g.,

11101
10100

}

⇒ 11101 10101 11100 10100

with equal probability

• Recombination occurs with probability r per individual and generation

Expectation from two-locus models:
I. Eshel, M.W. Feldman, Th. Pop. Biol. 1, 88 (1970)

• Recombination speeds up (slows down) adaptation in the presence of
negative (positive) epistasis

• Transition from a lower to a higher fitness peak can be completely
suppressed by recombination



Multiplicative landscape: Fisher-Muller-effect

U = 10−5,N = 107



Infinite populations in the A. niger landscape
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