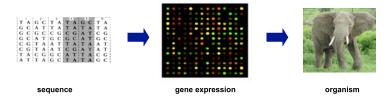
Evolution of gene expression - a genome wide comparison between human and mouse

Marta Łuksza Max Planck Institute for Molecular Genetics, Berlin

Johannes Berg Physikalisches Institut Albert-Ludwigs-Universität Freiburg Michael Lässig Institute for Theoretical Physics, University of Cologne

Motivation

Gene expression data quantify evolution at a molecular phenotype level



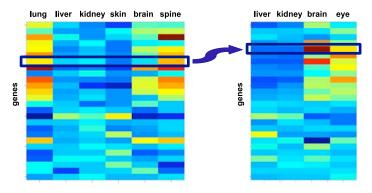
• We need to understand:

- Statistical basis: evolution of single genes and gene clusters.
- Patterns of conservation
- Patterns of adaptive changes

 Dataset of this study: Novartis gene atlas, genome-wide microarray for human and mouse (Su et al. 2004).

Cross-species comparison of single genes

Use only the set of common tissues

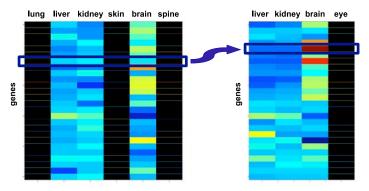


HUMAN

MOUSE

Cross-species comparison of single genes

Use only the set of common tissues



HUMAN

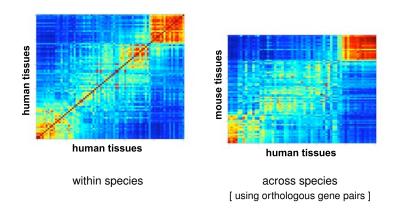
MOUSE

But

- a lot of information is disregarded
- mapped tissues can differ between species

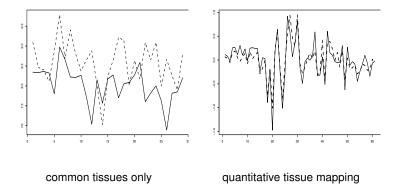
Tissue expression dependencies

Our method: quantify tissue correlations both within and between species



Cross-species tissue mapping

Our method accurately maps expression profiles from different species

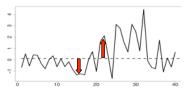


[expression profiles of an orthologous gene pair along tissues]

Statistics of expression data

Compare deviations from the mean

$$\mathbf{x}_{\mathbf{i}} = \xi_{\mathbf{i}} - \langle \xi_{\mathbf{i}} \rangle, \ \ \mathbf{\hat{x}}_{\mathbf{i}} = \hat{\xi}_{\mathbf{i}} - \langle \hat{\xi}_{\mathbf{i}} \rangle$$



Normalized vectors x and x follow Gaussian distributions

$$P_1(\boldsymbol{x}) \sim \exp(-\frac{1}{2}\boldsymbol{x}^T\boldsymbol{g}^{-1}\boldsymbol{x}), \ P_2(\hat{\boldsymbol{x}}) \sim \exp(-\frac{1}{2}\hat{\boldsymbol{x}}^T\hat{\boldsymbol{g}}^{-1}\hat{\boldsymbol{x}})$$

Related genes show expression similarity as described by covariance matrix
 G

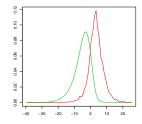
$$Q(\mathbf{x}, \hat{\mathbf{x}}) \sim P_1(\mathbf{x}) P_2(\hat{\mathbf{x}}) \exp(-\frac{1}{2} [\mathbf{x} \ \hat{\mathbf{x}}]^{\mathsf{T}} (\mathbf{G}^{-1}) [\mathbf{x} \ \hat{\mathbf{x}}])$$

 $[\mathbf{x} \ \hat{\mathbf{x}}]$ is a concatenation of vectors \mathbf{x} and $\hat{\mathbf{x}}$

G is a concatenation of within- and across-species covariance matrices

Statistics of expression data: scoring expression similarity

- $P_1(\mathbf{x})P_2(\hat{\mathbf{x}})$ null model
- $Q(\mathbf{x}, \hat{\mathbf{x}})$ functional model
- **Log-likelihood score:** $S(\mathbf{x}, \hat{\mathbf{x}}) = \log \frac{Q(\mathbf{x}, \hat{\mathbf{x}})}{P_1(\mathbf{x})P_2(\hat{\mathbf{x}})}$

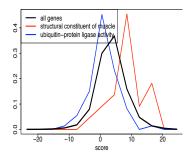


■ 67% of orthologs have significant score (p-value < 0.05)

- red curve distribution of scores of orthologous pairs
- green curve distribution of scores of random gene pairs

Is expression conservation/divergence related to gene function?

Example:



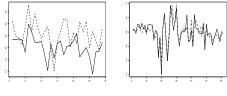
 Kolmogorov-Smirnov test to compare distribution of scores specific to functional classes (as given by Gene Ontology)

Functional conservation and divergence

	<i>p</i> -value
calcium ion binding	3e-06
plasma membrane	5e-06
cytoplasm	7e-06
structural constituent of muscle	1e-05
immune response	2.1e-05
NADH dehydrogenase activity	2.6e-05
structural constituent of cytoskeleton	4.2e-05
extracellular region	5.3e-05
striated muscle contraction	6.4e-05
mitochondrial respiratory chain complex I	8.4e-05
serine-type endopeptidase inhibitor activity	0.000123
ubiquitin cycle	3e-06
ubiquitin-protein ligase activity	3.7e-05
cation binding	0.002606
rhodopsin-like receptor activity	0.006037
DNA-directed RNA polymerase activity	0.006571
interleukin receptor activity	0.007411
carbohydrate metabolic process	0.007443

Statistics of expression data: summary

Quantitative mapping of tissues

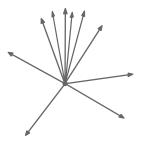


- Similarity measure for expression of genes defined by the tissue covariance matrices
 - within species: $\mathbf{x}_1 \cdot \mathbf{x}_2 = \mathbf{x}_1 \mathbf{g}^{-1} \mathbf{x}_2$
 - across species: x · x̂

Statistical scoring of similarities: log-likelihood score S(x, x̂)

Coexpression of genes

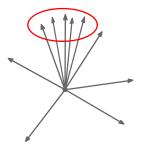
Vectors in high-dimensional space



- Define a cluster score
- Find significance of the cluster

Coexpression of genes

Vectors in high-dimensional space



- Define a cluster score
- Find significance of the cluster

Coexpression of genes: probabilistic cluster analysis

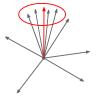
Local alignment score statistics

- many score islands
- p-value given by the Gumbel distribution

(Karlin and Altschul (1990))

Cluster score statistics analogy

- ► Sequence letters → vectors
- ► reference sequence → the direction vector repeated N times
- ► Alphabet size → vector space dimensionality
- But: there is no ordering of vectors



Cluster member scoring

Null model (multivariate Gaussian)

$${\cal P}({f x})\sim \exp\left\{-rac{{f x}\cdot{f x}}{2}
ight\}$$

Cluster model (for given direction vector z)

$$Q_{cl}(\mathbf{x}|\mathbf{z}) = (Z_{\eta})^{-1} P(\mathbf{x}) \exp \left\{\eta(\mathbf{x} \cdot \mathbf{z})\right\}$$

Log-likelihood score

$$m{s}_{cl}(m{x}|m{z}) = \log rac{Q(m{x}|m{z})}{P(m{x})} = \eta(m{x}\cdotm{z}) - \mu$$

where $\mu = \log Z_{\eta}$ is the offset given by normalization.

■ Note: *s*_{cl}(**x**|**z**) is a similarity measure of **x** and **z**

Fixed direction cluster

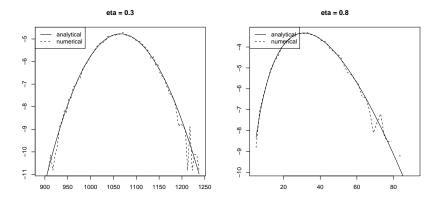
- Given vector z
 - is it a centre of a cluster?
- N vectors in M-dimensional space, x₁,..., x_N
- Total cluster score given by the sum of scores of positively scoring vectors

$$S_{cl}(\{\mathbf{x}_i\}|\mathbf{z}) = \sum_{i=1}^{N} \max(s_{cl}(\mathbf{x}_i|\mathbf{z}), \mathbf{0})$$

Compute the distribution of cluster scores under the null model.

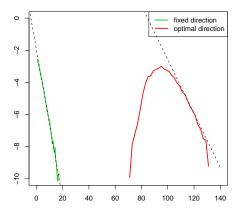
Fixed direction cluster

- Numerical experiments
 - Draw N vectors x₁,..., x_N from the null distribution P
 - Compute the cluster score with z set to the north pole
 - Repeat many times to get the numerical distribution of cluster scores
- Analytical and numerical distributions of cluster scores



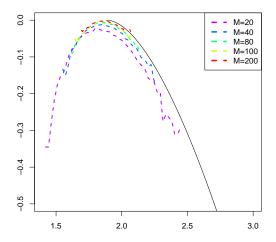
Maximum score cluster

- What happens if we look for the optimal direction z?
- Maximum cluster score distribution and the fixed direction cluster score distribution have different slopes

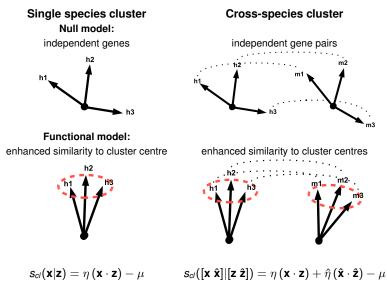


Maximum score cluster

- Solution is **asymptotic in** *M* the number of dimensions
- Comparison with the numerical experiments



Conserved coexpression clusters



Clustering problem

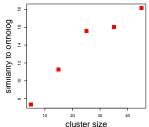
- Cluster assignment function, every element is mapped to one of the clusters, $m : \{1, ..., N\} \rightarrow \{1, ..., N\}$ (at most *N* clusters)
- Many cluster centers (pairs of orthologs) $[\mathbf{x}_{m(1)} \ \hat{\mathbf{x}}_{m(1)}], \dots, [\mathbf{x}_{m(G)} \ \hat{\mathbf{x}}_{m(G)}]$
- Find cluster centers and cluster assignment that maximizes the total score over all clusters:

$$\sum_{k \in \{1,...,N\}, k \notin \text{Image}(m)} s_{cl}([\mathbf{x}_{\mathbf{k}} \ \mathbf{\hat{x}}_{\mathbf{k}}] | [\mathbf{x}_{\mathsf{m}(\mathsf{k})} \ \mathbf{\hat{x}}_{\mathsf{m}(\mathsf{k})}])$$

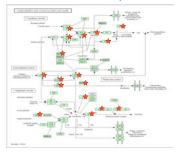
- solved by the Affinity Propagation clustering algorithm (Frey and Dueck, Science 2007)
- compute significance of the the resulting clusters

Conserved coexpression clusters

 Genes with many interactions have more conserved expression patterns (averaged over significant human clusters)



Clusters are enriched in GO terms or correspond to KEGG pathways



Summary and outlook

Method

- Statistical theory for single gene expression comparison, both within- and across-species
- Coexpression significance
- Algorithm for detection of conserved co-expression
- Conserved gene clusters are functional modules
- Adaptive changes of gene expression patterns?
 - Are there joint clusters with significant pattern changes?

