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cﬂ“.l“ﬁ Overview:
Learning and Reasoning under Uncertainty

o Learning in structured input/output space

= Semi-supervised and unsupervised maximum margin learning
= Theory and algorithm for optimization, inference and active learning
= Applications in genomics, machine translation, and multi-media analysis

o Nonparametric Bayesian models for "open worlds"

= Domain-closure, unique name and stationarity assumptions are not always valid:
= How many clusters/states/objects/relations out there? o— e
= Ambiguous data association. e /
= Birth/death/evolution of possible worlds. s -
= Infinite-capacity models based on Dirichlet process (Polya urn schemes) e S @
= Applications in genetics and evolution, tracking and email filtering
Ne_ @

(Xing, et al. ICML 04,06, Ahmed SDM08)

0 Statistical modeling and inference of relational data

LA : ! Modeling the formation, evolution, and dynamics of networks

g : Inferring their semantic aspects, missing links, and node attributes
» Biological and social network analysis

(Guo, et al, ICML 07)

el Nﬁ Overview:

Computational Biology and Statistical Genetics

o Genomics and regulatory evolution

Statistical models for genome evolution and natural selection
Functional effects on gene regulation and morphogenesis

Gene finding and functional prediction via comparative genomic
analysis

o Computation Developmental Biology of Flys

= Image analysis and database
= Feature processing, segmentation, and pattern representation
= Recovering 3D structure from 2D images
= Shape and deformation modeling and categorization

= Spatial-temporal modeling of gene regulation
= Temporal shape evolution and models for morphogenesis
= The genetics of pattern polymorphism and divergence

o Genetic variation and diseases association

= Genealogy/evolution models: how many founders, migration and
evolution history...

= Models for linkages between variations and phenotypes
= Clinical and forensic applications
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Genome Polymorphisms

The ABO Blood System
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The SNPs

Single Nucleotide Polymorphisms
— Each DNA site is call a "locus"
— Each variant is called an “allele”
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The haplotypes

useful markers for studying disease association or genome evolution:
-- landmarks, indicators, co-variates, causes ...




Genetic Inference

o Determine genetic markers

= Haplotype inference

-) ——G/A=--T/G-~-
Haplotype
(hidden) bserved)

o Reveal genome inheritance events
= Recombination hotspot identification

o Deconvolve population structure
= Ancestral spectrum analysis

Genetic structure of Human Populations (Rosenberg et al. 2002)

Outline

m Haplotype Inference
= Dirichlet Process for phasing single population
= Hierarchical DP for phasing multiple population

m Linkage-disequilibrium analysis
= Hidden Markov DP for identifying recombination hotspots

m Population structure analysis
= Admixture model
= HMDP models




Genetic Inference

o Determine genetic markers

= Haplotype inference
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o Reveal genome inheritance events
= Recombination hotspot identification

o Deconvolve population structure
= Ancestral spectrum analysis

Genetic structure of Human Populations (Rosenberg et al. 2002)
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Haplotype Inference

The Rationale: parsimony
s Many haplotypes are shared in a population
m Data for many individuals allows phasing SNP genetypes
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A Finite (Mixture of ) Allele Model

= The probability of a genotype g: @ @
p(9)= > p(h.h)p(g|h,h,) G,

hy,hyedr

Population haplotype Haplotype Genotyping
pool model model

Standard settings:
m |H=K<<2) fixed-sized population haplotype pool

m p(hy,h,)=p(h)p(h,)=Fff,  Hardy-Weinberg equilibrium

m Problem: k=2 H ?




The PAC Model

m The joint probability of all haplotypes h., h,, ... h,:

p(h;, hy,---,h) = p(h)p(h, | h)p(hy [ hy,hy)---p(h, [hy,--- 0, )

= Problem:
— Ordering?
— Ancestor?

G[claa T el
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How?
= Via a nonparametric hierarchical Bayesian formalism !

10



Dirichlet Process

m A CDF, G, on possible worlds
of random partitions follows a
Dirichlet Process if for any
measurable finite partition

(818 s I

(G(¢1), G(¢2), ooog G(¢m) )~
Dirichlet( aGy(d,), ..., aGy(#y) )

where G, is the base measure
and a is the scale parameter

Thus a Dirichlet Process G defines a distribution of distribution

DP —a Pdlya urn Process

G =p(@OO ..

Joint: G( @) ~ DP(aGy) "Infinite”
Self-reinforcing property
M S, + 2 G . exchangeable partition

K
Marginal: ¢ |¢.,a,Gy ~ D -
e kZ:;‘ i-1+a ™ of samples

22
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Clustering and DP Mixture

G, =p(@0O® -..)

Q0 00VG @

{all 91} {aZI 92} {a3' 03}

= \Weican associate ancestors, (i.e., mixture compoenents) with the colorsiin the
Polyaiurniand thereby define an infinite clustering of therhaplotypesi(i.e., balls)

Dirichlet Process Mixture of Haplotypes

(Xing et al. ICML 2004)

m A Hierarchical Bayesian Infinite Allele model

infinite mixture components
(for population haplotypes)

Likelihood model
(for individual
haplotypes and genotypes)
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Population Genetic Basis of IAM

m Kingman coalescent process with fixed (large) population size

m New population haplotype alleles emerge along all branches
of the coalescence tree at rate a/2 per unit length

> Ewens Sampling Formula: an exchangeable random partition of individuals

Coalescent with mutation "Star" genealogies Infinite mixtures

~ A =

- Dirichlet Process Mixture

Inheritance and Observation Models

m Single-locus mutation model

pool
0 ‘

for h, # a,

Py(h |a,0)=< 1-0
IIBH
— h,=a, with prob. 8

= Noisy observation model

Pe(ghy,hy):
g, =h, @®h,, with prob. A
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MCMC for Haplotype Inference

m Gibbs sampling for exploring the posterior distribution
under the proposed model

= Integrate out the parameters such as & or A, and sample Ci,»
and h,

p(Cie =k |C[—ie]’h’a) oC P(Cie =k C[—ie]) P(hie | ak,h[-ie],C)
Pdlya urn

m Gibbs sampling algorithm: draw samples of each random variable to be
sampled given values of all the remaining variables

Results - HapMap Data

m DP vs. Finite Mixture via EM

individual error

data sets

14



Extensions of the DP haplotyper

40,000-60,000 yrs

KITP seminar, September 23, 2008

Multi-population Genetic Demography

Inference done separately, or jointly?
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Multi-population Genetic Demography

m Pool everything together and solve 1 hap problem?
= --- ignore population structures

m  Solve 4 hap problems separately?
= --- data fragmentation

m Co-clustering ... solve 4 coupled hap problems jointly

Hierarchical DP Mixture

(Xing et al. ICML 2006)
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A Hierarchical Pslya Urn Sampler

2
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Draw from stock urn define Dirichlet Process
DP(yH)
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Conditioning on DP(y,H), the mth draw from
the mth bottom-level urn also form a
Dirichlet measure

V4 a V4
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Results - Simulated Data

m 5 populations with 20 individuals each (two kinds of
mutation rates)

m 5 populations share parts of their ancestral haplotypes
m the sequence length = 10

Comparison of haplotype error (errsj Comparison of haplotype error terrIJ
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Estimation of K

0.01

(a) DB with &

= 0.05

(b) DE with #

Results - International HapMap DB

Haplotype error {errs) of short SNPs in four populations
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Results - International HapMap DB

m Different sample sizes, and different # of sub-populations

|§Four pops [_|Two pops [l One pop

&, of short SNPs in CEUsYRI population (1260} err_of short S lation {1=20) err, of short SNPs in CEU=YRI population (1=10)

whbhbh whbbbk ahhhh

Tegen =60 e Tegen =10

Genetic Inference

o Determine genetic markers

= Haplotype inference

Haplotype Genotype
(hidden) (observed)

0 Reveal genome inheritance events
= Recombination hotspot identification

o Deconvolve population structure
= Ancestral spectrum analysis

Structure 2.1
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Modeling Haplotype Structure

HET. 3

m Open issues:

= Where are the boundaries?
How many haplotypes per

n
10 TR 11 [N ] 14 bIOCk'_
12 B T J11 [Tl 5 Genetically unreasonable to
[T s [T W 18 [T 1110 assume different # of
o haplotypes for different blocks

Underlying
haplotypes

39

Inheritance Model

Each individual haplotype is a mosaic of ancestral haplotypes

Ancestral
chromosomes
(K=5)

Individual
chromosomes
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The Hidden Markov Model

Transition process: recombination

p(Ci,Hl =k| Cit = k)= efdrﬂ'k’k- + (1*eidr)5(k, k") ; ’ g ,:gé:;estral

&% Emission process: mutation
 (hit=ag t)

1-6,
|B[-1

Haplotypes

p(hit lag:,0) = Hkl(hi'[_a”)[

How many recombining ancestors?
| G, =t=kmmg= | Genotype

41

Recall DP Mixture

(Xing et al. ICML 2004, 2006)

m A Hierarchical Bayesian Infinite Allele model

infinite mixture components
(for population haplotypes)

Likelihood model
(for individual
haplotypes and genotypes)
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Hidden Markov Dirichlet Process

(Xing and Sohn. Bayesian Analysis, 2007, Sohn and Xing, ISMB 2007)

Hidden Markov Dirichlet process mixtures

= Extension of HMM model to infinite ancestral space
— Infinite dimensional transition matrix
— Each row of the transition matrix is modeled with a DP: G, |, G, ~ DP(ex, G,)

&, |y,H ~DP(y,H)

HMDP as a Graphical Model
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MCMC Inference

m  Gibbs sampling

= Block sampler:
t+7-1

P(CeszrorsCore [ €7 08)= ] P(Cet I€s,h,2)
s=t
= p(recombination locatione [t'—1,t'], ¢, =k | c;,,,h,a)
=P(Cri1. 11 =Ct» Cptr =K|[Crip 1)

m Polya urn sampler: posterior transition probability

my +amy . .
. rx—— +(1-r)xd(j,k) for j=1.. K
p(ct+1=k|ct=J,m,n)=1

mj+a

rx ”cl+r+1

Recombination Analysis

Recombination hotspot detection

(1, = 06606, 0, =00037) | |
2 3 {A

a}

3i, = 00207, o, = 0.0196)

4\

threshold for hotspot detection
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Recombination Analysis

HapMapd

Steporum

LDt 2.0

HMM (K = 5)
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Association Mapping as Regression

Individual 1

Individual 2

Individual N

Phenotype (BMI)

Genotype

J

X.. /3. SNPs with large
Zl IJﬂJ |B] are relevant
J:
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Block-regularized Regression
(Kim and Xing, UAI 2008)

Recombination

rate Distance

Transition
probabilities

J
R
j=1

Standard LASSO will results in high
false positives with very high
dimensional X

Block-regularized
regression

-2

Independent
Bernoulli prior

Position
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Genetic Inference

o Determine genetic markers
= Haplotype inference

——G-==T-=

——A-——=G--—
B s
e > --G/A---T/G--
Haplotype G

(hidden)

o Reveal genome inheritance events
= Recombination hotspot identification

o Deconvolve population structure
= Ancestral spectrum analysis

Structure 2.1
NI NN

Genetic structure of Human Populations (Rosenberg et al. 2002)

Genetic Population Structure

= How to display population structure?
m Structure

Ancestral
proportion

1ol
IR

TIITILIL

Genetic structure of Human Populations (Rosenberg et al. 2002)




Variable Number of Tandem Repeats
(VNTR) Polymorphism

Restriction fragment length

S \\\\ \\

\

DNA strand

Polymorphism

The Admixture Model

= Admixture of "ancestral frequency profiles (AP)"

Ancestral populations
Structure 2.1 3 04 represented as allele

freguency; profiles
B i
v\\’

= No distinction between ancestral and current . I I I
= Does not model mutation and chromosomal recorrw ot
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From Structure to mStruct

(Shringarpure and Xing, ICML 2008)

m From admixture of APs to admixture of MIMs
= MiM: population-specific Mixture of Inheritance Models

= The inheritance model:
= Microsatellite:

Variational Inference

m  The joint:

r
p (.\c_z_r_rf]n. ,u"i_,u_ri) = p (H‘;,.) H;a ( ff) P (r.’.|‘.,. oy
i=1
I (E:\—I ”r‘-)
HJ{‘I_l I' {eng )
= \We can sample z, ¢, and #as in Structure --- slow

m Alternatively, we approximate p(z, ¢, 8| x) by q(z, ¢, ) = 9(z)q(c)a(d)
= Minimizing KL(q|p):

= Fixed-point iteration ...
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Accuracy of Admixing Vector Est.

IM-struct [Mstructure

1 5 20 50
Dirichlet Parameter o Separation between adiacent founder alleles

(a) (b)

Maps under mStruct and Structure
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Phylogenetic Trees from the
Structural Maps

Phylogenetic Trees from the
Structural Maps

Adian African
1}
European
Indian American
Asian

1

II
[z=European : 5

Indian American
African
"-African
mStruct Structure



Contour of Mutation Rates

Contour of Mutation Rates
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Recombination and Structure

(Sohn and Xing, ISMB, 2007)

Population Structure Analysis

(Sohn and Xing, ISMB 2007)

CEU: Utah residents with European ancestry
HapMap four populatlon data YRI: Yoruba in Ibadan, Nigeria

HCB: Han Chinese in Beijing
JPT: Japanese in Tokyo
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Representational Difference

Individual
representation

Spectrum

T .“'. -

M Ancestral
“ chromosomes
\’ — s

Structure 2.1 s | Ancestral

e . e | populations
i AT
V\\’

Next Step ...

= A new Bayesian method, Spectrum, for jointly modeling recombination and
population structure

m  Combination of Spectrum and Structure?

Ancestral i 12 Ancestral
. chromosomes e populations

E_I_ ‘\\I“W :?

m  Computational issues
= split-merge MCMC
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Summary

m Haplotype Inference

= Nonparametric Bayesian Models (Dirichlet Process) for phasing single
and multiple population

m Linkage-disequilibrium and GWS
= Hidden Markov DP for identifying recombination hotspots
m Block-Lasso for QTL mapping

m Population structure analysis
m Bayesian Admixture model

Spectrum

Joint inference of
Population structure and
Recombination hotspots and
Haplotypes

under unified statistical framework for genetic inheritance process of
recombination and mutation

among an unspecified number of founding alleles

Some open issues:

= Coalescent rate estimation

= Modeling selection, drift, migration, etc.
= Scalability
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