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Abstract

A framework for the analysis of stratigraphic facies as 
emergent phases of self organization will be presented.  An 
example will be given of turbidite deposition that is governed 
by a system of partial differential equations.  It will be shown 
how the boundary conditions and coefficients of the PDEs 
parameterize a phase space that is divided into distinct 
phases, or what is more commonly called facies.  A method of 
renormalization of the texture of geologic outcrops and well 
logs will be presented that gives the scale dependance of the 
PDE coefficients and boundary conditions.  This specification 
of the running coupling coefficients or S-matrix of the physics 
gives the form of the PDE as well as the coefficients and 
boundary conditions.  Practically this gives a unique 
fingerprint (or technically a metric) of the geologic facies.



Roadmap

• the big picture -- emergent behavior of self organization
• what is a physical phase and phase diagram (example of water)
• example of sediment wave formation with multiple flows
• Mallat Scattering Transformation (MST) as a metric of self 
organization

• ultimate “attribute” of geology for identification and scale extrapolation
• stratigraphic inversion objective function

• relationship of physics to the Mallat Scattering Transformation
• why does the MST work so well
• a new perspective on renormalization of field theory and the S-matrix

• conclusion
• it’s the physics
• one-to-one correspondence between geologic facies and phases of 

physical self organization of system
• S-matrix (MST) is the ultimate metric of geology



The big picture -- emergent behavior (facies) of 
self organizing system
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Phases of water

system parameters:
(a) temperature,
(b) pressure,

phases:
(a) solid
(b) liquid
(c) gas

solid liquid gas
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Phase diagram of water

P

T

solid

liquid

gas

phase is determined by the value of the system 
parameters, system parameter space is divided 
into regions for each phase

•temperature
•pressure

•flow size
•grain size
•sorting
•slope

•solid
•liquid
•gas

•channel
•levee
•fan



A real example of a sediment wave

Monterey Channel, offshore California USA

breached channel levee (splay)

levee

channel

splay

deep shallow

depth of sea bottom



What are the phases of turbidite deposition in a 
channel?

system parameters: 
(a) initial lock particle concentration,
(b) average particle diameter,
(c) slope angle,
(d) current size,
(e) initial aspect ratio,           (insensitive) 

θ0

W
H

c0 d 0
d 0
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 HW  H

H /W

2D

Strauss and Glinsky, JGR 2012
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and

Simulation of the fluid and suspended grains

mass continuity equations 
for each grain size

momentum continuity 
equation, ma=F

incompressibility, EOS

 

∂ci
∂t

+ u + usi ĝ( ) •∇ci = 1
ScRe

∇2ci

settling velocity particle diffusion

 

∂u
∂t

+ u •∇( ) u = −∇p + 1
Re

∇2 u + cĝ

viscous drag force
gravity force

pressure force

 ∇ • u = 0

x y
c

L0

u ub ≡ gR*L0c0

R* ≡
ρg − ρ f

ρ fc0

t L0 / ub
di d0 ≡ ν 2 / R*g3 Rpi ≡ di / d0( )3/2 usi = f (Rpi )

scaled by
scaled by

scaled by
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scaled by

= 250 m
= 0.8 %

= 5.4 m/s

= 46 s
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= 200 µmde ≡ ν 2 / R*c0g

scale of particle dissipation scale of fluid dissipation

Blanchette et al., 2005, 2006
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Simplified equations

eliminate pressure, set Sc=1 (particles transported as 
fluid) and write in terms of stream function and vorticity

 

∂ci
∂t

+ u + usi ĝ( ) •∇ci = 1
Re

∇2ci
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+ u •∇( )ω =
1
Re

∇2ω + ĝ × ∇c( )z

where
ω = −∇2ψ = F(ψ )  ω ≡ ∇ × u( )z
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θ0di  HW = HL0  H



Resuspension brings initial concentration back 
into problem

Garcia and Parker resuspension model

Ji = usi (ĝyc − ε si )

settling resuspension

ε si =
a
c0

zi
5

1+ a
0.3

zi
5

zi ≡ α1
u*
usi

Rpi
α2 = f (u*,Rpi )

explicit dependance on u* =
1
Re

∂ux
∂y

u* =
ωb

fshrRe
limit to

turbulent closure

c0

parameters are: (d,θ0 ,H ,c0 )
since Re simulated is 103 

instead of real value of 109

Garcia and Parker, JGR 1993

http://onlinelibrary.wiley.com/doi/10.1029/92JC02404/full
http://onlinelibrary.wiley.com/doi/10.1029/92JC02404/full


Three phases of multiple flow turbidite 
deposition

H=0.5, slope=0.5 

H=1.0, slope=0.5 

H=1.5, slope=1.5 

no sediment waves, “no SW” 

buildup of sediment waves, “SW buildup”

growing sediment waves, “SW growth” 

A

B

C



Characteristics of multiple flow turbidite 
deposition

(a) no development of SW 
(b) no periodic structures in flow
(c) monotonically decreasing mass
(d) no significant erosion
(e) suppressed front velocity
(f) no evidence of individual flows in bedding
(g) one massive bed fining downslope, coarsing from bottom to top

no SW

SW buildup

SW growth

slope never unstable to SW growth

slope sometimes unstable to SW growth

slope always unstable to SW growth

(a) rapid local SW development to steady state profile
(b) periodic flow structure
(c) relatively constant mass with maximum
(d) no appreciable erosion
(e) reference front velocity
(f) little evidence of individual flows in bedding
(g) one massive bed fining downslope, oscillatory bottom to top 

structure

(a) initially exponential growth of global SW
(b) periodic flow & erosion structure
(c) monotonically increasing mass
(d) significant erosion, exponentially growing updip within flow
(e) enhanced front velocity
(f) evidence of individual flows in bedding
(g) complex bed structure



Phase diagram of  multiple flow turbidite 
deposition

A B

C
(θ0 ,H ,c0 ,d)

in

space



What is wrong with Fourier?

• Invariant of coordinates
• NOT stable to small changes in the dynamics

• at small scale, small changes in signal lead to large changes in transform
• origin of divergences in field theory, leading to renormalization, and scale 

dependant coupling constants

Mallat, arXiv:1101.2286
Bruna and Mallat, arXiv:1112.1120
Bruna and Mallat, arXiv:1311.0407
Bruna et al., arXiv:1311.4104

http://www.arxiv.org/abs/1101.2286
http://www.arxiv.org/abs/1101.2286
http://www.arxiv.org/abs/1112.1120
http://www.arxiv.org/abs/1112.1120
http://www.arxiv.org/abs/1311.0407
http://www.arxiv.org/abs/1311.0407
http://www.arxiv.org/abs/1311.1404
http://www.arxiv.org/abs/1311.1404


What is wrong with the wavelet transform?

• stable to small changes in the dynamics
• NOT invariant of coordinates

x[�](t) = x ?  � =
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dt
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Mallat Scattering Transformation (MST)

x

• Iteration on Ux = {x ⇧ � , |x ⇧⇥ �|}� , contracting.
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 is realization of distribution is windowing function for 
finite discrete transform

x X
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j
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How do we analyze texture, phases, or facies?

Sm(| i)| i
S-matrix
“actions”

random phases
“angles”+

F�1(Sm(| i))

“geostatistical 
simulation”

phase #1

phase #2

X S[p]X

p !
N



Reconstruction examples

• Natural Sounds
– Hammer
– Helicopter
– Insect
– Train
– Water
– Wind
– Applause



Large class of stochastic processes described 
and identified with only second order scattering

Process T (�, ;) T (�1,�2)

White Gaussian �1/2 (��1
1 �2)1/2

Dirac measure k k1 k k1
Fractional Brownian Noise BH(t) �H (��1

1 �2)1/2

Poisson pp density ↵ k k1 if � < ↵ k k1 if �1 + �2 < ↵
�1/2 if � � ↵ (��1

1 �2)1/2 if �1 + �2 � ↵
Mandelbrot cascade ���1 C

Log-Normal Y = exp(�BH(t)) �kH C(�)(��1
1 �2)B(�)(1�H)

NASDAQ:AAPL ��2/3
(��1

1 �2)�0.15

first order second order
= '0(�) = S�1

2 (�,�0)



S-matrix clustering of phases and classification

LLagrangian S-matrix Sm(| i)

compact mapping, 
stable Lyapunov 

exponents

discard phase, 
unstable Lyapunov 

exponents

classification of phase or texture from potentially limited 
scale range & scale extrapolation (to small and large)

S[p1]X

S[p2]X



Phase identification from limited scale S-matrix 
and S-matrix scale extrapolation
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S-matrix “metric” as objective in stratigraphic 
inversion

kS
observed

(| i)� S
modeled

(L)k

F�1(Sm(| i))

or explicit inverse, that is simulation



Relationship of MST to QFT

t

x(t)

x

f(x)

coordinate

field

X(x) F (f) = | i state or distribution of fields

E(S[p]X(x)) MST or S-matrix
where

MST QFT

E(T�( ̂(�1) . . .  ̂(�N )) F (f))

f̂(x) !  ̂(�)
x̂ ! �̂

h ,�|f, xi =  �(x) ? f(x)p ⌘ (�1, . . . ,�N )

S[p] x(t) = lim
J!1

||||x ?  �1 | ?  �2 | . . . | ?  �N | ? �J

mathematics physics

Glinsky, arXiv:1106.4369not momentum basis where hx|ki = e

ikx

http://www.arxiv.org/abs/1106.4369
http://www.arxiv.org/abs/1106.4369


Key connection of Lagrangian to the canonical 
perspective

from the Lagrangian perspective define generating function:

the connection to the canonical formulation is:

Z[J ] = N

Z
[d (�)] e(i/~)S0[ (�)]+(i/~)

R
dxJ(�) (�)

Sm(| i) = E(T�( ̂(�1) . . .  ̂(�N )) F (f)) =
1

Z[J ]

�

�J(�1)
· · · �

�J(�N )
Z[J ]

����
J=0

= F(L)



Calculation of the effective action to second 
order

define the effective action through a Legendre transformation

expanding in    and     it can be shown that:
= classical action averaged over 
fluctuations as a function of 
renormalization scale

= transfer matrix (scale dependent 
renormalization mass) as a function of 
initial and final renormalization scale

effective physics as a function of scale
physics averaged at that scale

running coupling constants
renormalization

notes:  (1) 1/J is equivalent to  
needed for convergence of 
Gaussian integrals,  (2) modulus 
comes from evaluation of 
Gaussian integral via stationary 
phase

i✏

S '

S['(�)] = � lnZ[J ] +

Z
d� J(�) '(�)

E( ̂(�)F (f)) =
1

Z[J ]

�Z[J ]

�J(�)

����
J=0

= '0(�)

E( ̂(�) ̂(�0)F (f)) =
1

Z[J ]

�2Z[J ]

�J(�)�J(�0)

����
J=0

= �S�1
2 (�,�0)



Example of phi^4 field theory

S0[f(x)] =

Z
dx

1

2

✓
df

dx

◆2

� m

2

2
f

2 � �

4!
f

4

the action is:

the transformed action is:
S0[ (�)] =

Z
d�
�2 �m2

2
 2(�)� �

4!

Z
d� d�0 d�00 d�000

A(�,�0,�00,�000)  (�) (�0) (�00) (�000)

some interesting moments
�2S0[ (�)]

� (�)� (�0)
= (�2 �m2) �(�� �0)� �

2!

Z
d�00 d�000

�4S0[ (�)]

� (�)� (�0)� (�00)� (�000)
= �� A(�,�0,�00,�000)

�5S0[ (�)]

� (�)� (�0)� (�00)� (�000)� (�0000)
= 0

(1) because the interaction is of 4th 
order, S-matrix coefficients of 
greater than 4th order will be zero, 
(2) because there are only three 
running coupling constants in this 
theory

the dimension of the S-matrix will be 
limited to 3⇥ dim(R)

m(�),�(�), andf0(�)



Why is S-matrix so simple and compact?

• simple form of physical actions
• low order
• limited number of terms and coupling constants and fields



Conclusion

It’s the physics

Geologic facies are physical phases

S-matrix (MST) is ultimate geologic metric
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